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Abstract. The multiple correlation and/or regression information that two competing forecast systems have on
the same observations is decomposed into four components, adapting the method of multivariate information
decomposition of Williams and Beer (2010), Wibral et al. (2015), and Lizier et al. (2018). Their concept is to
divide source information about a target into total, (target) redundant or shared, and unique information from
each source. It is applied here to the comparison of forecast systems using classic regression. Additionally, non-
target redundant or shared information is newly defined that resumes the redundant information of the forecasts
which is not observed. This provides views that go beyond classic correlation differences. These five terms share
the same units and can be directly compared to put prediction results into perspective. The redundance terms in
particular provide a new view. All components are given as maps of explained variance on the observations and
for the non-target redundance on the models, respectively. Exerting this concept to lagged damped persistence
is shown to be related to directed information entropy. To emphasize the benefit of the toolkit on all timescales,
two analysis examples are provided. Firstly, two forecast systems of the German decadal prediction system
of “Mittelfristige Klimaprognose”, namely the pre-operational version and a special version using ensemble
Kalman filter for the ocean initialization, are compared. The analyses reveal the clear added value of the latter
and provide an as yet unseen map of their non-target redundance. Secondly, 4 d lead forecasts from the European
Centre for Medium-Range Weather Forecasts (ECMWF) are compared to a simple autoregressive and/or damped
persistence model. The analysis of the information partition on this timescale shows that interannual changes in
damped persistence, seen as target redundance changes between forecasts and damped persistence models, are
balanced by associated changes in the added value of the dynamic forecasts in the extratropics but not in the
tropics.

1 Introduction

A classic method for determining the potential skill of a fore-
cast system versus observations is the use of the Pearson
correlation coefficient, which is directly related to informa-
tion entropy. The comparison of competing forecast systems
is another basic issue in the evaluation of forecasting sys-
tems, for example, for quality assurance purposes. For the
Pearson correlation metric, this problem is often addressed
using correlation differences. However, a central problem in
the comparison of different forecasting systems is the strong
collinearity of the two forecasting systems because, by con-

struction, both systems aim at a reproduction of the same
observations. DelSole and Tippett (2014) and Siegert et al.
(2017) introduced and tested different methods to account
for collinearity. Hering and Genton (2011) demonstrated a
test procedure that is robust to this problem, and Gilleland
et al. (2018) showed that the block bootstrap is also reason-
ably accurate. While not specifically discussing correlation,
correlation can be utilized as what they term the loss func-
tion.

Another way to overcome this problem is the use of par-
tial correlations, which at the same time offers new views for
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forecast evaluation. The use of partial correlations has the ad-
vantage of well-known methods for inference; for example,
hypothesis testing. Partial correlations can be tested like con-
ventional correlations after reducing the degrees of freedom
accordingly (Anderson, 1984).

The method of partial correlations can be related to the
partial information decomposition (PID) which has been pro-
posed by Williams and Beer (2010). This paper attracted a
significant amount of attention, which led to a special is-
sue on “Information Decomposition of Target Effects from
Multi-Source Interactions” in the journal Entropy (Lizier
et al., 2018). The terminology of the PID, i.e. total, redundant
or shared, and unique information is taken from Williams and
Beer (2010) and Lizier et al. (2018). There is not yet a global
consensus on a general redundancy measure (Lizier et al.,
2018).

Here a partial correlation decomposition (PCD) is applied
under the assumption of continuous Gaussian distributed
variables for which the mutual information is directly re-
lated to multiple correlation. Multiple correlation of one tar-
get variable and multiple predictands is the classic Pearson
correlation between a variable and its regression on the pre-
dictands (Anderson, 1984). Classic sample estimates of Pear-
son correlation and regression coefficients (Anderson, 1984)
are used to determine total, redundant, and unique informa-
tion estimates from data. We have added to the PID a redun-
dance term that shows shared information between the mod-
els and/or predictands that is not found in the observations
and/or targets. We will concentrate on the case of comparing
two systems which makes the approach most clear.

The redundant or shared information between the forecast-
ing systems on the observations is named target redundance
here. The unique information is the added value that one fore-
cast provides when given the other. The newly defined com-
ponent is non-target redundance, which is that part of the
shared variance between the models not verified by obser-
vations. The first three components can be depicted as four
maps of explained variances on the observations, whereby
the added values are separately determined for each of the
models. The non-target redundance is based on the same par-
tial correlation for both models but is mapped using the in-
dividual unexplained variance of the respective model, given
the observations. Details of the derivation and definitions are
outlined in Sects. 2 and 3.

