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Abstract. Nonhomogeneous post-processing is often used to improve the predictive performance of proba-
bilistic ensemble forecasts. A common quantity used to develop, test, and demonstrate new methods is the
near-surface air temperature, which is frequently assumed to follow a Gaussian response distribution. However,
Gaussian regression models with only a few covariates are often not able to account for site-specific local features
leading to uncalibrated forecasts and skewed residuals. This residual skewness remains even if many covariates
are incorporated. Therefore, a simple refinement of the classical nonhomogeneous Gaussian regression model is
proposed to overcome this problem by assuming a skewed response distribution to account for possible skew-
ness. This study shows a comprehensive analysis of the performance of nonhomogeneous post-processing for
the 2 m temperature for three different site types, comparing Gaussian, logistic, and skewed logistic response
distributions. The logistic and skewed logistic distributions show satisfying results, in particular for sharpness,
but also in terms of the calibration of the probabilistic predictions.

1 Introduction

Probabilistic weather forecasts have become state-of-the-art
in recent years (Gneiting and Katzfuss, 2014). As such, they
are important for addressing the chaotic nature of the at-
mosphere and expressing the uncertainty of a specific fore-
cast (Lorenz, 1963). The expected uncertainty is typically
provided by an ensemble prediction system (EPS; Leith,
1974) where multiple forecasts are produced by a numerical
weather prediction (NWP) model with slightly perturbed ini-
tial conditions, model physics, and parameterizations. How-
ever, it was found that these forecasts often show systematic
errors in both the expectation and the uncertainty due to re-
quired simplified physical equations, insufficient resolution,
and unresolved processes (Bauer et al., 2015).

Statistical post-processing techniques (Gneiting and Katz-
fuss, 2014), such as Gaussian ensemble dressing (GED;
Roulston and Smith, 2003), nonhomogeneous Gaussian re-
gression (NGR or EMOS; Gneiting et al., 2005), a non-
homogeneous mixture model approach with similarities to

Bayesian model averaging (BMA; Raftery et al., 2005), or
logistic regression (Wilks, 2009; Messner et al., 2014), are
one possibility to correct for these errors. These methods
have been extensively tested for air temperature forecasts and
other quantities, with NGR (with various extensions) repre-
senting one of the most popular approaches.

The two most important properties of probabilistic fore-
casts are sharpness and calibration (Gneiting et al., 2007)
which have to be considered jointly. Accurate forecasts
should be as sharp as possible but not overconfident, as this
would result in a loss of calibration. Previous studies show
that extensions of the classical NGR method (Schefzik et al.,
2013; Scheuerer and Büermann, 2014; Möller and Groß,
2016; Dabernig et al., 2017) and other temperature post-
processing methods (Hagedorn et al., 2008; Verkade et al.,
2013; Feldmann et al., 2015; Wilks, 2017) are able to im-
prove the predictive performance of the classical NGR with
respect to specific predictive performance measures such as
sharpness and calibration.
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However, in recent publications, the probability transform
histograms (PIT; Dawid, 1984) presented often do not show
the desired perfectly uniform distribution to confirm calibra-
tion (cf., Scheuerer and Büermann, 2014, Fig. 5c,g; Möller
and Groß, 2016, Fig. 4c; or Messner et al., 2017, Fig. 7).
More specifically, the histograms indicate skewness in the
residual distribution. As a marginal Gaussian model with-
out covariates can already exhibit skewness for temperature
data (Toth and Szentimrey, 1990; Warwick and Curran, 1993;
Harmel et al., 2002), skewness is supposed to vanish if co-
variates are incorporated. Nevertheless, the residual distribu-
tion is still found to be skewed even after adjustment using
covariates (Messner et al., 2017). As covariates are based on
the output of NWP models, a remaining skewness is likely to
originate in small-scale or local atmospheric processes that
are insufficiently or not at all resolved by the NWP models.
Locations in regions where topography is only coarsely re-
solved in the model are an example of this. As a result, many
thermally induced slope and valley wind systems as well as
subsidence/lifting zones (Steinacker, 1984; Whiteman, 1990;
Zängl, 2004) will be absent, which may cause residual skew-
ness in the post-processed forecasts.

