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Abstract. Traditional approaches for comparing global climate models and observational data products typi-
cally fail to account for the geographic location of the underlying weather station data. For modern global high-
resolution models with a horizontal resolution of tens of kilometers, this is an oversight since there are likely grid
cells where the physical output of a climate model is compared with a statistically interpolated quantity instead of
actual measurements of the climate system. In this paper, we quantify the impact of geographic sampling on the
relative performance of high-resolution climate model representations of precipitation extremes in boreal winter
(December—January—February) over the contiguous United States (CONUS), comparing model output from five
early submissions to the HighResMIP subproject of the CMIP6 experiment. We find that properly accounting
for the geographic sampling of weather stations can significantly change the assessment of model performance.
Across the models considered, failing to account for sampling impacts the different metrics (extreme bias, spa-
tial pattern correlation, and spatial variability) in different ways (both increasing and decreasing). We argue that
the geographic sampling of weather stations should be accounted for in order to yield a more straightforward
and appropriate comparison between models and observational data sets, particularly for high-resolution models
with a horizontal resolution of tens of kilometers. While we focus on the CONUS in this paper, our results have

important implications for other global land regions where the sampling problem is more severe.
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1 Introduction

Global climate models can contain significant uncertain-
ties, particularly in their characterization of precipitation ex-
tremes. As a result, it is critical to use observation-based data
sets to evaluate a particular climate model to assess if the
model is fit for purpose in exploring extremes and, if so,
where and when the model is either acceptable or unaccept-
able for characterizing extreme precipitation. Traditionally,
gridded daily products are used as a “ground truth” data set
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for evaluating a climate model because (1) these data prod-
ucts are based on measurements of the real world (e.g., in situ
measurements or satellite observations) and (2) they enable
a like-for-like comparison between climate models and ob-
servations. However, in geographic regions with sparse sam-
pling by weather stations, gridded products do not represent
actual measurements of daily precipitation; instead, they rep-
resent a statistical interpolation of the sparse measurements.
The underlying physics of a climate model, on the other
hand, yield a process-based characterization of, for exam-
ple, extreme precipitation for every grid cell. Consequently,
a comparison of the climate model output versus a gridded
product over an area with poor observational sampling (e.g.,
regions with large orographic variability) could be mislead-
ing. This issue has already been examined in constructions of
global mean temperature trends from station data (Madden
and Meehl, 1993; Vose et al., 2005), although the effects of
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geographic sampling were minor partly because of the great
care taken in the construction of trends (Jones et al., 2001).

One way to ensure that a comparison of climate model
output is conducted against real measurements of the Earth
system is to consider only model grid cells with at least one
representative high-quality station (the standard of compari-
son we use in this paper; see Sect. 3.2). For modern global
climate models such as CESM2 (Bacmeister et al., 2020)
and CanESMS5 (Swart et al., 2019), the horizontal resolu-
tion is coarse enough that a large majority of grid cells over
the contiguous United States (CONUS) meet this criterion
(in fact, all grid cells contain at least one representative sta-
tion for CanESMS5). However, the story is much different
for high-resolution global climate models with a horizontal
resolution of tens of kilometers — the evaluation of which
is the primary motivation for this paper. For example, when
considering model output from five early submissions to the
HighResMIP subproject of the CMIP6 experiment (Haarsma
et al., 2016), the finer horizontal resolution means that at
most 60 % of the grid cells over CONUS contain a repre-
sentative station (see Table Al). An extreme example is the
HadGEM3-GC3.1-HM model (Roberts et al., 2019, which
has a ~ 20 km horizontal resolution), for which only 22 % of
the model grid cells contain a representative station. In other
words, for this particular selection criterion, accounting for
geographic sampling with CanESMS5 would have no impact
on the assessment of model performance, because all grid
cells (each about ~ 300 km across) have at least one high-
quality station over the CONUS region. On the other hand,
one might expect that the model performance could change
drastically for the HadGEM3-GC3.1-HM model.

In this paper, we make the case that geographic sam-
pling of observational data should be taken into considera-
tion when comparing climate model representations of ex-
tremes to observations, particularly for high-resolution mod-
els with a horizontal resolution of tens of kilometers. To this
end, we develop a framework for systematically quantifying
the effect of geographic sampling via a “true” standard of
comparison based only on the model grid cells with a corre-
sponding high-quality weather station. Our metrics for mak-
ing this comparison are a measure of extreme bias and Taylor
diagrams (Taylor, 2001), which summarize the spatial pat-
tern correlation and variability after removing any biases. For
extreme precipitation in boreal winter (DJF) over the con-
tiguous United States (CONUS), we find that properly ac-
counting for the geographic sampling of weather stations can
significantly change the assessment of model performance.
While we explore the CONUS in this paper, the geographic
sampling issue is particularly important when considering
global regions with very limited sampling (e.g., Central Asia,
South America, or Africa).

Before proceeding with our analysis, it is important to
highlight several key points with respect to observational
data products and the proper methodology for conducting
model comparison for precipitation extremes. On the one
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hand, in addition to the fact that daily gridded products are
convenient for model comparison, it has been clearly doc-
umented that they are the best observational data source to
use for yielding a like-for-like comparison with climate mod-
els for precipitation extremes (e.g., Chen and Knutson, 2008;
Gervais et al., 2014). This is based on the fact that the cor-
rect interpretation for model grid cell precipitation is an areal
average and not a point measurement (see, e.g., Chen and
Knutson, 2008). Of course, weather stations yield point mea-
surements, and daily gridded products that are based on an
interpolation scheme or “objective analysis” should be inter-
preted as a point measurement (e.g., Livneh et al., 2015b).
However, when the native resolution of a gridded product is
sufficiently finer than that of the climate model of interest,
gridded point measurements can still be used for model eval-
uation of precipitation extremes so long as a specific work-
flow is followed; see Gervais et al. (2014).

On the other hand, as a purely observational product, a
recent thread of research argues that gridded daily products
are an inappropriate data source for characterizing pointwise
measurements of extreme precipitation. The reasoning here
is that daily precipitation is known to exhibit fractal scaling
(see, e.g., Lovejoy et al., 2008; Maskey et al., 2016, and nu-
merous references therein), and therefore any spatial aver-
aging during the gridding process will diminish variability
and extreme values. A number of analyses specifically docu-
ment this phenomena (King et al., 2013; Gervais et al., 2014;
Timmermans et al., 2019); for example, Risser et al. (2019b)
show that daily gridded products underestimate long-period
return values by 30 % or more relative to in situ measure-
ments. Gridded point-based extreme-precipitation data prod-
ucts like Donat et al. (2013) or Risser et al. (2019b) preserve
the extreme statistics of weather station measurements, but
since they are not flux conserving and furthermore do not
account for the temporal occurrence of extreme events over
space, they can only provide local information about the cli-
matology of precipitation extremes. Such products are very
useful for characterizing the frequency of extreme precipita-
tion for local impact analyses, but they are by construction
an unsuitable data source for conducting model evaluation or
comparison.

As a final note, we emphasize that in this paper we limit
any comparisons to each individual model, focusing on the
geographic sampling question, and specifically do not con-
duct intercomparisons with respect to ranking the models
or providing general conclusions about their relative perfor-
mance. Since high-resolution global climate models are the
focus of this work, as previously mentioned, we utilize out-
put from several HighResMIP models with horizontal reso-
lutions of ~ 25 to ~ 50 km. However, the HighResMIP pro-
tocol (outlined in Haarsma et al., 2016) is unique, because it
has been designed to systematically investigate the impact of
increasing horizontal resolution in global climate models. To
that end, the various modeling centers performed two simu-
lations at two spatial resolutions for each model. The High-
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ResMIP protocol recommends that only the lower-resolution
version of the model should be tuned and that the same set of
parameters should be used, as far as possible, in the simula-
tion at high spatial resolution. Therefore, the high-resolution
simulations (which are the simulations used in this study)
have not been designed to be the best possible simulations of
each individual model, even if they have generally been per-
formed using the latest version of each model. This is partic-
ularly important for precipitation extremes that are strongly
influenced by moist physics parameterizations.