We will present results of the PCD for two examples cover-
ing different timescales. The first is an application to decadal
climate forecasts using two versions of the ensemble predic-
tion system developed within the German decadal climate
prediction project of MiKliP (Marotzke et al., 2016; Polkova
et al., 2019; Brune and Baehr, 2020). The second exam-
ple concentrates on medium-range forecasts from ECMWF,
taken from the THORPEX Interactive Grand Global Ensem-
ble (TIGGE) database (Swinbank et al., 2016). The data are
described in Sect. 4, and the results are given Sects. 5 and 6.

2 Multiple and partial correlation coefficients

The comparison of the pros and cons of two different forecast
systems can be done within the framework of correlation.
The starting point here is the multiple correlation coefficient
(Anderson, 1984, p. 40, Eq. 15), which reflects the correla-
tion between the observations and their multivariate regres-
sion on both forecasts. The multiple correlation is a mea-
sure of the total information that can be derived from both
forecasts on the observations. The associated partial correla-
tions (Anderson, 1984) describe the correlations of each of
the model time series with the residual of the observational
time series that is not explained by a linear regression of the
opposing model. The partial correlations are transformed to
the unique information that is the added value of each of the
forecasts. It is that part of the observational variance uniquely
explained by one of the models. The difference between the
total and the unique information from each of the models is
the target redundant information. It is that part of the variance
information which both forecast models share in the obser-
vations.

By indexing the observations with 1 and the two forecast
systems with 2 and 3, the multiple linear regression of the
observations in the two forecasts is given by the following:

X̃1 = µ1+β(X2,X3)t , (1)

where β is the matrix of regression coefficients (Anderson,
1984). The squared multiple correlation coefficient R2

1(23) is
defined as the Pearson correlation between X1 and X̃1.

R2
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The second equation forR2
1(23) in Eq. (2) shows how the mul-

tiple correlation can be built up hierarchically when includ-
ing additional predictors. Both equations are given in Ander-
son (1984) and Yule (1907). A third equation is obtained by
replacing the partial correlation with their representations as
correlations (Eq. 4).

In the case of Gaussian random observations and simu-
lations, it can be shown that the multiple correlation is di-
rectly linked to information entropy (I ). Information entropy
is the relative entropy between a joint and its marginal dis-
tributions. The expressions for the relative entropy of Gaus-
sian distributions are given in Kleeman (2002). The relation
between the ratio of the determinant of the joint covariance
matrix and the product of the determinants of the marginal
distributions is given in Anderson (1984, p. 40, Eq. 16).
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. (3)
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This relation justifies the application of the partial informa-
tion decomposition to multiple correlations.

The partial (conditional) correlation ρ12·3 (Anderson,
1984, p. 41, Eq. 20) between variable 1 and 2, given 3, is
as follows:

ρ12·3 =
ρ12− ρ13ρ23√

1− ρ2
13

√
1− ρ2

23

. (4)

Note that there are three different partial correlations made
available by the three possible permutations of the indices.
The direct comparison of the partial correlations ρ12·3 and
the corresponding ρ13·2 can be misleading, even if both are
equally large. This is because the calculation of the partial
correlation of forecast system 2, given forecast system 3, is
based on the residuum of the observations after linear regres-
sion using forecast system 3. In the case of a small residuum,
even a high partial ρ2

12·3 represents only a small fraction of
variance on the observations. A more informative measure of
the unique information is the additionally explained fraction
of the total observational variance. We define this fraction as
the added value ρ2

+12·3. It describes the increase in total cor-
relation and/or explained variance due to one model, given
the other, as can be seen in Eq. (2).

ρ2
+12·3 = ρ

2
12·3

(
1− ρ2

13

)
=

(ρ12− ρ13ρ23)2

1− ρ2
23

. (5)

Mapping this quantity is more intuitive than partial corre-
lation because it describes the additionally explained vari-
ance on the observations, while the squared partial correla-
tion gives the explained variance relative to the as yet unex-
plained part left by the competing model, which varies lo-
cally.