So far, most studies assume a Gaussian response distribu-
tion for their temperature post-processing methods (Gneit-
ing et al., 2005; Hagedorn et al., 2008; Verkade et al., 2013;
Scheuerer and Büermann, 2014; Möller and Groß, 2016;
Gebetsberger et al., 2018; Dabernig et al., 2017). As the
Gaussian distribution is symmetric, it is not able to account
for possible skewness by itself. Hence, this article proposes
an extension of the nonhomogeneous Gaussian regression
framework (Gneiting et al., 2005) using a skewed rather than
a symmetric response distribution in order to obtain sharp
and calibrated probabilistic temperature forecasts. To exam-
ine the need for asymmetry, probabilistic temperature fore-
casts are presented for a set of stations with different char-
acteristics including sites in the European Alps and plain ar-
eas across central Europe. Moreover, the current study uses
a long-term data set for training the statistical models, and
compares the results to the widely used sliding training pe-
riod approach where a fixed number of past training days is
used (Gneiting et al., 2005; Scheuerer and Büermann, 2014;
Feldmann et al., 2015; Möller and Groß, 2016).

2 Methods and data

Section 2.1 briefly describes the regression framework fol-
lowed by the response distributions as used in this study
(Sect. 2.2). The data and statistical model specifications are
introduced in Sect. 2.3, and the verification methodology to
access the predictive performance is introduced in Sect. 2.4.

2.1 Nonhomogeneous regression framework

The nonhomogeneous Gaussian regression (NGR) frame-
work as proposed by Gneiting et al. (2005) is a special case
of a distributional regression model (Klein et al., 2015) and
can be expressed in its general form as

y ∼D (h1(θ1)= η1, . . .,hK (θK )= ηK ) . (1)

A response variable y is assumed to follow some probability
distribution D with distribution parameters θk , k = 1, . . .,K .
Each parameter is linked to an additive predictor ηk using a
monotone link function hk . In this article we use the identity-
link hk(ηk)= ηk for the location parameter and a log-link for
scale and shape parameters to ensure positivity during op-
timization, as proposed in Gebetsberger et al. (2017). Each
linear predictor can be expressed by a set of additive predic-
tors which have the following form:

ηk = ηk(xp,βk)= f1k(x1,β1k)+ . . .+ fPk(xP ,βPk), (2)

including various (possibly nonlinear) functions fpk , p =
1, . . .,P . Hence, xp defines a matrix of covariates used, and
βpk is the vector of the regression coefficients to be esti-
mated.

Classical NGR (Gneiting et al., 2005) assumes the Gaus-
sian response distribution, which is described by the two pa-
rameters for location and scale. In ensemble post-processing
applications, it is common to use the ensemble covariate
which describes the observed variable of interest, e.g., en-
semble temperature is used for temperature observations.
The term nonhomogeneous relates to the residual variance,
which, in contrast to linear (homogenous) regression, varies
depending on the covariate value used for the Gaussian scale
parameter (Wilks, 2011). The optimization of the regression
coefficients is originally carried out by minimizing the con-
tinuous ranked probability score (CRPS; Hersbach, 2000),
although it can also be estimated by maximum likelihood
estimation (ML; Aldrich, 1997). Both approaches are com-
pared in Gebetsberger et al. (2018), where it is shown that
CRPS optimization obtains sharper, but not necessarily bet-
ter, calibrated probabilistic predictions than ML estimation.

2.2 Response distributions

This study compares three different distributions for temper-
ature post-processing: (i) the frequently-used Gaussian dis-
tribution, (ii) the symmetric logistic distribution, and (iii) the
generalized logistic distribution type I (Fig. 1). The logistic
distribution is used to assess the impact of having slightly
heavier tails (Gebetsberger et al., 2018). The generalized lo-
gistic distribution type I is of particular interest as it allows
one to account for possible skewness in the data. For sim-
plicity, it will be referred as the skewed logistic distribution
in the following.
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Figure 1. Density function of the skewed logistic distribution, il-
lustrating the third moment (ν, skewness) depending on the chosen
shape parameter ζ .

The skewed logistic distribution has the cumulative distri-
bution function (CDF):

CDF(x)=
1(

1+ exp(− x−µ
σ

)
)ζ , (3)

with location parameter µ, scale parameter σ , and shape pa-
rameter ζ . The first derivation of Eq. (3) leads to the proba-
bility density function (PDF):

PDF(x)=
ζ · exp

(
−
x−µ
σ

)
σ ·
(
1+ exp

(
−
x−µ
σ

))2ζ . (4)

The additional shape parameter ζ is responsible for the skew-
ness. Figure 1 shows the PDF for three different shape pa-
rameter values of ζ and corresponding skewness ν. ζ is pos-
itive where values below 1 create negative skewness (heav-
ier left tail, ν < 0), whereas values above 1 produce positive
skewness (heavier right tail, ν > 0). For ζ ≡ 1 the skewed
logistic distribution describes the symmetric logistic distri-
bution.