The paper proceeds as follows: in Sect. 2 we describe the
various data sources used (gridded daily products and climate
model output) in our analysis, and in Sect. 3 we describe the
statistical methods and framework for accounting for geo-
graphic sampling. In Sect. 4, we illustrate our methodology
using a case study comparing a well-sampled (spatially) re-
gion versus a poorly sampled region before presenting the
results of our analysis for all of CONUS, maintaining a fo-
cus on boreal winter (DJF) precipitation. Section 5 concludes
the paper.

2 Data sources

2.1 Observational reference data

As described in Sect. 1, model-simulated precipitation is
best interpreted as an areal average over the model grid
cell (Chen and Knutson, 2008; Gervais et al., 2014) as op-
posed to the point-measurement interpretation appropriate
to in situ weather station measurements. Following Gervais
et al. (2014), the correct way to compare model data with sta-
tion data for precipitation extremes is as follows: (1) use an
objective analysis to translate daily station measurements to
a grid with a much higher resolution than the model resolu-
tion, (2) use a conservative remapping procedure (e.g., Jones,
1999) to translate the daily high-resolution grid values to the
climate model grid, and (3) calculate the extreme statistics of
interest.

One pre-existing gridded product that meets the criteria
of step 1 above is the Livneh et al. (2015a, b) daily gridded
product (henceforth L15), which has been gridded to a 1/16°
or ~ 6 km horizontal resolution and spans the period 1950—
2013. While the data product covers North America (south of
53° N), we limit our consideration to those grid cells within
the boundaries of the contiguous United States (CONUS).
The L15 data product takes in situ measurements of daily
total precipitation (over CONUS, the input data are from
the Global Historical Climatology Network; Menne et al.,
2012) and creates a daily gridded product by first interpo-
lating daily station measurements to a high-resolution grid
and then applying a monthly scaling factor calculated from
the topographically aware PRISM data product (Daly et al.,
1994, 2008). While the combination of interpolating point
measurements and applying a monthly rescaling likely has
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an impact on observed extreme events, such considerations
are beyond the scope of this paper.

For each of the climate model grids considered (see Ta-
ble 1), we first regrid the daily L15 data to the model grid
using a conservative remapping procedure (we utilize func-
tionality from the rainfarmr package for R; von Hardenberg,
2019) and then extract the largest running 5 d precipitation
total (denoted Rx5Day) in each DJF season at each grid cell,
which is denoted as

(Y™ (g):1=1951,...,2013; g € G},

where Y represents the Rx5Day value, the superscript “obs”
indicates observations, ¢ is the year, g is the grid cell, and G,,
is the model grid for model m =1, ..., 5.

The L15 data product is, of course, only one of a very large
number of gridded daily precipitation products that could be
considered in this study. However, we choose to use L15 for
several reasons: first, it is one of the more widely used grid-
ded daily products; second, it covers a relatively long time
record (64 years); and finally, its native resolution is suf-
ficiently higher than the climate models considered in this
paper such that it can be conservatively remapped to the
model grids following the procedure outlined in Gervais et al.
(2014). The Climate Prediction Center (CPC) 0.25° x 0.25°
daily US unified gauge-based analysis of precipitation is an-
other commonly used data product with similar time cover-
age; however, its 0.25° resolution is approximately the same
as the models considered in this study. Since the CPC product
represents a point measurement, its resolution is too coarse
to be appropriately translated to an areal average for use in
HighResMIP model evaluation according to the Gervais et al.
(2014) methodology.

2.2 Climate models

Given that this study is motivated by the evaluation of
high-resolution climate models with horizontal resolutions
of tens of kilometers, we utilize early submissions to the
high-resolution simulation with fixed sea surface temper-
atures covering 1950—present (highresSST—present) experi-
ment of the HighResMIP subproject of the CMIP6 experi-
ment (Haarsma et al., 2016), all of which are atmospheric
model intercomparison project (AMIP)-style runs with fixed
sea surface temperatures from 1950 to 2014. As mentioned in
Sect. 1, the HighResMIP protocol was designed to systemat-
ically explore the impact of increasing horizontal resolution
in global climate models. Each of the models used here was
run at two spatial resolutions, including a high spatial res-
olution. However, the protocol specifies that only the low-
resolution version of the model is tuned and that the same set
of parameters is used for the high-resolution simulations. We
utilize only the high-resolution simulations, even though sev-
eral of the models have scale-aware parameterizations (i.e.,
they have to be modified with increasing resolution); there-
fore, there might be large differences between the models in
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Table 1. HighResMIP climate model output used in the analyses for this paper.

Model Label Long x lat global grid  Long X lat resolution =~ Ensemble members ~CONUS grid cells
CNRM-CM6-1-HR* CNRM 720 x 360 0.5° x 0.5° 1 3256
ECMWF-IFS-HR ECMWF 720 x 361 0.5° x 0.5° 4 3253
HadGEM3-GC31-HM  HadGEM 1024 x 768 0.35° x 0.23° 3 9900
IPSL-CM6A-ATM-HR  IPSL 512 x 360 0.7° x 0.5° 1 2316
MPI-ESM1-2-XR MPI 768 x 384 0.47° x 0.47° 1 3748

* Note that the CNRM runs are only from 1981 to 2014.

terms of the tuning used in the simulations evaluated here.
For this reason, we reiterate that in this paper we maintain
comparisons to within-model statements and do not attempt
to conduct intercomparison.

The following models are used for our analysis.

1. CNRM-CM6-1-HR is  developed jointly by
CNRM-GAME (Centre National de Recherches
Meétéorologiques — Groupe d’études de 1’ Atmosphere
Meétéorologique) in Toulouse, France, and CERFACS
(Centre Européen de Recherche et de Formation
Avancée); see Voldoire et al. (2013). Data are in-
terpolated to a regular 720 x 360 (0.5° x 0.5°)
longitude—latitude grid from the native T3591 reduced
Gaussian grid. The model has 91 vertical levels with
the top level at 78.4 km.

2. ECMWEF-IFS-HR is the Integrated Forecasting System
(IFS) model of the European Centre for Medium-Range
Weather Forecasts as configured for multidecadal en-
semble climate change experiments (Roberts et al.,
2018). Data are interpolated to a regular 720 x 361
(0.5° x 0.5°) longitude—latitude grid from the native
Tco399 cubic octahedral reduced Gaussian grid (nom-
inally ~ 25km). The model has 91 vertical levels with
the top model level at 1 hPa.

3. HadGEM3-GC31-HM is the UK Met Office Hadley
Centre (Exeter, United Kingdom) unified climate
model, HadGEM3-GC3.1-HM on a regular 1024 x
768 (0.35° x 0.23°) longitude-latitude grid (nominally
25 km; Roberts et al., 2019). The model has 85 vertical
levels with the top model level at 85 km.

4. IPSL-CM6A-ATM-HR is developed by the Institut
Pierre Simon Laplace in Paris, France (Boucher et al.,
2019). Data are interpolated from the native N256
geodesic grid to a 512 x 360 (0.7° x 0.5°) longitude—
latitude grid (nominally ~ 50km). The model has 79
vertical levels with the top model level at 40 000 m.

5. MPI-ESM1-2-XR is the Max Planck Institute for
Meteorology in Hamburg, Germany (Gutjahr et al.,
2019). Data are interpolated to a regular 768 x 384
(0.47° x 0.47°) longitude-latitude grid (nominally ~
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50km) from the native T255 spectral grid. The model
has 95 vertical levels with the top model level at 0.1 hPa.

For each of these models (additional details are provided in
Table 1) and each ensemble member, we calculate the corre-
sponding DJF Rx5Day values for each ensemble member in
each grid box over CONUS. Furthermore, note that we mask
out grid cells that are not fully over land. These values are
denoted

{4 (@)1 =1951,...,2014;g € Guse = 1,..., Nens.m )

formodel m =1, ..., 5, where G, is the model grid for model
m, and Neps 5, 1s the number of ensemble members for model
m (see Table 1); however, note that the CNRM runs only
cover 1981-2014.