From Eqs. (5) and (4) it follows that the difference in the
added values of the models equals the difference of their
squared correlations with the observations. Thus, the target
redundant information drops out from squared correlation
differences. The conditional variance or mean square error
between the observations and their linear regression on one
of the forecasts is MSE1i = σ

2
1
(
1− ρ2

1i
)

(Anderson, 1984,
p. 37, Eq. 9). Thus the difference between the two regres-
sion errors is also proportional to the difference in the added
values.

ρ2
+12·3− ρ

2
+13·2 = ρ

2
12− ρ

2
13 =

MSE13−MSE12

σ 2
1

. (6)

This shows that two competing forecasting systems may be
compared on the basis of the univariate correlation coeffi-
cients, provided that the differences of the squared correla-
tions are taken. Depending on the sign of the difference, the
relative advantage of either forecasting system can be spec-
ified. However, the individual advantages are only summa-
rized by the added values from Eq. (5).

Besides the multiple correlation and added value of the
respective forecasts, the target redundance Rrr1(23) can be
derived. It is information provided equally by both systems.
According to Williams and Beer (2010), Wibral et al. (2015),
and Lizier et al. (2018), the redundant information of a three
component system with two predictors and one predictand is
the difference between the total information and the unique
information of each predictor. When applied to the multiple
correlation, this is the difference between the multiple corre-
lation and the added values of each of the two forecasts.

R2
rr1(23) = R

2
1(23)− (ρ2

+12·3+ ρ
2
+13·2)

=
2ρ12ρ13ρ23− (ρ2

12+ ρ
2
13)ρ2

23

1− ρ2
23

. (7)

The target redundance is a base level for the ranking of the
two competitive forecasting systems. To our knowledge, the
expression has not been derived before and, at least, not been
used in the context of prediction ranking.

Besides the target redundance term, there is a portion of
the variance of the competing forecasting systems which is
potentially not represented in the observations. This portion
we define as non-target redundance. It goes beyond the PID
of Williams and Beer (2010), Wibral et al. (2015), and Lizier
et al. (2018). It is derived from the third available partial cor-
relation ρ23·1 in terms of the variances one obtains, namely
ρ2
+23·1 and ρ2

+32·1, respectively. These values describe those
variance parts of either forecasting system which are com-
mon to the two systems but not represented in the observa-
tions. It provides a detailed look at systematic model errors
and can be interesting to model developers. It is the partial
correlation squared ρ2

23·1 of the models, given the observa-
tion multiplied by the respective remaining variance when
predicting the forecasts, using the observations as predictors.

ρ2
23·1 =

(ρ23− ρ12ρ13)2

(1− ρ2
12)(1− ρ2

13)
,

ρ2
+23·1 = ρ

2
23·1(1− ρ2

21)=
(ρ23− ρ12ρ13)2

1− ρ2
13

. (8)

The variables of the PCD form a uniform tool that can be
used in various combinations. They are partly more or less
established and partly new (Table 1). Besides the new views
provided by the redundance terms, the use of multiple cor-
relation and added values, instead of regression coefficients
and correlation differences, allows one to directly compare
these quantities.

3 Partial correlation and directed information

The concept of partial correlation is also useful for distin-
guishing actual model forecasts from simplified forecasts
such as damped persistence and/or autoregressive models of
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Table 1. PCD terms.

PID key word PCD key word Status Benefit

Total information Multiple correlation Rarely used Related to information entropy
Unique information Added value Rarely used Free of redundance
Redundant information Target redundance Adapted Provides new views to model developers
Beyond PID Non-target redundance New Provides new views to model developers

the observations. Runge et al. (2014) used this methodology
in a comparable manner to evaluate information fluxes in a
cross-correlation analysis. They tried to distinguish the in-
formation flux across meteorological fields from time-lagged
autocorrelations. In the context of information theory, the
term directed information comes into play. This is the infor-
mation that moves from one variable to another one within
one time step. It is defined as the average information that
goes from variable X to Y over N time steps (Massey, 1990;
Harremoës, 2006; Quinn et al., 2011).