As an example, values for ζ = {0.50,1,3.82} produce a
skewness of ν = {−0.85,0,0.85} as illustrated in Fig. 1. De-
tails regarding the skewness calculation can be found in Ap-
pendix A.

2.3 Data and statistical models

2.3.1 Data

Results are presented at 27 different sites in central Europe
(Fig. 2) for forecasts+12 to+96 h at 6-hourly intervals. The
sites were selected to investigate the influence of different to-
pographical environments. Therefore, the stations are subjec-
tively clustered into three distinct groups representing Alpine
sites located in inner-Alpine regions (12), foreland sites in
the peripheral area close to the Alps (6), and plain sites in to-
pographically flat areas (9). Nevertheless, statistical models

Figure 2. Study area and selected stations in Germany (GER),
Switzerland (CH), Italy (IT), and Austria (AUT). The markers indi-
cate stations classified as Alpine (triangle), foreland (star), and plain
(square). Large symbols represent stations that are discussed in de-
tail in this article: Innsbruck, Austria (large triangle), and Hamburg,
Germany (large square).

described in the next subsection are estimated individually
for each station and lead time, as each location and time of
the day has its own site-specific characteristics.

Temperature observations are provided by automatic
weather stations (10 min mean values). As input, 2 m temper-
ature forecasts of the 50+ 1 member EPS of the European
Centre for Medium-Range Weather Forecasts (ECMWF)
are used. For this study only EPS forecasts initialized at
00:00 UTC are considered. The data set covers the time pe-
riod from 1 January 2012 to 31 December 2015 resulting
in 4 years of data that yield a sample size of approximately
1400 for each individual station and forecast lead time. The
temperature covariate of the raw ECMWF ensemble is bilin-
early interpolated to the individual sites.

In this article, detailed case studies will be shown for Inns-
bruck, Austria (Alpine site), and Hamburg, Germany (plain
site; cf., Fig. 2), which differ – particularly with respect to
their topographical environments. While the Alpine site is
located in a narrow Alpine valley surrounded by high moun-
tainous exceeding an altitude of 2500 m, the plain site is
characterized by its proximity to the sea (100 km), its few
hills, and an altitude below 160 m. Due to the necessary sim-
plifications in the NWP model, the topography is missing
large parts of the topographical structures, especially for the
Alpine site (Stauffer et al., 2017, Figs. 1 and 3).
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2.3.2 Statistical models

Similar to previous works (cf., Scheuerer and Büermann,
2014; Feldmann et al., 2015; Möller and Groß, 2016;
Dabernig et al., 2017), we only utilize the ensemble mean
(ens) and ensemble standard deviation (SDens) of the 2 m
temperature forecasts from the ECMWF EPS in this study. In
the following model specification, the ensemble mean is used
for the linear predictor of the location parameter µ, whereas
the ensemble standard deviation is used for the linear predic-
tor of the corresponding scale parameter σ .

While the Gaussian and the logistic distribution have only
two parameters (µ and σ ), the skewed logistic distribution
has an additional shape parameter ζ . To be able to capture
seasonality, a smooth cyclic spline f depending on the day
of the year (DOY) is used in the linear predictor for all distri-
bution parameters. The seasonal splines allow the regression
coefficients to vary over the year, if needed, while the cyclic
constraint avoids discontinuities at the turn of the year. As
there is no obvious candidate among all of the parameters
provided by the EPS, the shape parameter ζ of the skewed
logistic distribution is solely expressed by a smooth cyclic
spline. This allows the model to account for possible skew-
ness in the residuals between the observed and forecasted 2 m
temperature. The model specification for the study presented
can be summarized as follows:

y ∼D(µ,σ,ζ ), (5)
µ= f (DOY)+β1 · ens, (6)
log(σ )= f (DOY)+ γ1 · log(SDens), (7)
log(ζ )= f (DOY), (8)

for which the additional parameter ζ is solely used for mod-
els utilizing the skewed logistic response distribution. The
optimization of the regression coefficients for all parameters
is performed employing likelihood based gradient boosting
(R package “bamlss”; Umlauf et al., 2018). In this context
gradient boosting is not used for variable selection, but to ob-
tain regularized estimates for the regression coefficients. This
is done by performing an additional 10-fold cross validation
on the training data set to find the optimal stopping crite-
rion based on the 10-fold out-of-sample root mean squared
error. Table 1 shows a comprehensive overview of all of the
models and the covariates used in the corresponding linear
predictors.