3 Methods

3.1 Extreme value analysis

The core element of our statistical analysis is to estimate the
climatological features of extreme precipitation for the re-
gridded L15 and each climate model using the generalized
extreme value (GEV) family of distributions, which is a sta-
tistical modeling framework for the maxima of a process over
a prespecified time interval or “block”, e.g., the 3-month DJF
season used here. Coles et al. (2001) (Theorem 3.1.1, p. 48)
shows that when the number of measurements per block is
large, the cumulative distribution function (CDF) of the sea-
sonal Rx5Day Y;(g) can be approximated by a member of the
GEV family:

Gg:(y)=P(Yi(g8) = y)

— —1/&(g)
=exp{—[1+é,(g)(y7"g’)(g))] } M

which is defined for {y : 1 +&(g)(y — 1;(g))/0:(g) > 0}. The
GEV family of distributions (Eq. 1) is characterized by three
space-time parameters: the location parameter u,(g) € R,
which describes the center of the distribution; the scale pa-
rameter o;(g) > 0, which describes the spread of the distri-
bution; and the shape parameter &;(g) € R. The shape pa-
rameter, &(g), is the most important for determining the
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qualitative behavior of the distribution of daily rainfall at a
given location. If &(g) < 0, the distribution has a finite up-
per bound; if &(g) > 0, the distribution has no upper limit;
and if &(g) = 0, the distribution is again unbounded and the
CDF (Eq. 1) is interpreted as the limit &,(g) — 0 (Coles et
al., 2001). While the GEV distribution is only technically ap-
propriate for seasonal maxima as the block size approaches
infinity, Risser et al. (2019a) verify that the GEV approxi-
mation is appropriate here even though the number of “inde-
pendent” measurements of Rx5Day in a season is relatively
small, particularly when limiting oneself to return periods
within the range of the data (as we consider here, with the
20-year return values).

While our goal is to simply estimate the climatology of
extreme precipitation (and specifically not to estimate or de-
tect trends), the nonstationarity of extreme precipitation over
the last 50 to 100 years (see, e.g., Kunkel, 2003; Min et al.,
2011; Zhang et al., 2013; Fischer and Knutti, 2015; Easter-
ling et al., 2017; Risser et al., 2019a) requires that we char-
acterize a time-varying extreme value distribution. Here, we
use the simple trend model:

wi(8) = no(g) +11(@)X:, o1(g) =0(g).& (g =8, (2)

where X; = [GMT]; is the smoothed (5-year running aver-
age) annual global mean temperature anomaly in year ¢, ob-
tained from GISTEMPv4 (Lenssen et al., 2019; GISTEMP
Team, 2020). The global mean temperature is a useful co-
variate for describing changes in the distribution of extreme
precipitation, although other process-based covariates could
work equally well or better (Risser and Wehner, 2017). While
this is an admittedly simple temporal model, we argue that it
is sufficient for characterizing the climatology of seasonal
Rx5Day. Furthermore, Risser et al. (2019a) use a similar
trend model as Eq. (2), which they show to be as good (in a
statistical sense) as more sophisticated trend models (where,
for example, the scale and/or shape vary over time). While
it has been argued that much more data are required to fit
nonstationary models like Eq. (2) reliably (Li et al., 2019),
the inclusion of a single additional statistical parameter is
used to address the fact that seasonal Rx5Day over CONUS
is not identically distributed over 1950-2013. Furthermore,
all comparisons in this paper are based on a time-averaged
return value, and we do not attempt to directly interpret any
temporal changes in the distribution of Rx5Day. We hence-
forth refer to wo(g), 11(g), o(g), and &£(g) as the climatolog-
ical coefficients for grid cell g, as these values describe the
climatological distribution of extreme precipitation in each
year.

For each model grid and data type (climate model output
or regridded L15), we utilize the climextRemes package for
R (Paciorek, 2016) to obtain maximum likelihood estimates
(MLESs) of the climatological coefficients, which are denoted
as

{fio(2), T1(2), 5 (), £(2)), 3)
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independently for each grid cell. Within climextRemes, we
also utilize the block bootstrap (see, e.g., Risser et al., 2019b)
to quantify uncertainty in the climatological coefficients in
all data sets considered. For those models with more than
one ensemble member (see Table 1), we treat the ensem-
ble members as replicates and obtain a single MLE of the
climatological coefficients. The MLEs from Eq. (3) and the
bootstrap estimates can be used to calculate corresponding
estimates of the DJF climatological 20-year return value, de-
noted $(g), which is defined as the DJF maximum five-daily
precipitation total that is expected to be exceeded on aver-
age once every 20 years in grid cell g under a fixed GMT
anomaly. In other words, a(g) is an estimate of the 1 — 1/20
quantile of the distribution of DJF maximum five-daily pre-
cipitation at grid cell g, i.e., P(Y,(g) > $(g)) = 1/20, which
can be written in closed form in terms of the climatological
coefficients:

[fio(® + 1 (@X] — Z2[1 — {~log(1 — 1/r)) F®],
£(g) #0;
[7i0(®) + 71(2) X1 — 5 () log{—log(1 — 1/r)},
£(g)=0;

P(g) =

“4)

(Coles et al., 2001); here X is the average GMT anomaly
over 1950 to 2013. Averaging over the GMT values yields a
time-averaged or climatological estimate of the return values.
At the end of this procedure, we have MLEs of the cli-
matological 20-year return value ¢(g) for each of the five
climate models and each of the five regridded L15 data
sets, as well as bootstrap estimates of these return values,
{ab(g) :b=1,...,250}, for each model grid and data type.

3.2 Comparing the climatology of extreme precipitation

We illustrate the effect of geographic sampling on the evalua-
tion of simulated 20-year return values of winter (DJF) max-
imum 5 d precipitation from selected high-resolution climate
models with Taylor diagrams (Taylor, 2001) to illustrate pat-
tern errors and return value bias to quantify magnitude errors.
Taylor diagrams (Taylor, 2001) plot the centered pattern cor-
relation between observations and simulations as the angular
dimension and the ratio of the observed to simulated spatial
standard deviation as the radial dimension. These diagrams
provide information about the spatial pattern of model errors
with the biases removed. The bias in 20-year return values
(hereafter referred to as “extreme bias”), defined as the ab-
solute difference between the return values from model and
observations, provides a simple measure of whether the mod-
els are too dry or too wet, while the Taylor diagram provides
three useful metrics displayed in a single plot: (1) the spatial
pattern correlation between the model and observations, (2) a
comparison of the spatial standard deviation over the region,
and (3) a skill score to assess a level of agreement between
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the two spatial fields. Taylor’s modified skill score S, com-
paring two spatial fields (e.g., model versus observations), is
defined as

S:exp{—

512 + s% — 251821
25152 ’

where s; is the standard deviation of spatial field j =1, 2,
and r is the spatial pattern correlation between the two fields
(also used in Wehner, 2013). The skill score essentially in-
volves the ratio of the mean squared error between the two
fields (after removing the average from each field) and the
standard deviations of each field; the score S ranges between
0 (indicating low skill) and 1 (indicating perfect skill). Fur-
ther details on the Taylor diagrams are provided in Sect. 4;
however, an important detail is that to calculate a Taylor di-
agram we must have “paired” observations and model data;
i.e., both data sources must be defined on the same spatial
support or grid, which fits nicely into the framework consid-
ered in this paper.

In order to illustrate the effect of geographic sampling, we
can compare the extreme bias and Taylor diagram results for
two approaches.

