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Abstract. Recently developed verification tools based on local wavelet spectra can isolate errors in the spatial
structure of quantitative precipitation forecasts, thereby answering the question of whether the predicted rainfall
variability is distributed correctly across a range of spatial scales. This study applies the wavelet-based structure
scores to real numerical weather predictions and radar-derived observations for the first time. After tackling
important practical concerns such as uncertain boundary conditions and missing data, the behaviour of the scores
under realistic conditions is tested in selected case studies and analysed systematically across a large data set.
Among the two tested wavelet scores, the approach based on the so-called map of central scales emerges as a
particularly convenient and useful tool: summarizing the local spectrum at each pixel by its centre of mass results
in a compact and informative visualization of the entire wavelet analysis. The histogram of these scales leads to
a structure score which is straightforward to interpret and insensitive to free parameters like wavelet choice and
boundary conditions. Its judgement is largely the same as that of the alternative approach (based on the spatial
mean wavelet spectrum) and broadly consistent with other, established structural scores.

1 Introduction

The quantitative prediction of precipitation is a central task
of modern weather forecasting. A demand for improved pre-
dictions of localized severe rainfall events, in particular, has
been one of the main drivers behind the development of
forecast models with increasingly fine resolutions (Baldauf
et al., 2011; Seity et al., 2011), sophisticated parametriza-
tions (Seifert and Beheng, 2006; Kuell and Bott, 2008) and
assimilation of novel observation data (Stephan et al., 2008;
Bick et al., 2016).

Whether or not the desired improvement has actually been
achieved, however, is no trivial question. Since rain fields
are inherently intermittent in space and time, a pixel-wise
forecast verification can only reward the correct intensity,
shape and structure of predicted rain patterns if their loca-
tions match exactly with the observed ones. Even a slight
displacement between forecast and observation results in a
double penalty, because the forecast is wrong in both the ob-
served and the predicted location. The naive, grid-point-wise
approach will generally favour coarse models over highly re-
solved ones and can neither assess the structure or intensity

of displaced rain objects nor appropriately judge the sever-
ity of displacement errors. Recent years have seen the de-
velopment of numerous so-called spatial verification tech-
niques, which address the double penalty problem in a vari-
ety of ways (Gilleland et al., 2009; Dorninger et al., 2018).
One strategy espoused by many of these techniques is to
split the total forecast error into a number of (ideally or-
thogonal) components, thereby separating, for example, dis-
placement from other kinds of errors. Following this idea, the
present study uses a shift-invariant wavelet transform (Eck-
ley et al., 2010) to isolate a single aspect of forecast perfor-
mance, namely its structure. Our method, first introduced in
Buschow et al. (2019), transforms a map of rain intensities
into local wavelet spectra that measure the energy (variance)
of the rain field for each combination of location and spa-
tial scale. Under the assumption that auto-correlations vary
only slowly in space, the connection between wavelet spec-
tra and the spatial covariance function can be formalized via
the theory of locally stationary wavelet processes (Eckley
et al., 2010). In order to compare forecast and observation,
we can either average the local spectra in space to obtain
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mean spectra, or calculate the dominant scale at each loca-
tion and then evaluate the histograms of these central scales.
Using a physics-based stochastic rain model (Hewer, 2018)
as a controlled test bed, Buschow et al. (2019) have demon-
strated that both approaches lead to double-penalty free ver-
ification procedures which can detect discrepancies between
the observed and predicted correlation structure with great
accuracy.

In the present study, we apply the wavelet-based structure
scores of Buschow et al. (2019) to real numerical weather
forecasts, focusing on the verification of deterministic pre-
dictions. Besides addressing some of the practical challenges
associated with the non-idealized setting (boundary condi-
tions, missing data, treatment of extremes), one main goal is
to study which kinds of errors are typically evaluated by our
method. Apart from the consideration of selected case stud-
ies, it is therefore instructive to compare the new approach to
established alternatives from the rich literature of verification
techniques.

Although the standard taxonomy of spatial verification
techniques (Dorninger et al., 2018) classifies our method as
a scale-separation approach, this class does not actually con-
tain many useful objects of comparison. The most popular
approach (Casati et al., 2004, ISS), while also relying on
wavelets, studies the scale of the error, whereas our method
assesses the error of the scales. The ISS therefore does not
separate structure from displacement and is no direct “com-
petitor” of our approach. Yano and Jakubiak (2016) employ
a different type of wavelet transform to locate dominant fea-
tures in space and scale before explicitly measuring their
displacement error. Lastly Kapp et al. (2018), who devel-
oped the direct precursor to our method and employ the same
wavelet transform, only consider ensemble forecasts and do
not separate correlation structure from total variance. For our
purposes, it is thus more helpful to group verification meth-
ods by the forecast attributes they aim to assess. In this way,
we can identify the object-based structure error S of (Wernli
et al., 2008) and the variogram-based scoring rules devel-
oped by Scheuerer and Hamill (2015) as two comparable
pure structure scores.