2.4 Verification methodology

Different scores are used to assess the predictive performance
of the models tested. The overall performance is evaluated
by the logarithmic score (LS; Wilks, 2011) and the contin-
uous ranked probability score (CRPS; Hersbach, 2000). The
LS evaluates a forecast distribution by taking the logarithmic
probability density value at the observed value, whereas the
CRPS accounts for the whole forecast distribution.

Table 1. Covariates used in the linear predictors of the distribu-
tional parameters µ, σ , and ζ for all response distributions. ens and
SDens represent the ensemble mean and the standard deviations of
the ensemble 2 m temperature, respectively; f (DOY) represents the
smooth cyclic seasonal effect.

Name/ µ log(σ ) log(ζ )
distribution

Gaussian f (DOY), ens f (DOY), SDens –
Logistic f (DOY), ens f (DOY), SDens –
Skewed logistic f (DOY), ens f (DOY), SDens f (DOY)

Of particular interest for this study is the performance of
the post-processing models in terms of sharpness and cali-
bration (Gneiting et al., 2007). The sharpness of the proba-
bilistic forecasts is verified using the average prediction in-
terval width (PIW). Results for three different intervals are
shown in this article: 50 %, 80 %, and 95 %. For example,
the 80 % PIW describes the range between the 10th per-
centile and the 90th percentile of the probabilistic forecast.
The smaller the PIW, the sharper the forecasts.

Calibration is visually evaluated using probability inte-
gral transform (PIT) histograms (Gneiting et al., 2007),
which evaluate the forecasted cumulative distribution func-
tions equivalent to the rank histogram (Anderson, 1996; Ta-
lagrand et al., 1997; Hamill and Colucci, 1998). In addition,
the reliability index (RI; Delle Monache et al., 2006) and pre-
diction interval coverage (PIC) are shown. The RI allows one
to analyze an aggregated measure over a large number of in-
dividual PIT histograms. RIs are defined as

∑I
i=1|κi −

1
I
|,

where I defines the number of individual bins in a PIT his-
togram and κi defines the observed relative frequency in each
bin. In this study we use a binning of 5 %. The RI describes
the sum of the absolute deviation from each bin in a specific
PIT histogram from perfect calibration. Thus, perfectly cal-
ibrated forecasts would show an RI of zero. PICs show the
calibration for a specific interval. As for the PIW, PICs are
shown for the 50 %, 80 %, and 95 % interval in addition to
theoretical PICs of 50 %, 80 %, and 95 %. The closer the em-
pirical PIC is to the theoretical PIC, the better the calibration.

3 Results and discussion

This section presents a detailed analysis of the different sta-
tistical models. Section 3.1 shows a detailed analysis of the
long-term training window approach (see Sect. 2.3) for an
Alpine valley site. These results are compared to the results
for a plain site in Sect. 3.2. Section 3.3 shows a comprehen-
sive analysis of the predictive performance of the proposed
method for the three different groups of stations (Alpine,
foreland, and plain sites), whereas Sect. 3.4 compares the
proposed long-term training data approach against the fre-
quently used sliding window approach.
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All results presented in Sect. 3.1–3.2 are out-of-sample
results using 4-fold block-wise cross-validation. For each
model, station, and lead time, four individual regression
models have been estimated using 3 years of data while one
full year (2012, 2013, 2014, or 2015) is used as test data set.
The comparison in Sect. 3.4 is based on out-of-sample re-
sults for the year 2015 if not stated otherwise. Sliding win-
dow models are estimated by minimum CRPS and maximum
likelihood estimation as in Gebetsberger et al. (2018).

3.1 Alpine case study

Raw ensemble forecasts for Alpine sites cannot be directly
used because the topography is not well resolved. There-
fore, raw ensemble forecasts are typically characterized by
small 80 % prediction interval widths (PIWs) around 3 ◦C
and large CRPS values around 4 (Stauffer et al., 2018). The
large CRPS values are mainly driven by a systematic bias be-
cause of the difference between the real and model topogra-
phy of the ECMWF. Additionally, the small PIW of the raw
ensemble leads to underdispersive probabilistic predictions
(Gebetsberger et al., 2018).