Al True model performance. First, in what we regard as the
true performance for each model, we calculate the ex-
treme bias and Taylor diagram metrics using the sub-
set of model grid cells (for the model and regridded
L15) that have corresponding weather station measure-
ments. L15 is based on measurements from the GHCN-
D (Menne et al., 2012) records, but its stability con-
straint (selecting stations with a minimum of 20 years
of data over CONUS; Livneh et al., 2015b) means that
the specific station measurements that go into the daily
gridded product change over time. To navigate this com-
plication, we define a set of “high-quality” stations from
the GHCN to be those stations that have at least 90 %
non-missing daily measurements over 1950-2013. This
results in n = 2474 stations with a relatively good spa-
tial coverage of CONUS (see Fig. Al), although the
coverage is much better in the eastern United States rel-
ative to, for example, the Mountain West (see Fig. A9).
The 90 % threshold is somewhat arbitrary, but this cut-
off ensures that these stations enter into the L15 grid-
ding procedure for a large majority of days over 1950—
2013. Next, for each model grid, we identify the grid
cells that have at least one high-quality GHCN station
(see Fig. A2 in the appendix). The extreme bias and
Taylor diagram are then calculated for only those grid
cells with at least one high-quality station. Since this
comparison isolates the regridded L15 cells that actually
involve a real weather station measurement, we regard
this as the true extreme bias and Taylor diagram metrics
for each model.

A2 Ignore geographic sampling. To assess how the per-
formance of each model changes when the geographic
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sampling of weather stations is not accounted for, we
calculate the extreme bias and Taylor diagram metrics
using all grid cells.

Approach A1 provides us with a standard of comparison,
since it properly accounts for the geographic sampling of
the underlying weather stations, and we argue that this is
the most appropriate way to conduct model comparison. Ap-
proach A2, on the other hand, is what would be done without
consideration for the geographic sampling issue. Comparing
the extreme bias and Taylor diagrams for Al versus A2 al-
lows us to explicitly quantify the effect of geographic sam-
pling on assessed model performance.

4 Results

For reference, we have provided a supplemental figure for
each model that shows the estimated 20-year return values
for the climate model output and regridded L15, the corre-
sponding bootstrap standard errors, the absolute difference in
return values, and the ratio of standard errors for the climate
model vs. regridded L15; see Figs. A3, A4, AS, A6, and A7.

4.1 Case study: Kansas versus Utah

To illustrate our methodology, we first explore return value
estimates for two small spatial subregions that exhibit very
different sampling by the GHCN network, namely, Kansas
and Utah. These two states present an illustrative case study
for our method because Utah is poorly sampled (52 stations
over 219890 kmz), while Kansas is well sampled (140 sta-
tions over 213 100 km?). Figure 1 shows the model grid cells
with and without at least one high-quality station. In Kansas,
there are anywhere from 40 % (HadGEM) to 90 % (IPSL)
of the model grid cells with a high-quality station; in Utah,
between 16 % (HadGEM) and 45 % (IPSL) of the model
grid cells have a high-quality station (see Table Al in the
appendix). The L15 climatology of 20-year return values is
quite similar in these two states: the median return value (in-
terquartile range) in Kansas is 53.8 mm ([39.4, 61.0]), while
in Utah the median is 49.6 mm ([34.3,71.1]).

However, Utah also differs markedly from Kansas with re-
spect to topography: Kansas is relatively flat, while Utah ex-
hibits complex orographic variability. While the geographic
sampling of stations is likely decoupled from rainfall behav-
ior in Kansas, in Utah stations are primarily located at lower
elevations where extreme orographic precipitation does not
occur. Indeed, the median elevation of the high-quality sta-
tions in Utah is around 1600m (the highest station is at
2412 m), while the highest peaks in Utah exceed 4000 m.
When considering the model grids, the geographic sampling
of the weather stations excludes the highest elevations for
all models except IPSL, which has the coarsest resolution
of those considered in this paper. For example, looking at
the relationship between the average elevation of each grid
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Figure 1. Model grid cells with at least one high-quality GHCN station for Kansas and Utah, with an x denoting model grid cells that are

excluded for A3gg and A3yr.

cell (averaged from the GTOPO30 1 km digital elevation data
set) and the 20-year return values for both the model output
and L15 (see Fig. A8 in the appendix), it is clear that grid
cells with the highest elevations in Utah do not have a cor-
responding high-quality station. On the other hand, this phe-
nomena is nearly irrelevant for Kansas (as expected), since
the unsampled model grid cells mostly fall within the eleva-
tion range of the sampled cells.

The implication here is that any relative differences be-
tween approaches Al and A2 for Kansas versus Utah could
be due to either the different geographic sampling of the
two states or orographic considerations (or both). To explic-
itly separate these two possibilities, we introduce a third ap-
proach for the case study (denoted A3). Given the differ-
ences in Kansas and Utah (with respect to sampling density
and orography), we define this approach differently for each
state:

A3xs Consider a subset of grid cells with a high-quality
station. The difference between Al and A2 in Kansas
is going to be minimal for many of the models simply
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because the state is extremely well sampled (CNRM,
ECMWE, IPSL, and MPI all have greater than 80 % of
their model grid cells with a representative high-quality
station). To assess the influence of the high station den-
sity in Kansas, we can alternatively compare the per-
formance of each model when we randomly subsample
the model grid cells such that the proportion of cells
with a high-quality station matches that of Utah. For
example, for CNRM, only 33/92 ~ 0.36 of the model
grid cells have at least one high-quality station in Utah
(see Table Al in the appendix); we can randomly select
32 of the CNRM grid cells in Kansas that have a high-
quality station so that the proportion of Kansas sampled
matches that of Utah (32/89 =~ 0.36). In other words,
this approach allows us to answer the following ques-
tion: what would the effect of geographic sampling be
for Kansas if its sampling density matched Utah? The
grid cells excluded for A3kg are shown in Fig. 1.

A3yt Ignore geographic sampling but threshold high eleva-
tions. For Utah, this approach ignores geographic sam-
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pling (like A2) but only considers those model grid cells
whose elevation does not exceed the highest grid cell
with a high-quality station. For example, for HadGEM,
the A3yt approach excludes any model grid cell with
an average elevation that exceeds 2380m (which is
the highest grid cell with a high-quality station for the
HadGEM grid; see Fig. A8 in the appendix). In other
words, this approach allows us to answer the following
question: what would the effect of geographic sampling
be for Utah if we remove systematic differences in orog-
raphy? The grid cells excluded for A3yt are also shown
in Fig. 1.

The true extreme bias averaged over each state with a 90 %
basic bootstrap confidence interval (CI) is shown in Fig. 2a,
along with the extreme bias for A2 and A3. In Kansas, the
models are uniformly too wet, with positive biases of ap-
proximately 10-25 mm in all models and only the CNRM CI
significantly overlapping zero. The uncertainty for CNRM is
significantly larger than the other models in Kansas, which
may be related to the fact that these runs only cover 1981—
2014, while the other models cover 1950-2014. In Utah, the
models are generally too wet again, and the biases for IPSL
and MPI are particularly large. The ECMWF model’s dry
bias is a notable exception in Utah. The model biases for
Kansas are all within each others uncertainties, while the bi-
ases across models do not always overlap in Utah.

Turning to the difference in bias in Fig. 2b, there is a
minimal effect of geographic sampling in Kansas: the Cls
for the difference in extreme bias for A2 versus Al include
zero for all models. Interestingly, this remains true for ap-
proach A3ks, where the CIs for A3kgs versus Al still include
zero and completely overlap the CIs for A2 versus Al (al-
though the uncertainty in the A3ks versus Al difference is
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extremely large for CNRM). This is also visible in Fig. 2a,
where the confidence intervals for the extreme bias under A2
and A3 are essentially identical to that for Al. The story is
much different for Utah: while the CIs for the extreme bi-
ases under A2 and A3 overlap the CI for the true extreme
bias, there appear to be systematic differences for HadGEM,
IPSL, and MPI. When looking at a confidence interval for the
difference, the CIs for A2 versus Al do not include zero for
HadGEM, IPSL, or MPI. (The fact that the actual extreme
bias CIs overlap but the CI for the difference does not in-
clude zero is based on the fact that the difference CI is based
on bootstrap estimates from paired bootstrap samples.) The
implication is that for these models, failing to account for ge-
ographic sampling makes each model appear to be drier than
it actually is. For CNRM and ECMWEFE, on the other hand,
the best estimate of the difference between A2 and A1 is pos-
itive, meaning that ignoring geographic sampling makes the
models appear to be too wet (however, their confidence inter-
vals include zero). Considering the A3yt versus Al changes
in extreme bias, there are interesting differences for all mod-
els except CNRM. In ECMWEF the extreme bias gets larger,
which is unusual (although the A2 vs. Al and A3yr vs. Al
CIs overlap), while the extreme biases decrease in absolute
value for HadGEM, IPSL, and MPI. For IPSL and MPI, these
decreases are not meaningful (the CIs nearly coincide with
one another), and while the HadGEM Cls also overlap, the
changes are larger. This might have something to do with
model resolution, since the HadGEM model has the highest
resolution of those considered in this study.