To obtain robust results on the merits and interrelation-
ship of the object-, variogram- and wavelet-based struc-
ture verification, we consider a large set of highly resolved
forecasts from the COSMO-DE ensemble prediction sys-
tem (COSMO-DE-EPS). The hourly adjusted radar prod-
uct RADOLAN, as well as the regional reanalysis COSMO-
REA2 (Wahl et al., 2017), serve as our reference fields. Al-
though we verify each member of COSMO-DE-EPS indi-
vidually, the ensemble nature of this data set is nonetheless
very useful for our purposes. Besides giving us a great num-
ber of individual predictions (20 forecasts on 127 selected
days), we can exploit the fact that each ensemble prediction
consists of 20 realizations from a distribution which changes
from case to case to set up idealized experiments: presented
with a single member from one of the 127 ensembles, can

our scores find the other 19 fields based on their similar cor-
relation structure alone?

The remainder of this paper begins, in Sect. 2, with an
overview of all relevant data sets. Section 3 details all steps
related to the wavelet transform and its spatial aggregation.
To get the first overview of the results of this transform, we
analyse the climatology of observed and predicted spectra in
Sect. 4. The wavelet-based structure scores of Buschow et al.
(2019) are introduced and applied to two selected case stud-
ies in Sect. 5. Section 6 reviews the alternative scores from
the literature before the verification of the full COSMO-DE-
EPS data set in Sect. 7. Here, we study the relationship be-
tween all structure scores (Sect. 7.1), assess their discrimina-
tory abilities (Sect. 7.2) and test the sensitivity of our wavelet
scores to the free parameters of the method (Sect. 7.3). The
paper concludes with a discussion and outlook in Sect. 8.

2 Data

As mentioned in the introduction, this study relies on
COSMO-DE-EPS forecasts and COSMO-REA2 reanalysis
data (Wahl et al., 2017, henceforth REA2), both of which
were previously considered by Kapp et al. (2018). The
COSMO-DE ensemble prediction system (Peralta et al.,
2012), which has been operational at DWD since May
2012, is based on the non-hydrostatic regional NWP-
model COSMO (Baldauf et al., 2011), run at a convection-
permitting resolution of 2.8 km in a domain covering Ger-
many and parts of all neighbouring countries (dashed lines
in Fig. 1). The 20 ensemble members are generated by com-
bining four boundary conditions with five slightly perturbed
physics parametrizations.

The regional reanalysis REA2 is based on a similar ver-
sion of COSMO, albeit run on a slightly larger domain (white
mask in Fig. 1) and at finer resolution of 2 km. As in Kapp
et al. (2018), the slight difference in grid is resolved via sim-
ple nearest neighbour interpolation to the coarser grid. We
have checked that the choice of interpolation scheme has
very little impact on the results of our verification proce-
dure. The reanalysis contains information from conventional
observations, assimilated in a continuous nudging scheme,
as well as radar observations which were included via latent
heat nudging. The latter point in particular makes REA2 an
attractive validation data set for our purposes since it encom-
passes direct measurements of rainfall while avoiding sys-
tematic discrepancies with the model due to measurement
errors or spatial interpolation schemes.

Highly resolved regional reanalyses, while clearly con-
venient, are not available in most parts of the world and
may also contain the same biases as the numerical models
verified against them. It is thus of great interest to know
whether our methodology can also be applied to direct obser-
vational data. In this study, we therefore use DWD’s hourly
RADOLAN-RW (Winterrath et al., 2018) product as our

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, 2020 www.adv-stat-clim-meteorol-oceanogr.net/6/13/2020/



S. Buschow and P. Friederichs: Using wavelets to verify the scale structure of precipitation forecasts 15

Figure 1. Domain and model orography of COSMO-REA2 in me-
tres. Dashed lines delineate the COSMO-DE-EPS domain, and the
dotted line corresponds to the maximum extent of the RADOLAN-
RW data set used in this study.

main validation data set. Rain gauge adjusted radar prod-
ucts such as RADOLAN are more widely available and addi-
tionally allow us to verify both model and reanalysis against
more direct observation data which is completely indepen-
dent from any dynamical model. Kapp et al. (2018) did not
use radar data in order to avoid issues with missing data.
This study will explore how big such effects actually are. As
for REA2, we bridge the slight difference in nominal resolu-
tion (RADOLAN being available at 1km×1km) via nearest
neighbour interpolation to the COSMO-DE-EPS grid. Due
to the adjustment with rain gauge data, the RADOLAN-RW
product is cropped to roughly the German national borders
(dotted line in Fig. 1). For the purposes of verification, values
outside of the RADOLAN domain, as well as the occasional
missing values within, are set to zero. To ensure a fair com-
parison, the same pixels are set to zero in the forecast and
reanalysis fields as well.