To show the performance of the proposed approach, the
analysis for one selected site with a distinct Alpine char-
acter is shown (large triangle, Fig. 2). The left column of
Fig. 3 presents the verification for this Alpine site. Fig-
ure 3 (top down) shows LS, CRPS, 80 % PIW, and RI for
all forecast lead times. A dominant diurnal cycle for LS,
CRPS, and the 80 % PIW can be seen for all three mod-
els, with the smallest (best) scores obtained during nighttime
(00:00 and 06:00 UTC) and largest during daytime (12:00
and 18:00 UTC). The increased PIW during nighttime in
combination with low RIs show that forecasts at night are
sharper than during the day, although both are well cali-
brated. Overall, only a small decrease in the forecast perfor-
mance can be identified with increasing lead time which im-
plies comparable skill between the first and fourth forecast
day.

When comparing the logistic model with the benchmark
Gaussian model, the logistic model shows small improve-
ments in LS, especially during nighttime. Similar behavior
can be seen for the sharpness (80 % PIW) where the strongest
improvements can be achieved during nighttime, but with an
overall improvement for all lead times. Furthermore, the lo-
gistic model is able to remove large parts of the existing diur-
nal pattern in terms of calibration, showing a more homoge-
neous RI for all lead times time compared with the Gaussian
model. The proposed skewed logistic model shows similar
performance in all verification measures compared to the lo-
gistic model, with the largest improvements in sharpness dur-
ing nighttime.

Figure 4 shows PIT histograms for the 2 d ahead forecasts.
To increase readability, only the Gaussian and skewed lo-
gistic models are shown. PITs are shown for 06:00, 12:00,
18:00, and 00:00 UTC to assess the characteristics for differ-

Figure 3. Performance measures at the selected Alpine site (left)
and plain site (right) for all three models (Gaussian: squares; lo-
gistic: circles; skewed logistic: triangles). From the top down, the
LS, CRPS, 80 % PIW, and RI are shown, and are evaluated for
all forecasts +12 to +96 h ahead. Nighttime forecasts (00:00 and
06:00 UTC) are highlighted using vertical gray bars. Please note
that the displayed range on the ordinate differs between the left and
right column, except for RI.

ent times of the day. Top down PITs for the summer season,
the winter season, and the full year are shown to highlight
seasonal differences in calibration. Forecasts for day one,
three, and four show a very similar picture (not shown).

Both, the Gaussian and logistic model, already show an al-
most uniform distribution, although for one particular hour of
the day special features can be identified. The convex shape
of the Gaussian model for the all year period at +48 h (bot-
tom right) indicates overdispersion (peak at bin 0.5), while
the asymmetry also indicates residual skewness (peak at bin
0.95). This is likely caused by the not yet resolved topogra-
phy in the NWP. The overdispersion is more visible in the
summer season for +48 h (Fig. 4, top right), where a peak
can be seen at around 0.5, and two minima occur at 0.05
and 0.9, respectively. The skewed logistic distribution is able
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Figure 4. PIT histograms at the Alpine site for the Gaussian (black/dark line) and skewed logistic (green/bright line) models for the 2 d
ahead forecasts (left to right: 06:00, 12:00, 18:00, and 00:00 UTC) corresponding to forecasts +30, +36, +42, and +48 h ahead. Top down,
the PIT histograms are shown for summer only (June/July/August), winter only (December/January/February), and for the whole year. The
gray horizontal bar shows the point-wise 95 % confidence interval around 1 which indicates perfect calibration.

to produce a more uniform PIT which is also quantified by
smaller RI values.

Fig. 5a shows a joint time series of the empirical skew-
ness for the skewed logistic models for all +36 h forecasts
(12:00 UTC) over the whole validation period. The esti-
mated seasonal effect for skewness based on the 4-fold cross-
validation is plotted against the left-out year, the year which
has not been used when estimating the model. Thus, the ef-
fects for the four years (2012–2015) look slightly different as
they are based on four different models. However, the overall
pattern across years is similar, which is an indication that this
is a rather persistent characteristic given the data set used in
this study. For all years the predictions are positively skewed
during the summer season with values of around 0.6. On the
contrary, strong negative skewness with values of −0.8 can
be seen during the winter season. The consideration of this
seasonally dependent skewness yields an overall better per-
formance compared with the Gaussian model.

3.2 Alpine vs. plain site

To see the benefits of a nonsymmetric response distribution
in a different environment, the same study is shown for a
selected plain site (large square Fig. 2; right column Fig. 3).