These two states provide important insights into the effect
of geographic sampling with respect to the extreme bias. In
Kansas, the changes in extreme bias are nonsignificant even
when we artificially reduce the amount of information from
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the underlying weather stations. The implication is that for
relatively homogeneous domains like Kansas the geographic
sampling and its density are less important; in other words,
to accurately evaluate models, fewer stations are required in
topographically flat regions. In Utah, the geographic sam-
pling is much more important since there are significantly
nonzero differences in the extreme bias when it is ignored.
Accounting for the influence of orography decreases this ef-
fect (i.e., the change in bias is generally less for A3y relative
to A2), but the interesting point is that when sampling mat-
ters (i.e., when the A2 vs. Al confidence interval does not
include zero) it still matters regardless of whether account-
ing for elevation or not. A possible exception is ECMWE, for
which the A2 vs. Al Cl includes zero, while the A3yt vs. Al
CI does not.

The Taylor diagrams comparing 20-year return values for
Kansas and Utah are shown in Fig. 3. In light of the results
for the extreme bias and in order to not complicate the plot,
we have chosen to leave the A3 comparison off of the Taylor
diagrams (furthermore, we do not show the uncertainty in the
Taylor diagrams, which is again for simplicity). Clearly, as
with the extreme bias, the performance of the various climate
models in replicating the spatial pattern and variability of ex-
treme precipitation is very different for these two states. In
Kansas, all models except IPSL almost perfectly reproduce
the spatial variability of the return values, with or without ac-
counting for geographic sampling. ECMWF, HadGEM, and
MPI furthermore nearly reproduce the spatial patterns of ex-
treme precipitation (again with or without accounting for ge-
ographic sampling), with spatial pattern correlations in ex-
cess of 0.95. Across all models the performance is nearly
identical regardless of whether the geographic sampling of
stations is taken into consideration. In Utah, on the other
hand, for all models except CNRM there appears to be a no-
ticeable difference when ignoring geographic sampling. This
is particularly true for IPSL and MPI: the difference in spa-
tial variability is significantly larger when accounting for ge-
ographic sampling (note, however, that this could be due in
part to the larger number of grid cells entering the calcu-
lation for A2). Interestingly, the spatial pattern correlation
is roughly the same for Al and A2 in IPSL and MPI, but
the skill scores are lower when accounting for geographic
sampling. The implication is that, at least with respect to
the skill scores, failing to account for geographic sampling
would lead one to conclude that IPSL and MPI perform bet-
ter than they actually do. The differences in spatial variabil-
ity, pattern correlation, and skill score are much smaller for
the other three models in Utah, although it is the case that ac-
counting for geographic sampling slightly improves the skill
score for ECMWFE.

In summary, the main points of this case study are as fol-
lows: for well-sampled regions (like Kansas), the extreme
bias, spatial pattern correlation, and spatial variability are ap-
proximately the same regardless of whether geographic sam-
pling is explicitly accounted for, while for poorly sampled
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regions (like Utah) the geographic sampling can have an un-
predictable impact on the extreme bias and Taylor diagram
metrics. These results hold true even when reducing the sam-
pling density in a well-sampled region (Kansas) and when
accounting for the effect of extreme orography (in Utah), in
the sense that when geographic sampling matters for a topo-
graphically heterogeneous region, it still matters even after
ignoring unsampled elevations. And, critically, it is important
to note that while failing to account for geographic sampling
changes the model performances, it does not do so system-
atically: in Utah, the extreme bias both increases (ECMWF)
and decreases (HadGEM, IPSL, and MPI); the skill scores
both increase (ECMWF) and decrease (IPSL and MPI).

4.2 Comparisons for CONUS and large climate
subregions

To explore these considerations more broadly, we now ex-
pand the scope of our model evaluation to systematically
consider all of CONUS and seven spatial subregions. These
subregions (shown in Fig. 5 and also with labels in Fig. A9
in the appendix) are loosely based upon the climate regions
used in the National Climate Assessment (Wuebbles et al.,
2017), with a small adjustment in the western United States
to make the regions somewhat homogeneous with respect to
the geographic sampling of the GHCN stations. Table Al in
the appendix summarizes the number of model grid cells,
number of model grid cells with a high-quality station, and
proportion of grid cells with a high-quality station in each
subregion.

First considering the true extreme bias in Fig. 4a, note
that while the models are generally too wet, there are some
models and regions that display a dry bias. For example,
HadGEM, IPSL, and MPI are almost always too wet (ex-
cept for MPI in the Southeast); ECMWF is most often too
dry (e.g., CONUS, the Southeast, and the Pacific Coast) but
sometimes too wet (e.g., the Northern Great Plains). As in
Sect. 4.1, CNRM has very large uncertainties but can be ei-
ther too wet (e.g., the Midwest) or too dry (the Southeast).
Turning to the change in bias due to ignoring geographic
sampling, in many cases the difference is not significant since
the CIs include zero, but when the change is significant it is
often negative, meaning that ignoring geographic sampling
makes the models look drier than they actually are. In other
words, the true bias with approach Al is larger than the bias
using approach A2 (as can be seen in Fig. 4a). (Note again
that in some cases the actual extreme bias CIs overlap but
the CI for the difference does not include zero; this is based
on the fact that the difference CI is based on bootstrap es-
timates from paired bootstrap samples.) This is even true
for all of CONUS, where the change in bias is significantly
nonzero for HadGEM, IPSL, and MPI. The largest biases (in
absolute value) and largest changes in bias when accounting
for geographic sampling occur in the Pacific Coast, which is
not surprising given that it is a highly heterogeneous region
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Figure 3. Taylor diagrams comparing 20-year return values for Kansas and Utah for the climate models versus regridded L15. The gray
curvilinear lines represent the skill score for each model relative to the regridded L15.

in terms of both orography and variability in return values.
Interestingly, this is true even though the proportion of the
Pacific Coast grid cells with a high-quality station (19 % to
54 % across the model grids) is actually greater than that for
Mountain West (12 % to 43 %; see Table A1), which has a
similar degree of orographic variability.

Now considering the Taylor diagrams in Fig. 5, the effect
of geographic sampling is generally smaller for larger spatial
regions relative to the results for Utah in Fig. 3. The effect
is particularly small for regions with dense geographic sam-
pling like the Southeast, the Midwest, the Southern Great
Plains, and Northern Great Plains. However, the most het-
erogeneous regions (the Mountain West and Pacific Coast)
show the largest effects of sampling, even though as previ-
ously mentioned the geographic sampling is relatively good
in the Pacific Coast. As with the extreme bias, when it makes
a difference the effect of sampling is not the same across
the models or these two climate regions. For example, in
the Mountain West, there are some models that are more
overdispersed (i.e., have too much spatial variability) rela-
tive to ignoring sampling (e.g., MPI), while in other cases
the true ratio of variability is closer to 1 when accounting
for geographic sampling (e.g., HaddGEM). The spatial pat-
tern correlation in the Mountain West is generally higher for
approach Al, and the true performance of each model gener-
ally has a larger skill score relative to A2. In other words, if
geographic sampling is ignored, one would conclude that the
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models are worse than they really are. Turning to the Pacific
Coast region, when geographic sampling has a large effect
(for HadGEM, IPSL, and MPI), the true performance of the
model generally involves more spatial variability and smaller
spatial pattern correlation relative to approach A2. However,
in the Pacific Coast, the skill scores are generally higher for
A2 than Al: for this region, ignoring geographic sampling
leads one to conclude that the skills of the models are better
than they actually are.