Ĩ
(
XN → YN

)
=

1
N

N∑
n=1

I
(
Yn;X

n−1
1 |Y n−1

1

)
. (9)

In the case of the current topic of prediction evaluation, the
mean information gained from a model forecast that goes
beyond damped persistence is determined in this manner.
It is the conditional information of the forecasts, given the
damped persistence model. A continuous form of Eq. (9) can
be written out under the assumption that the mutual informa-
tion rate exists (Quinn et al., 2011). It can be determined from
the difference between the information entropies of the joint
probability distribution of the observations (again labelled 1)
and their damped persistence series (labelled 3) versus the
forecast (labelled 2) and the information entropy between the
forecast and the observed persistence model.
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The first equality is the continuous form for Eq. (9); the sec-
ond and third are derived from Eqs. (3a) and (4) of Har-
remoës (2006). The last two relations hold for Gaussian pro-
cesses. They can be deduced following the relative entropy
derivation for Gaussian processes (Kleeman, 2002). Equa-
tion (2) relates the conditional and multiple correlation and
can be used to write the argument of the logarithm in the
bottom line of Eq. (10) in terms of conditional correlation.

ρ2
21·3 = 1−

1−R2
2(13)

1− ρ2
23
= ρ2

12·3. (11)

Thus, the partial correlation can be directly related to di-
rected information entropy. R2

2(13) can be determined from
Eq. (2). It is the correlation between the forecasts and its
linear regression on the observations and the damped per-
sistence model. Thus, partial correlation is a direct tool for
determining the information flux from an external variable,
given the observed damped persistence information.

4 Examples

In the following, the decomposition of multiple correlation
analysis using partial correlations is applied to the verifi-
cation of a multi-annual ensemble mean 2 m temperature
time series (1961–2013) from two decadal ensemble predic-
tion systems of the German MiKlip decadal forecast project
(Marotzke et al., 2016) and to synoptic daily 2 m tempera-
ture forecasts from ECMWF for three winters. In a forecast
system, one does not expect negative correlations or distin-
guish meaningfully between negative and less negative corre-
lations. Therefore, negative correlations have been trimmed
and set to zero.

4.1 Data

First, annual mean 2 m temperatures for the period 1962–
2013 averaged over lead years 2 to 5 are examined. They
are taken from initialized retrospective decadal climate hind-
casts as part of the MiKlip decadal climate prediction system
(Polkova et al., 2019; Kadow et al., 2016). Two sets of model
simulations are compared. For both sets, the external forc-
ing is prescribed according to the Coupled Model Intercom-
parison Project Phase 5 (CMIP5; Taylor et al., 2012) until
2005 and to the RCP4.5 pathway from 2006 onwards (Gior-
getta et al., 2013). Both are based on the MPI-ESM (ver-
sion 1.2) in the low-resolution configuration of MPI-ESM-
LR (Giorgetta et al., 2013). The two versions are a pre-
operational version (PREOP; Polkova et al., 2019) and an ex-
perimental one, which utilizes a localized ensemble Kalman
filter (EnKF) initialization (Polkova et al., 2019; Brune et al.,
2015) for the ocean model component. In the atmospheric
component, both the PREOP and the EnKF system use full-
field nudging of vorticity, divergence, temperature, and sea
level pressure for the ERA40 and/or ERA-Interim reanaly-
ses (Uppala et al., 2005; Dee et al., 2011). In the oceanic
component, PREOP uses anomaly nudging of temperature
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and salinity for ORAS4 reanalysis (Balmaseda et al., 2013),
whereas the EnKF directly assimilates the observed tempera-
ture and salinity profiles from the EN4 database (Good et al.,
2013).

All decadal forecasts start on 1 November each year and
consider the first 2 months (November and December) as
the spin-up phase. Thus, lead year 2 actually starts after
14 months of integration time. The correlation analysis is
done on the ensemble mean of 10 available ensemble mem-
bers in each forecast system, beginning in January in the year
following the initialization. The forecasts are evaluated using
the HadCRUT4 (Morice et al., 2012) data set as observations.
The model data are interpolated to the observational grid with
a grid size of 5◦×5◦ and blended with the observational mask
of available data.

The second example compares daily mean ECMWF fore-
casts at lead +4 d with a damped persistence or autoregres-
sive model for the three winter seasons during December–
January–February (DJF) from 2014–2015 to 2016–2017.
The forecasts are available on a global grid with a 0.5◦×
0.5◦ grid distance. The daily mean is defined as the aver-
age of the forecasts at 00:00 and 12:00 Coordinated Uni-
versal Time (UTC) (Owens and Hewson, 2018). Here only
the deterministic forecasts are taken from The Observing
system Research and Predictability EXPERIMENT (THOR-
PEX; Swinbank et al., 2016). These forecasts are evaluated
relative to the respective analyses on the verifying days.