Similar to the Alpine site, a pronounced diurnal cycle is
visible for all models in terms of LS and CRPS (Fig. 3) with
better scores for nighttime. In contrast to the Alpine site, a
clear decrease in the forecast performance with increasing
lead time can be seen; however, the two heavy-tailed mod-
els (logistic and skewed logistic) are still able to improve
sharpness (80 % PIW) and calibration (RI) for particular lead
times. The estimated skewness is also smaller than for the
Alpine site, as shown in Fig. 5. Additionally, the change in
sign of the skewness between summer and winter is almost
absent. Skewness is still present, but the amplitude is strongly
decreased compared with the results for the Alpine site with
values of close to zero (symmetric). Even if the improve-
ments over the symmetric logistic models are only minor,
the additional skewness still yields slightly better results, es-
pecially for short lead times.
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Figure 5. Joint time series of the empirical skewness ν of the fore-
casted skewed logistic distribution for a lead time of +36 h for the
Alpine station (a) and plain site (b) for all four cross-validation
blocks. The years on the abscissa correspond to the left-out year
of the cross-validation. Symmetric forecasts (no additional skew-
ness required) would show a value of zero. The two dashed lines at
ν = [−0.85,0.85] are somewhat arbitrary and are shown to facili-
tate orientation and to match the examples in Fig. 1.

In comparison with the Alpine site, the plain site shows an
overall better forecast performance for all measures except
for RI where both stations show similar scores indicating that
both stations are, on average, well calibrated. Moreover, al-
most all scores (LS, CRPS, and PIW) are smaller than for
the Alpine site even for the longest lead time. This is mainly
due to the overall better performance of the NWP for regions
with no or few topographical features. In such situations the
overall performance of the NWP is already adequate and the
EPS provides covariates containing more information. Thus,
the benefit of the statistical post-processing is much smaller
compared with sites in complex terrain. In this example the
Gaussian assumption seems to be an appropriate choice, and
the improvements of the logistic or skewed logistic distribu-
tion are only minor.

3.3 Comparison for all sites

Figure 6 shows averaged scores for LS, CRPS, the mean
80 % PIW, and RI for the three different groups of stations
including all 27 sites used in this study (cf. Fig. 2). Each box
and whiskers contains the mean score for the individual sta-
tions and all 15 lead times. This yields 12× 15 values for
group “Alpine”, 6× 15 for group “foreland”, and 9× 15 for
group “plain”. In addition, the numeric values of all medi-

ans are provided in Table 2 along with median values for two
alternative PIWs (50 % and 95 %) and the prediction inter-
val coverage (PIC) for the same three intervals. The valida-
tion shows increasing forecast performance with decreasing
topographical complexity (top down) independent of the sta-
tistical model.

Figure 7 shows the improvements using non-Gaussian dis-
tributions, compared with the Gaussian reference model:
positive values indicate that the alternative model show an
improvement over the Gaussian model. The model results
using the symmetric/skewed logistic distribution show mi-
nor improvements in terms of LS but can clearly reduce the
80 % PIW without a loss in RI, except at Alpine sites where
the logistic model shows a loss in RI (not as well calibrated).
CRPS reports barely any difference between the different re-
sponse distributions for all three groups. Large parts of the
improvements can be attributed to the increased sharpness
(PIW), which also yields a smaller LS overall without de-
creasing calibration in terms of RI.

3.4 Comparison to sliding training window

In the following, the long-term training approach presented
using 3 years of training data (2012, 2013, and 2014) is com-
pared to the widely used sliding window approach utilizing
only the previous 30 or 60 d for training. The validation pe-
riod chosen is 2015 in order to have at least 1 year of out-
of-sample data. Skewed logistic models are not estimated for
sliding windows. Due to the parametrization of the skewed
logistic distribution and the relatively short training periods,
reliable parameter estimates can no longer be ensured; there-
fore, only results for the Gaussian and logistic models are
shown. The estimation of all sliding window models is based
on the R package “crch” (Messner et al., 2016) using either
minimum CRPS or maximum likelihood optimization (cf.,
Gebetsberger et al., 2018).

Figures 8 and 9 show overall scores and skill scores as
in the previous subsection. The long-term approach using
3 years of training data shows the smallest LS and CRPS
values for the entire validation period. Sharpness in terms of
80 % PIW is lowest for sliding window models. In particu-
lar, the sharpness is clearly lower than for long-term training
models at Alpine sites. Moreover, the PIW is lower for short
(30 d) than for longer (60 d) windows, especially for the 30 d
sliding window models at the expense of calibration (RI). RI
values report similar behavior, with 60 d sliding windows re-
porting smaller RI values than 30 d windows. As this verifi-
cation is solely based on 1 year, there is large variation in the
RI values, which is based on PIT histograms.