In summary, as with the case study in Sect. 4.1, our main
point is that the sampling methodology is most important for
regions that are highly heterogeneous. Particularly for the ex-
treme bias, the choice of approach A1l vs. A2 can have a large
effect regardless of sampling density, but the well-sampled
regions generally show little change in the Taylor diagram
metrics. Again, the specific effect of ignoring geographic
sampling is not systematic in that the extreme bias, spatial
variability, and spatial pattern correlation are impacted in dif-
ferent ways across the various models and climate regions
considered.

5 Discussion
In this paper, we have highlighted an important issue in com-

paring extremes from climate model output with observa-
tional data; namely, that it is important to account for the geo-
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Figure 4. Extreme bias in CONUS and the climate subregions for each model (approaches Al, A2, and A3; panel a), with difference
in extreme bias for approach A2 (ignoring geographic sampling) versus Al (b). All estimates show the 90 % basic bootstrap confidence
intervals. Note that the extreme bias in the Pacific Coast region is significantly less than —20 mm for ECMWF and significantly larger than
40 mm for IPSL and MPI (and are hence beyond the y axis limits in panel a). Also, the difference in bias in the Pacific Coast is significantly
less than —10 mm for HadGEM, IPSL, and MPI (and again are beyond the limits on the y axis in panel b).

graphic sampling of weather station data. Our analysis of 5d
maxima demonstrates that while accounting for geographic
sampling does not systematically change the performance of
the models (in terms of bias, spatial pattern correlation, or
standard deviation), one should nonetheless account for the
sampling in order to yield a more appropriate comparison be-
tween models and observations. While our focus in this paper
has been on 5 d maxima, we expect that similar results would
hold for extreme daily or subdaily precipitation and possi-
bly also the mean precipitation climatology. The integrated
metrics considered in this paper (namely, extreme bias and
Taylor diagrams) are helpful for gaining an overall sense of
the model’s ability to characterize the extreme climatology,
but at the end of the day the quality of the local performance
at high resolutions may be much different than what is sug-
gested by, for example, a spatially averaged bias.

The analysis in this paper was motivated by the evaluation
of high-resolution global climate models, by which we mean
models with a 50km horizontal resolution or finer. Multi-
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decadal runs of such models are just now becoming widely
available, even at the global scale, although the majority of
modern global models generally have a coarser resolution.
Accounting for the geographic sampling of weather stations
using the criteria outlined in this paper (i.e., only consid-
ering grid cells with at least one high-quality station mea-
surement) can have a larger effect as the horizontal resolu-
tion increases since many more grid cells will be excluded
for a fixed network of high-quality stations. For example,
across all of CONUS, the ~ 20km HadGEM model has a
high-quality station in just 22 % of its grid cells, while the
coarser ~ 50km IPSL model has a station in over 60 % of
its grid cells. As previously mentioned, accounting for sam-
pling as in this paper would have made no difference at all
for a ~ 300km model like CanESMS5 (see Fig. Al), which
has at least one high-quality station in all of its CONUS grid
cells. Of course, for lower-resolution models like CanESM5
it might be necessary to require a larger number of high-
quality stations per grid cell.
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L15. The gray curvilinear lines represent the skill score for each model relative to the regridded L15.

In this paper, we have demonstrated that geographic sam-
pling can make a difference with respect to model evaluation,
but we do not suppose it is a perfect solution. Indeed, one of
our primary motivations is the idea that a comparison of the
climate model versus a gridded product over an area with
poor observational sampling could be misleading, since the
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gridded product does not represent actual measurements of
daily precipitation at these locations. However, it must also
be admitted that a model quantity at the grid scale is consid-
ered a spatial average over subgrid scales, which offers an
equally poor characterization of local values of the variable
of interest in topographically complex regions. At the end of
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the day, a true like-for-like comparison is not possible: re-
gardless of the method used to create a gridded data set, the
scales of subgrid parameterizations are not the same as the
scale of any station network. Thus, there is always a remain-
ing mismatch. Even when one gets to convection-permitting
models, the scale mismatch will remain. Our point in this pa-
per is that accounting for the geographic sampling yields a
more like-for-like comparison, even if mismatches remain.

In closing, it is important to note that our definitions
of “well-sampled” and “poorly sampled” in this paper are
all relative to the conterminous US, which is extremely
well sampled overall relative to many other land regions.
Nonetheless, we have demonstrated the importance of ac-
counting for geographic sampling even for one of the most
well-sampled parts of the globe. Sampling considerations
will be even more important for the very poorly sampled
parts of the world, e.g., Africa, South America, northern
Asia, and the interior of Australia. The results for Kansas
in our case study in Sect. 4.1 bode well for model evaluation
in global regions that are poorly sampled but homogeneous
in terms of either the climatology of extreme precipitation
or orographic variability. However, it is not immediately ob-
vious how the geographic sampling issue would translate for
homogeneous regions that are climatologically very different
from Kansas, e.g., desert regions like the interior of Australia
or wet regions such as tropical rainforests.
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Appendix A: Supplemental figures
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Figure A1. The number of GHCN stations versus the proportion of non-missing daily data over 1950-2013 threshold, with the 90 % threshold
used in this paper to define the n = 2474 “high-quality” stations (a). The geographic distribution of the high-quality GHCN stations with at
least 90 % of non-missing daily measurements over 1950-2013 (b).
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Figure A2. The geographic distribution of the high-quality GHCN stations considered in the analysis (a), with the number of high-quality
GHCN stations in each model grid cell for the HighResMIP models considered in this paper (b—f) and two CMIP6 models for comparison (g—
h). Model grid cells without a representative high-quality GHCN station are shown in gray.
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Figure A3. Wintertime (DJF) 20-year return values in Rx5Day (mm) for the CNRM model and regridded L15 (a), with the bootstrap
standard error (mm; b). Also shown is the difference in return values (model minus regridded L15) as well as the ratio of standard errors
(model divided by regridded L15).
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(a) Rx5Day 20-year return value
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Figure A4. Wintertime (DJF) 20-year return values in Rx5Day (mm) for the ECMWF model and regridded L15 (a), with the bootstrap
standard error (mm; b). Also shown is the difference in return values (model minus regridded L15) as well as the ratio of standard errors
(model divided by regridded L15).
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(a) Rx5Day 20-year return value
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Figure A5. Wintertime (DJF) 20-year return values in Rx5Day (mm) for the HadGEM model and regridded L15 (a), with the bootstrap
standard error (mm; b). Also shown is the difference in return values (model minus regridded L15) as well as the ratio of standard errors
(model divided by regridded L15).
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Figure A6. Wintertime (DJF) 20-year return values in Rx5Day (mm) for the IPSL model and regridded L15 (a), with the bootstrap standard
error (mm; b). Also shown is the difference in return values (model minus regridded L15) as well as the ratio of standard errors (model
divided by regridded L15).
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(a) Rx5Day 20-year return value
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Figure A7. Wintertime (DJF) 20-year return values in Rx5Day (mm) for the MPI model and regridded L15 (a), with the bootstrap standard

error (mm; b). Also shown is the difference in return values (model minus regridded L15) as well as the ratio of standard errors (model
divided by regridded L15).
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Figure A8. The distribution of the grid cell average elevation (in meters; averaged from the GTOPO30 1 km digital elevation product) versus
the Rx5Day 20-year return value (in millimeters) for Kansas and Utah across all model grids. Black dots represent the return values for all
L15 grid cells, with gray dots representing the climate models. The colored circles (red for L15 and blue for the models) identify the grid

cells that have at least one high-quality station and are used in the true model performance metrics.
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Figure A9. The seven subregions used in our analysis. These are a slight variation on the regions defined in the Fourth National Climate
Assessment.
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Table A1. Number of model grid cells in each study region (N, ), the number of model grid cells with at least one high-quality GHCN station
(Nc+s), and the proportion of model grid cells with at least one high-quality GHCN station (Pc+s).