4.2 Sensitivity of decadal climate predictions to
initialization procedures

Within the MiKlip project for decadal hindcasts, the EnKF
model version, based on the ensemble Kalman initial-
ization technique for ocean temperature initialization, has
been tested and compared to nudging methods to initialize
the model ensemble for ocean and atmosphere reanalyses
(Polkova et al., 2019; Brune and Baehr, 2020). Here the com-
parison of EnKF and PREOP for 2 m temperature, based on
the partial correlation approach for means of lead years 2 to
5, are presented. As in Polkova et al. (2019), the HadCRUT4
data set serves as the observational basis.

Figure 1 shows the multiple correlation of the observations
with both forecast systems and the target redundance. As out-
lined above, this is the explained variance on the observa-
tions by the shared part of both forecasting systems. Even
the shared variance between both systems is relatively large
on this timescale over many regions. This is due to the pre-
scribed external forcings, which include the anthropogenic
forcing. The focus here is, however, on the differences in
model performance. Figure 2 depicts the unique informa-
tion that is the added values of each system with respect to
the corresponding other forecast system. The larger values of
multiple correlation can be found over regions of Africa, en-
hancing the target redundance where it is already relatively

large, but also over the eastern Pacific Ocean, where the tar-
get redundance values are close to zero.

Figure 2 depicts the unique information that is the added
value of each system with respect to the corresponding other
forecast system. An added value is mainly seen for the EnKF
version of the MiKlip prediction system. Over some key re-
gions above the North Atlantic, Africa, north and tropical
eastern Pacific Ocean, more than 20 % of variance can be
explained additionally using the EnKF initialization instead
of the nudging method in PREOP. One advantage of this rep-
resentation is that one can compare the added values in terms
of additionally explained variance on the observations as a
map. The better performance of the EnKF above the Pacific
Ocean results from an improved modelling of the sea sur-
face temperatures (SSTs) due to the assimilation of observed
temperature and salinity profiles. This, in turn, improved the
surface temperature forecasts, which are closely related to
the SSTs in this region, even on a 2–5 year timescale. The
4-year averaging was chosen to filter out the El Niño effects
in order to look for potential predictability on this timescale
that goes beyond El Niño predictability.

The test of the null hypothesis of vanishing added values
has been determined using the Student t test of the respective
partial correlations evaluated at the 5 % significance value.
The necessary number of sampling steps is taken as the num-
ber of time steps n divided by four due to the averaging over
lead years 2 to 5. In the current example, the added value of
the PREOP system with respect to the EnKF is very small, so
the multiple correlation is nearly equal to the classic squared
Pearson correlation of the EnKF system, and the target re-
dundance is close to the squared Pearson correlation of the
PREOP system with observations.

The non-target redundance of EnKF and PREOP is shown
in Fig. 3. These coherent variability patterns are nearly iden-
tical, indicating that, in the regions of non-target redundance,
the residual variance not common with the observations is
similar in both forecasting systems. Especially over the sub-
tropical Pacific Ocean, broad bands of non-target redun-
dance, reaching 40 % to 60 % of the total model variance, can
be found. Similar levels are found over the southern tropi-
cal Atlantic. Actually, over most parts of the world, coher-
ent non-target redundance can be found. Small non-target
redundance values are found over the northern Pacific and
North Atlantic oceans, where the EnKF model version has
regions of pronounced added value, explaining the observa-
tions compared to the PREOP. It is tempting to conclude that
these matching structures of the non-target redundance indi-
cate a common and erroneous behaviour of the underlying
coupled atmosphere–ocean–land surface model beyond the
usually presented systematic error.
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Figure 1. Squared multiple correlation coefficients (a) and target redundances (b) between 2 m temperature from HadCRUT4 observations
and two MiKlip ensemble forecasts, namely the ensemble Kalman filter (EnKF) and pre-operational version (PREOP), for lead years 2 to 5.
Units are a fraction of the explained variance in the observations in percentages. Assuming a Student t distribution of the R2 estimates, and
about 13 degrees of freedom, the confidence intervals R2 (in percentages) are 14< 60< 85, 26< 70< 90, and 45< 80< 94.