Therefore, Fig. 10 illustrates a representative PIT for the
Alpine site, evaluated for the 60 d sliding window model
using CRPS optimization, over the entire data period from
March 2012 to the year 2015 (4 years minus 60 d). A distinct
U-shape can be identified in the all year verification with
peaks in the lowest and highest PIT bins. In particular, the
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Figure 6. Performance measures in terms of LS, CRPS, 80 % PIW, and RI (left to right), clustered for Alpine, foreland, and plain sites (top
to bottom). The box and whiskers are based on average scores for each station and lead time, with the boxes illustrating the interquartile
range (0.25–0.75), the whiskers denoting ±1.5 times interquartile range, and the solid circles representing outliers.

Figure 7. As in Fig. 6, but showing the improvement against the classical Gaussian model. Note that improvements are reported by positive
values. Differences are shown for LS, whereas skill scores (in %) are shown for CRPS, the 80 % PIW, and the RI.

Table 2. Median of (left to right) the logarithmic score (LS), the continuous ranked probability score (CRPS), the reliability index (RI), and
three prediction intervals (PIs) reporting the prediction interval width (PIW) and the prediction interval coverage (PIC) for Alpine, foreland,
and plain sites (top to bottom), evaluated for each model type (Gaussian, logistic, and skewed logistic).

Model LS CRPS RI PI 50 % PI 80 % PI 95 %

PIW PIC PIW PIC PIW PIC

Alpine
Gaussian 2.26 1.32 0.11 3.07 50.24 5.83 79.40 8.91 93.92
Logistic 2.26 1.31 0.12 2.80 46.55 5.60 78.22 9.34 95.02
Skewed logistic 2.25 1.30 0.12 2.84 47.42 5.68 78.34 9.45 94.48

Foreland
Gaussian 2.04 1.04 0.13 2.46 50.87 4.67 80.28 7.14 94.06
Logistic 2.03 1.04 0.14 2.24 47.08 4.49 79.03 7.48 94.93
Skewed logistic 2.02 1.04 0.14 2.24 47.11 4.52 78.83 7.55 94.74

Plain
Gaussian 1.83 0.85 0.12 2.03 51.07 3.86 80.46 5.91 94.27
Logistic 1.81 0.85 0.13 1.85 47.51 3.71 79.09 6.18 95.17
Skewed logistic 1.83 0.85 0.12 1.87 47.89 3.74 79.23 6.25 95.30

sliding window approach shows a large peak in the lowest
bin during summer, which also indicates residual skewness.
Similar behavior is visible for winter periods, although it is
less pronounced. The 60 d sliding window models using the
maximum likelihood estimation decreases these peaks and
yields more well-calibrated PITs (not shown) as they are less
prone to being overconfident (Gebetsberger et al., 2018).

4 Summary and conclusion

Nonhomogeneous regression is a widely used statistical
method for post-processing numerical ensemble forecasts. It
was originally developed to improve probabilistic air temper-
ature forecasts and assumes a Gaussian response distribution.
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Figure 8. Performance measures in terms of LS, CRPS, 80 % PIW, and RI (left to right), clustered for Alpine, foreland, and plain sites
(top to bottom), and were only evaluated on 2015 for out-of-sample comparison. The box and whiskers are based on average scores for
each station and lead time, with boxes illustrating the interquartile range (0.25–0.75), whiskers displaying the ±1.5 times interquartile
range, and solid circles representing outliers. Sliding training window models are labeled as S60 and S30 denoting a 60 or 30 d training
period, respectively. Additionally, the optimization score used is labeled as CRPS or ML (continuous ranked probability score or maximum
likelihood), respectively.

Figure 9. As in Fig. 8, but showing the improvements against the skewed logistic model. Note that improvements are reported by positive
values. Differences are shown for LS, whereas skill scores (in %) are shown for CRPS, the 80 % PIW, and the RI.

However, several studies have shown that marginal tem-
perature distributions can be skewed or nonsymmetric, re-
spectively (Warwick and Curran, 1993; Harmel et al., 2002).
This marginal skewness can result from topographically in-
duced effects such as cold pools during winter or a strong

valley bottom heating within narrow valleys on hot sum-
mer days. Thus, skewness is much stronger for locations sur-
rounded by complex terrain than for sites in plain regions.