Kansas ‘ Utah ‘ CONUS
Model Ne  Neys  Peys ‘ Ne  Neys  Peys ‘ Ne  Neys  Peys
CNRM 89 75 0.84 92 33 0.36 | 3256 1656 0.51

ECMWF 92 76 0.83 91 32 035 ] 3253 1660 0.51
HadGEM 268 115 0.43 | 270 42 0.16 | 9900 2178  0.22

IPSL 68 62 091 66 30 045 | 2316 1410 0.61

MPI 95 78 0.82 | 113 36 032 | 3748 1729 046
Mountain West ‘ Midwest ‘ Northeast

Model Ne  Nets  Peys | Ne Negs  Peps | Neo News  Pets

CNRM 941 312 0.33 513 331 0.65 | 233 136 0.58

ECMWF 945 316  0.33 519 341  0.66 | 231 132 0.57
HadGEM 2887 355 0.12 | 1559 467 030 | 696 183  0.26

IPSL 681 292 043 373 284  0.76 | 161 107  0.66

MPI 1113 320  0.29 590 351 0.59 | 261 134 0.51
Northern Great Plains ‘ Pacific Coast ‘ Southeast

Model Ne Neys  Peys | Ne Neys  Peys | Ne Neys  Peys

CNRM 274 138 0.50 349 152 044 523 334 0.64
ECMWF 265 128 0.48 346 154 045 519 332 0.64
HadGEM 800 163 0.20 | 1091 204 0.19 | 1593 464 0.29
IPSL 174 105 0.60 254 136 0.54 374 280  0.75
MPI 304 141 0.46 411 167  0.41 601 357  0.59

Southern Great Plains

Model NC Nc+s PC+S

CNRM 423 253  0.60
ECMWF 428 257  0.60
HadGEM 1274 342 0.27
IPSL 299 206  0.69
MPI 468 259 0.55

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115-139, 2020 https://doi.org/10.5194/ascmo-6-115-2020



M. D. Risser and M. F. Wehner: Effect of geographic sampling on evaluation of extreme precipitation 137

Data availability. The observational data supporting this article
are based on publicly available measurements from the National
Centers for Environmental Information and https://data.nodc.noaa.
gov/ncei/archive/data/0129374/daily/ (last access: 13 April 2020)
for the L15 product. Model data were obtained for the IPSL and
CNRM models from the Earth System Grid (https://esgf-node.llnl.
gov/search/cmip6/, last access: 19 July 2019) and for the other mod-
els by early access to the Jasmin server in the UK. It is expected that
all data used in this paper will eventually be uploaded to the CMIP6
data portals by the modeling groups themselves.

Author contributions. MFW and MDR contributed to develop-
ing methodological aspects of the paper. MFW contributed model
data sets. MDR conducted all analyses. MDR and MFW contributed
to the write-up of the article.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. This document was prepared as an account of work
sponsored by the United States Government. While this document
is believed to contain correct information, neither the United States
Government nor any agency thereof, nor the Regents of the Univer-
sity of California, nor any of their employees, makes any warranty,
express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trade-
mark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of the Uni-
versity of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the University
of California.

Acknowledgements. The authors would like to thank the asso-
ciate editor and two anonymous reviewers and Charles Curry for
their comments, which have greatly improved the quality of this
manuscript.

This research was supported by the Office of Science, Office of
Biological and Environmental Research, of the U.S. Department
of Energy under contract no. DE-AC02-05CH11231 and used re-
sources of the National Energy Research Scientific Computing Cen-
ter (NERSC), also supported by the Office of Science of the U.S.
Department of Energy, under contract no. DE-AC02-05CH11231.

Financial support. This research has been supported by the
Office of Science, Office of Biological and Environmental Re-
search, of the U.S. Department of Energy (grant no. DE-AC02-
05CH11231).

https://doi.org/10.5194/ascmo-6-115-2020

Review statement. This paper was edited by Francis Zwiers and
reviewed by Charles Curry and two anonymous referees.

References

Bacmeister, J. T., Hannay, C., Medeiros, B., Gettelman, A., Neale,
R., Fredriksen, H. B., Lipscomb, W. H., Simpson, 1., Bailey, D.
A., Holland, M., and Lindsay, K.: CO; increase experiments us-
ing the Community Earth System Model (CESM): Relationship
to climate sensitivity and comparison of CESM1 to CESM2, J.
Adv. Model Earth Sy., pp. 1850-2014, submitted, 2020.

Boucher, O., Denvil, S., Caubel, A., and Foujols, M. A.:
IPSL IPSL-CM6A-ATM-HR model output prepared for
CMIP6 HighResMIP, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.2361, 2019.

Chen, C.-T. and Knutson, T.: On the verification and comparison
of extreme rainfall indices from climate models, J. Climate, 21,
1605-1621, 2008.

Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to
statistical modeling of extreme values, Lecture Notes in Control
and Information Sciences, Springer, London, available at: https:
/Ibooks.google.com/books?id=2nugUEaKqFEC, 2001.

Daly, C., Neilson, R. P, and Phillips, D. L.: A statistical-
topographic model for mapping climatological precipitation over
mountainous terrain, J. Appl. Meteorol., 33, 140-158, 1994.

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K.,
Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically
sensitive mapping of climatological temperature and precipita-
tion across the conterminous United States, Int. J. Climatol., 28,
2031-2064, 2008.

Donat, M. G., Alexander, L. V., Yang, H., Durre, L., Vose, R., Dunn,
R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., and
Hewitson, B.: Updated analyses of temperature and precipita-
tion extreme indices since the beginning of the twentieth century:
The HadEX2 dataset, J. Geophys. Res.-Atmos., 118, 2098-2118,
2013.

Easterling, D., Kunkel, K., Arnold, J., Knutson, T., LeGrande, A.,
Leung, L., Vose, R., Waliser, D., and Wehner, M.: Precipitation
change in the United States, in: Climate Science Special Report:
Fourth National Climate Assessment, Volume I, pp. 207-230,
https://doi.org/10.7930/J0H993CC, 2017.

Fischer, E. M. and Knutti, R.: Anthropogenic contribution to
global occurrence of heavy-precipitation and high-temperature
extremes, Nat. Clim. Change, 5, 560, 2015.

Gervais, M., Tremblay, L. B., Gyakum, J. R., and Atallah, E.: Rep-
resenting extremes in a daily gridded precipitation analysis over
the United States: Impacts of station density, resolution, and grid-
ding methods, J. Climate, 27, 5201-5218, 2014.

GISTEMP Team: GISS Surface Temperature Analysis (GIS-
TEMP), version 4, NASA Goddard Institute for Space Stud-
ies, dataset, https://data.giss.nasa.gov/gistemp/data, last access:
14 April 2020.

Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H.,
von Storch, J.-S., Briiggemann, N., Haak, H., and Stos-
sel, A.: Max Planck Institute Earth System Model (MPI-
ESM1.2) for the High-Resolution Model Intercomparison
Project (HighResMIP), Geosci. Model Dev., 12, 3241-3281,
https://doi.org/10.5194/gmd-12-3241-2019, 2019.

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115-139, 2020



https://data.nodc.noaa.gov/ncei/archive/data/0129374/daily/
https://data.nodc.noaa.gov/ncei/archive/data/0129374/daily/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
https://doi.org/10.22033/ESGF/CMIP6.2361
https://books.google.com/books?id=2nugUEaKqFEC
https://books.google.com/books?id=2nugUEaKqFEC
https://doi.org/10.7930/J0H993CC
https://data.giss.nasa.gov/gistemp/data
https://doi.org/10.5194/gmd-12-3241-2019

138 M. D. Risser and M. F. Wehner: Effect of geographic sampling on evaluation of extreme precipitation

Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci,
A., Bao, Q., Chang, P, Corti, S., Fuckar, N. S., Guemas, V., von
Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung,
L.R., Lu, J.,, Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R.,
Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J.,
and von Storch, J.-S.: High Resolution Model Intercomparison
Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9,
4185-4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.

Jones, P., Osborn, T., Briffa, K., Folland, C., Horton, E., Alexander,
L., Parker, D., and Rayner, N.: Adjusting for sampling density
in grid box land and ocean surface temperature time series, J.
Geophys. Res. - Atmos., 106, 3371-3380, 2001.

Jones, P. W.: First-and second-order conservative remapping
schemes for grids in spherical coordinates, Mon. Weather Rev.,
127, 2204-2210, 1999.