Figure 2. As in Fig. 1 but for added values from partial correlations between HadCRUT4 and EnKF, given PREOP, (a) and between
HadCRUT4 and PREOP, given EnKF (b). Black dots indicate where the partial correlations are above the 5 % significance level.

4.3 ECMWF lead day 4 forecasts compared to analysis
and damped persistence

Lead day 4 dynamic model forecasts and lag day−4 damped
persistence and/or autoregressive model forecasts are con-
currently compared to analyses for each of the three win-
ters from 2014–2015 to 2016–2017. The individual single
seasons are analysed to see how far the dynamic model can
compensate for interannual changes in persistence. Further-
more, the annual cycle is already part of the damped per-
sistence model, so the added value of the dynamic model
with respect to the latter goes beyond annual cycle simula-
tion. This comparative analysis of dynamic and damped per-
sistent models is related to the directed information theory
discussed in Sect. 3.

The multiple correlations for the winter of 2016–2017 are
given in Fig. 4a. Over large parts of the extratropics, the ex-

plained variance by the forecasts lies above 60 % or even
higher. However, in the tropics there is a zone along the
Equator where the multiple correlations are only about half
of those at midlatitudes. In fact, this multiple correlation is,
in this case, equal to the squared correlation between analy-
sis and forecast because the damped persistence has no added
value with respect to the dynamic model. The target redun-
dance (Fig. 5) shows the information that can be similarly
drawn from the lead day 4 forecasts and from a damped
−4 d persistence forecast. Thus, this information is already
present in the local time series and is not added by the dy-
namic model forecast. Areas of large redundance between
the dynamic and the damped persistence model are present,
especially in the subtropics and tropics.

Generally similar results are found for the other two win-
ters. We want, however, to analyse the interannual differ-
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Figure 3. As in Fig. 1 but for non-target redundances in EnKF (a) and in PREOP (b). Units are a fraction of the explained variance in the
respective model in percentages.

ences. Figure 4b shows the difference in the multiple cor-
relations between the winters of 2016–2017 and 2014–2015.
There are larger multiple correlations in the winter of 2016–
2017 in the eastern Pacific Ocean, extending from the South
American continent and into the Caribbean Sea, in the south-
eastern Pacific Ocean, near the southeastern coast of Africa,
from the southern part of Madagascar into the Indian Ocean,
and on the eastern coast of Australia. Negative regions are
found in the southern Atlantic extending to central Africa
and the northern Indonesian regions. Similar but partly en-
hanced features can be found in the differences in the tar-
get redundance, which is here bounded by the damped per-
sistence model in Fig. 5, especially near the Bering Strait,
above the North Atlantic extending to northwestern Africa,
and in the southeastern Pacific Ocean and near the south-
eastern coast of Africa. In these regions, the reduced added
values (blue regions in Fig. 6b) of the lead 4 d forecast, com-
pared to the damped persistence of the winter in 2016–2017
relative to the winter in 2014–2015, partly compensates for
the increased target redundance in the later winter. The sit-
uation is different in the region that extends from the Horn
of Africa into the interior of the continent where the multi-
ple correlations are higher for the winter of 2014–2015 com-
pared to 2016–2017 (Fig. 4). The target redundance differ-
ence Fig. 5 is also negative, indicating stronger damped per-
sistence during the winter of 2014–2015. But the differences
are larger than the multiple correlation differences because
the added value of the 4 d forecasts (Fig. 6) partly compen-
sates for the smaller redundances and/or persistences in the
winter of 2016–2017. The same is true for parts of the neg-
ative bands in the South Atlantic and for the region between
Greenland and North America. In this region, large changes
in persistence are fully compensated by the added value of
the lead day 4 dynamic forecasts; accordingly, the multiple
correlation differences are negligible. In summary, changes
in forecast quality between the different years can be as-

sessed in comparison to changes in the persistence of the sys-
tem. Higher quality predictions only due to increased system
persistence might be of less value than an increase in added
value. Furthermore, even if the quality does not change over
the years, the compensation between changes in target redun-
dance and added values may indicate the additional power of
the prediction system.