Moreover, skewness is supposed to decrease if additional
covariates (e.g., individual ensemble members, seasonal ef-
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Figure 10. PIT histograms at the Alpine site for the Gaussian (black/dark line) and logistic (green/bright line) sliding 60 d models us-
ing CRPS optimization for the 2 d ahead forecasts (left to right: 06:00, 12:00, 18:00, and 00:00 UTC) corresponding to forecasts +30,
+36, +42, and +48 h ahead. From the top down, the PIT histograms are shown for summer only (June/July/August), winter only (De-
cember/January/February), and for the whole year. The gray horizontal bar shows the point-wise 95 % confidence interval around 1 which
indicates perfect calibration.

fect, and different ensemble forecast quantities) are included
in the Gaussian model (see, e.g., Messner et al., 2017). How-
ever, the calibration of the results presented in this article in-
dicate that residual skewness remains, even when including
more variables than just the ensemble temperature covariate.
Thus, the skewness might need to be included using an ap-
propriate response distribution without increasing the model
complexity with additional covariates. Such covariates would
also require variable selection techniques to avoid overfitting.

In this study, the skewed logistic distribution was used and
compared to the (symmetric) logistic and Gaussian distribu-
tions for probabilistic post-processing of the 2 m air tempera-
ture at 27 sites in central Europe for stations in three different
environments: Alpine, foreland close to the Alps, and sites
located in plain regions. The skewed logistic distribution al-
lows one to directly handle possible skewness in the data, if
needed.

The two logistic distributions perform better for 1 d up
to 4 d ahead forecasts for the majority of the stations and

lead times – in particular regarding sharpness and logarith-
mic score (LS) – without decreasing calibration, which is an-
alyzed by the reliability index (RI) and probability integral
transform (PIT) histograms. The amount of improvement de-
creases with the decreasing complexity of the topography.

When PIT histograms are used to check for calibration,
they have to be checked for different seasons, lead times, and
hours of day. Averaging over the whole year or multiple times
of the day may mask shortcomings especially in complex ter-
rain, and the distinct patterns as shown in the results might
easily be overlooked.

A comparison to sliding window models, where a fixed
number of previous days is used for training, highlights that
the sliding window approach obtains sharp forecasts, but
results in uncalibrated forecasts regarding PIT histograms.
A longer sliding window of 60 d compared with 30 d de-
creases the sharpness of the probabilistic forecasts; however,
it is still not calibrated and indicates that skewness occurs in
the residuals. Consequently, longer training windows would
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have even larger issues with residual skewness. To overcome
this, the current study uses a long-term training approach of
3 years and accounts for seasonality. This additional season-
ality reduces most parts of the skewness, but still improves
the sharpness without decreasing calibration.

The sliding training approach has the advantage of being
able to react to and account for changes in the ensemble
model quickly if two statistically different time periods exist.
The long-term approach would need a refitting of the regres-
sions coefficients for the new period after a change occurred,
or the change would have to be treated in the statistical mod-
els if two periods are mixed during training.

In conclusion, the Gaussian assumption for probabilistic
temperature post-processing may be appropriate for regions
where the ensemble provides sufficient information regard-
ing the marginal distribution of the response. However, if the
covariates used in the regression model miss some features,
residual skewness becomes challenging. An alternative re-
sponse distribution, such as the proposed skewed logistic dis-
tribution, allows one to directly address unresolved skewness
and increases the predictive performance of the probabilistic
forecasts.

Code availability. The results of the models including smooth
splines have been achieved using the R package “bamlss” (Um-
lauf et al., 2018), where a new family for the generalized logis-
tic type I distribution has been implemented and is now available
on R-Forge using the distributional properties from the R package
“glogis” (Zeileis and Windberger, 2014). The estimation of these
models is performed using a gradient boosting approach with a 10-
fold cross-validation to find the optimal stopping iteration for the
boosting based on the RMSE in order to achieve regularized regres-
sion parameters. All models using a sliding window approach are
based on the R package “crch” (Messner et al., 2016) employing
frequentist maximum likelihood and CRPS optimization.
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Appendix A: Skewness of the skewed logistic
distribution

The third moment (skewness, ν) is a function of the shape
parameter ζ :

ν(ζ )=
9 ′′(ζ )−9 ′′(1)

(9 ′(ζ )+9 ′(1))
3
2
, (A1)

where9 ′ and9 ′′ denote the first and second derivative of the
polygamma function 9(x) (Abramowitz and Stegun, 1965,
Sect. 6.4.1, p. 260) defined as

9(x)=
0′(x)
0(x)

. (A2)

Here, 0(x) denotes the Gamma function (Abramowitz and
Stegun, 1965, Sect. 6.1.1, p. 255) and 0′(x) is its first deriva-
tive. The Gamma function is defined as

0(x)=

∞∫
0

tx−1 exp(−t)dt. (A3)
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