King, A. D., Alexander, L. V., and Donat, M. G.: The efficacy of
using gridded data to examine extreme rainfall characteristics: a
case study for Australia, Int. J. Climatol., 33, 2376-2387, 2013.

Kunkel, K. E.: North American trends in extreme precipitation, Nat.
Hazards, 29, 291-305, 2003.

Lenssen, N. J., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin,
A., Ruedy, R., and Zyss, D.: Improvements in the GISTEMP
uncertainty model, J. Geophys. Res. - Atmos., 124, 6307-6326,
2019.

Li, C., Zwiers, F., Zhang, X., and Li, G.: How much information is
required to well constrain local estimates of future precipitation
extremes? Earth’s Future, 7, 11-24, 2019.

Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen,
B., Vose, R., Cayan, D. R., and Brekke, L.: A spatially compre-
hensive, hydrometeorological data set for Mexico, the US, and
Southern Canada (NCEI Accession 0129374), NOAA National
Centers for Environmental Information, Dataset, (Daily precip-
itation), https://doi.org/10.7289/v5x34v{6 (last access: 13 April
2020), 2015a.

Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen,
B., Vose, R., Cayan, D. R., and Brekke, L.: A spatially compre-
hensive, hydrometeorological data set for Mexico, the US, and
Southern Canada 1950-2013, Scientific data, 2, 1-12, 2015b.

Lovejoy, S., Schertzer, D., and Allaire, V.: The remarkable wide
range spatial scaling of TRMM precipitation, Atmos. Res.,
90, 10-32, https://doi.org/10.1016/j.atmosres.2008.02.016,
available at: http://linkinghub.elsevier.com/retrieve/pii/
S0169809508000562, 2008.

Madden, R. A. and Meehl, G. A.: Bias in the global mean tempera-
ture estimated from sampling a greenhouse warming pattern with
the current surface observing network, J. Climate, 6, 2486—2489,
1993.

Maskey, M. L., Puente, C. E., Sivakumar, B., and Cor-
tis, A.: Encoding daily rainfall records via adaptations
of the fractal multifractal method, Stochastic Environ-
mental Research and Risk Assessment, 30, 1917-1931,
https://doi.org/10.1007/s00477-015-1201-7, available at:
http://link.springer.com/10.1007/s00477-015-1201-7, 2016.

Menne, M. J., Durre, 1., Vose, R. S., Gleason, B. E., and Hous-
ton, T. G.: An overview of the Global Historical Climatology
Network-Daily database, Journal of Atmospheric and Oceanic
Technology, 29, 897-910, 2012.

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115-139, 2020

Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human
contribution to more-intense precipitation extremes, Nature, 470,
378, 2011.

Paciorek, C.: climextRemes: Tools for Analyzing Climate
Extremes, https://CRAN.R-project.org/package=climextRemes
(last access: 1 January 2019), R package version 2.1, 2016.

Risser, M. D. and Wehner, M. F.. Attributable Human-
Induced Changes in the Likelihood and Magnitude
of the Observed Extreme Precipitation during Hurri-
cane Harvey, Geophys. Res. Lett.,, 44, 12,457-12,464,
https://doi.org/10.1002/2017GL075888, available at:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
2017GL075888, 2017.

Risser, M. D., Paciorek, C. J., O’Brien, T. A., Wehner, M. F,,
and Collins, W. D.: Detected Changes in Precipitation Extremes
at Their Native Scales Derived from In Situ Measurements,
J. Climate, 32, 8087-8109, https://doi.org/10.1175/JCLI-D-19-
0077.1, 2019a.

Risser, M. D., Paciorek, C. J., Wehner, M. E.,, O’Brien, T. A., and
Collins, W. D.: A probabilistic gridded product for daily precipi-
tation extremes over the United States, Clim. Dynam., 53, 2517—
2538, https://doi.org/10.1007/s00382-019-04636-0, 2019b.

Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer,
M., and Keeley, S. P. E.: Climate model configurations of the
ECMWEF Integrated Forecasting System (ECMWF-IFS cycle
43rl) for HighResMIP, Geosci. Model Dev., 11, 3681-3712,
https://doi.org/10.5194/gmd-11-3681-2018, 2018.

Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Cow-
ard, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Math-
iot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vanniére,
B., and Vidale, P. L.: Description of the resolution hierarchy of
the global coupled HadGEM3-GC3.1 model as used in CMIP6
HighResMIP experiments, Geosci. Model Dev., 12, 4999-5028,
https://doi.org/10.5194/gmd-12-4999-2019, 2019.

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca,
J. F, Gillett, N. P, Anstey, J., Arora, V., Christian, J. R., Hanna,
S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C.,
Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K.,
Yang, D., and Winter, B.: The Canadian Earth System Model
version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 48234873,
https://doi.org/10.5194/gmd-12-4823-2019, 2019.

Taylor, K. E.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res. - Atmos., 106, 7183-7192,
2001.

Timmermans, B., Wehner, M., Cooley, D., O’Brien, T., and Kr-
ishnan, H.: An evaluation of the consistency of extremes in
gridded precipitation data sets, Clim. Dynam., 52, 6651-6670,
https://doi.org/10.1007/s00382-018-4537-0, 2019.

Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme,
B., Cassou, C., Sénési, S., Valcke, S., Beau, 1., Alias, A.,
Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernan-
dez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton,
S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Bela-
mari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-
CMS5.1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091-2121, https://doi.org/10.1007/s00382-
011-1259-y, 2013.

von Hardenberg, J.: rainfarmr: Stochastic Precipitation Downscal-
ing with the RainFARM Method, https://CRAN.R-project.org/

https://doi.org/10.5194/ascmo-6-115-2020


https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.7289/v5x34vf6
https://doi.org/10.1016/j.atmosres.2008.02.016
http://linkinghub.elsevier.com/retrieve/pii/S0169809508000562
http://linkinghub.elsevier.com/retrieve/pii/S0169809508000562
https://doi.org/10.1007/s00477-015-1201-7
http://link.springer.com/10.1007/s00477-015-1201-7
https://CRAN.R-project.org/package=climextRemes
https://doi.org/10.1002/2017GL075888
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075888
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075888
https://doi.org/10.1175/JCLI-D-19-0077.1
https://doi.org/10.1175/JCLI-D-19-0077.1
https://doi.org/10.1007/s00382-019-04636-0
https://doi.org/10.5194/gmd-11-3681-2018
https://doi.org/10.5194/gmd-12-4999-2019
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.1007/s00382-018-4537-0
https://doi.org/10.1007/s00382-011-1259-y
https://doi.org/10.1007/s00382-011-1259-y
https://CRAN.R-project.org/package=rainfarmr

M. D. Risser and M. F. Wehner: Effect of geographic sampling on evaluation of extreme precipitation 139

package=rainfarmr (last access: 13 April 2020), R package ver-
sion 0.1, 2019.

Vose, R. S., Wuertz, D., Peterson, T. C., and Jones, P.: An inter-
comparison of trends in surface air temperature analyses at the
global, hemispheric, and grid-box scale, Geophys. Res. Lett., 32,
2005.

Wehner, M. F.: Very extreme seasonal precipitation in the NARC-
CAP ensemble: model performance and projections, Clim. Dy-
nam., 40, 59-80, 2013.

https://doi.org/10.5194/ascmo-6-115-2020

Wauebbles, D. J., Fahey, D. W., and Hibbard, K. A.: Climate science
special report, fourth National Climate Assessment, volume I,
2017.

Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C., and Min, S.-K.:
Attributing intensification of precipitation extremes to human in-
fluence, Geophysical Research Letters, 40, 5252-5257, 2013.

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115-139, 2020



https://CRAN.R-project.org/package=rainfarmr

	Abstract
	Copyright statement
	Introduction
	Data sources
	Observational reference data
	Climate models

	Methods
	Extreme value analysis
	Comparing the climatology of extreme precipitation

	Results
	Case study: Kansas versus Utah
	Comparisons for CONUS and large climate subregions

	Discussion
	Appendix A: Supplemental figures
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