Next, we look for the general tendency for compensation
between changes in the lag day −4 damped persistence fore-
casts and the associated changes in the added value of the
dynamic 4 d forecasts. The results show that there is a gen-
eral tendency for compensation to occur in the extratropics.
Figure 7a shows a scatter diagram of the changes in target re-
dundance between the winters of 2016–2017 and 2014–2015
in Fig. 5 and the changes in added values in Fig. 6 for the
region 120◦W–120◦ E and 30–70◦ N. The Pacific region has
been excluded because it is partly dominated by the El Niño
phenomenon. The scatter diagram shows a strong negative
relationship between these quantities and, thus, an indication
for compensation between reduced persistence and increased
added value of the dynamic forecasts for that region. On the
other hand, in Fig. 7b a close relationship is visible for the
tropical band between 10◦ S and 10◦ N, i.e. the target redun-
dance changes in Fig. 5 and the changes in multiple corre-
lation in Fig. 4. Apparently, the persistence changes are not
balanced by increased added values of the dynamic forecasts
in the tropics.

5 Conclusions

In this paper, we proposed an as yet unexplored method for
evaluating and comparing two opposing forecasting systems
with the respective observations on the basis of correlation
and/or regression partial decomposition. Apart from the clas-
sic views provided by regressions, correlations, and differ-
ences, two new variates are presented. One is the shared
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Figure 4. Squared multiple correlations between ECMWF reanalyses and ECMWF lead day 4 dynamic forecasts and damped lag day −4
persistence forecasts for the winter (December–January–February – DJF) of 2016–2017 (a). Differences between the multiple correlation
coefficients for the winters of 2016–2017 and 2014–2015 (b). Assuming a Student t distribution of the R2 estimates, and about 18 degrees
of freedom, the confidence intervals R2 (in percentages) are 22< 60< 83, 35< 70< 86 and 55< 80< 92.

Figure 5. As in Fig. 4 but for target redundances of ECMWF lead day 4 dynamic forecasts and damped lag day −4 persistence forecasts for
the winter of 2016–2017 (a). Differences in the target redundances between the winters of 2016–2017 and 2014–2015 (b).

variance between both models and the observations, and the
other is the shared variance between the models that are not
observed. These classic and new variates are directly related
and comparable as they are based on the same units. The
PCD is an application of the PID proposed by Williams and
Beer (2010) for the special case of Gaussian time series anal-
ysis extended by a further term. The PID consists of the total
information on the target split into a redundant part shared
between the predictors, and the unique information each of
the predictors provides on the target.

Multiple correlation is directly related to mutual informa-
tion for Gaussian distributed variables and replaces it in our
PCD analysis. Thus, the multiple correlation provides the to-
tal information of the forecasts on the target and/or observa-
tion. The added values are determined from the partial corre-
lations. The multiple correlation links to the multiple regres-
sion method used by Krishnamurti et al. (1999) to analyse
super ensembles, and the added values detail squared corre-
lation differences in case both forecasts have different posi-
tive inputs. As an extension to the PID, we defined two re-

dundance terms instead of one, namely target and non-target
redundance. The former corresponds to the redundance term
of the PID. As the sample estimates of multiple correlation
and added values are given, a sample estimate of the target
redundance can be directly determined from the difference
of the multiple correlation and the added values of the op-
posing models. The target redundance offers a base level for
the comparison of forecasts which, to our knowledge, has not
been used so far. The non-target redundance provides a view
of the common deterministic component of the models that is
not observed. This feature might be important for model de-
velopers. It allows for a quantitative depiction of the common
model variance that is not consistent with observations. We
suggest that the non-target variance can be used as an indica-
tor of the model error; for example, if two opposing forecasts
share the same dynamic model and differ in the initialization
or in the selection of subgrid parameterizations.

This PCD toolkit has been applied to decadal hindcasts
of the MiKlip ensemble prediction system and, similarly, to
synoptic daily ECMWF forecasts of 2 m temperature. For the
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Figure 6. As in Fig. 4 but for added values of ECMWF lead day 4 dynamic forecasts of 2 m temperature with respect to damped lag day −4
persistence forecasts for the winter of 2016–2017 (a). Differences in the added values between the winters of 2016–2017 and 2014–2015 (b).

Figure 7. Scatter diagrams in which the target redundance differences between the winters of 2016–2017 and 2014–2015 of 4 d dynamic
and damped lag day −4 persistence forecasts are assigned to the x axis, and the differences in added values of 4 d dynamic forecasts for
120◦ E, 120◦W, and 30–70◦ N are assigned to the y axis (a). The differences in the multiple correlations of 4 d dynamic and damped lag day
−4 persistence forecasts hemispherically for 10◦ S to 10◦ N are assigned to the y axis in (b). The Pacific Ocean extratropics are excluded
in (a) because they behave more like the tropics, probably because they are influenced by El Niño–Southern Oscillation (ENSO). In the
extratropics, increases and/or decreases in damped persistence, here seen as target redundance changes, are balanced by opposite decreases
and/or increases in added values. In the tropics, however, increases and/or decreases in damped persistence lead to increased and/or lower
forecast quality or multiple correlations.

MiKlip mean of lead year 2 to 5 forecasts, the analysis shows
the added values of the EnKF compared to the PREOP fore-
casts, especially over the North Atlantic and in regions influ-
enced by the El Niño–Southern Oscillation (ENSO) over the
Pacific Ocean. The target redundance is mainly equal to the
information of the PREOP model because it provides only a
small added value compared to the EnKF version. The map
of non-target redundant information shows large values, es-
pecially in the subtropical Pacific Ocean and the southern
tropical Atlantic region; such a representation is new.

On the synoptic timescale, the PCD is used to show the
benefit of 4 d dynamic forecasts of 2 m temperature with re-
spect to lagged −4 d damped persistence forecasts of the ob-
servations and/or analysis, which are available at the same
lead time. The PCD is done separately for the three win-

ters from 2014–2015 to 2016–2017 to analyse varying model
performance over time with respect to varying damped per-
sistence of the observations and/or analysis. The information
from damped persistence is related to directed mutual infor-
mation (Sect. 4.3). Here, we especially analysed the changes
in total information between the winters of 2016–2017 and
2014–2015 for the dynamic and the persistence model as
well as how these changes are reflected in the changes in
the target redundance and unique information and/or added
values of the dynamic model. The PCD shows that, for exam-
ple, in the northern hemisphere the damped persistence and,
thus, the target redundance of the two models is much larger
in the winter of 2016–2017 than in 2014–2015. This is, to
a large degree, compensated by higher added values of the
dynamic model in 2014–2015. Thus, the change in total in-
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formation and/or multiple correlation is not as large. Gener-
ally, the amplitudes of changes in target redundance (Fig. 5)
are larger than the corresponding changes in total informa-
tion and/or multiple correlation (Fig. 4) because reductions
in simulated persistence are mostly balanced by increases in
unique information and/or added values (Fig. 6) of the dy-
namic forecasts. The tendency for balance between damped
persistence changes and opposite changes in added values is
the dominating effect in the extratropics (Fig. 7a). However,
in the tropics, reductions in target redundance and, thus, in
persistence are mostly seen as reductions in multiple corre-
lation and, thus, of smaller total information (Fig. 7b). This
means that the dynamic forecasts are also less successful in
that case. Thus, in regions with large changes in target re-
dundance without corresponding changes in unique informa-
tion and/or added values, higher performance periods can be
solely associated to increased persistence. Most of the unbal-
anced changes are found in the tropics (Figs. 4 and 5). The
presentation of this connection is made possible by the PCD.

A non-local multivariate extension of the PCD can be done
using basis functions, such as empirical orthogonal functions
in the spatial domain. The determination of the redundance
terms in the realm of partial correlations becomes quite dif-
ficult if more than two predictors are to be compared. Also,
here, the problem might be solved by using empirical orthog-
onal functions in a first step – this time on the estimated cor-
relation matrix among the predictors. If the common variance
is large enough, it should be reflected in one of the estimated
modes. The unique information of single or groups of fore-
casts might be reflected by other modes if they can be esti-
mated with enough confidence.

Code and data availability. The analysis has been done
with a bash script using Climate Data Operators (CDO) and
NetCDF data input. The data analysis tools are available at ftp:
//ftp.meteo.uni-bonn.de/pub/rglowie/doku-partial-code2020-08-20
and ftp://ftp.meteo.uni-bonn.de/pub/rglowie/partialcode.tgz (last
access: 20 August 2020).
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MiKlip. Model data of the described predictions are made avail-
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