Forecasts of hourly rain sums were provided by DWD for
the complete year 2011. Since our focus is on an evaluation
of the rain field’s texture, it stands to reason that the total rain
area has to reach some minimum extent since very small rain
objects leave us with too few data to confidently estimate the
spatial correlations. In this study, we therefore select only
cases where at least 5 % of the pixels in the RADOLAN-
field have non-zero rain. We furthermore consider only the
afternoon hours (16:00–19:00 UTC) in order to ensure com-
parable lead times. For each day which meets our criteria, we
select the hour with the greatest total rain area. This selection
procedure leaves us with 127 cases for which the ensemble
issues a total of 2540 individual predictions.

In order to roughly classify the 127 case studies accord-
ing to the processes which generate precipitation, we have
manually checked the corresponding DWD analysis maps

(freely available from http://www1.wetter3.de/, last access:
February 2020) and the registered lightning events (observed
by the community project http://www.lightningmaps.org, last
access: February 2020). For each day, we note the occurrence
of cold fronts, warm fronts, other fronts (quasi-stationary and
occlusion fronts), convergence lines and deep moist convec-
tion (observed lightning being a proxy for the latter) in the
domain. The auxiliary data set is summarized in Fig. 2. We
observe that the majority of notable afternoon precipitation
episodes in 2011 was associated with lightning (indicating
convective processes), often in combination with occlusion
or quasi-stationary fronts. The considered time span is fur-
thermore long enough to contain several examples of both
purely frontal and purely convective events.

3 Estimation of local wavelet spectra

3.1 Redundant discrete wavelet transforms and local
stationarity

Our first objective is to extract the structural properties of
observed and predicted fields in a shift-invariant manner.
This is achieved by projecting the data, given as a matrix
M of dimension nx × ny , onto an overcomplete set of ba-

sis functions of the form ψj,d,u(r)= s−1/2
j ψd

(
r−u
sj

)
. These

so-called daughter wavelets are obtained from their mother
wavelet ψ(r) via a shift u, scaling sj and change in orien-
tation, here denoted by the index d . The redundant discrete
wavelet transform (RDWT) is defined by scales which are
whole powers of two (sj = 2j , j ∈ {1,2, . . .,J }), includes
three directions (d = 1: vertical, d = 2: horizontal, d = 3: di-
agonal) and allows shifts to all locations on the grid of the
data. The redundancy introduced in this manner ensures that
this transformation is shift invariant in the sense that a shift
of the input field merely leads to a shift of the coefficient
fields. Without this property, the outcome of the verification
would depend on the absolute location of rain features within
the domain. One basic requirement of the transformation is
that the dimensions ofM are exactly nx = ny = 2J – we dis-
cuss solutions to this boundary problem in some detail in
Sect. 3.3.

At this point, we face two natural questions: how are the
wavelet coefficients related to the structure of the underly-
ing field, i.e., its spatial covariance matrix, and how should
we deal with the great redundancy of the transformed field?
Both of these issues can be resolved by assuming that our
data are generated by a locally stationary two-dimensional
wavelet process (henceforth LS2W). This two-dimensional
stochastic process introduced by Eckley et al. (2010) is de-
fined as

X(r)=
J∑
j=1

3∑
d=1

∑
all u
Wj,d,uψj,d,u(r)ξj,d,u, (1)
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Figure 2. Frequency of weather events and their combinations during the 127 d considered. Data visualized using the UpSetR R package
(Conway et al., 2017).

where the Wj,d,u represent fixed weights associated with
each daughter wavelet and ξj,d,u is a random white-noise in-
crement. We assume that the spatial covariance of X varies
only slowly with r . This requirement of local stationarity is
weaker than global stationarity and can be formalized as con-
straints on the regularity of Wj,d,u (Eckley et al., 2010). If
local stationarity holds, it can be shown that the spatial au-
tocovariances of X in the limit of an infinitely large domain
are completely determined by, and can be inferred from, the
set of all |Wj,d,u|

2. Moreover, the squared wavelet coefficient
corresponding to ψj,d,u(r) is a biased estimator of |Wj,d,u|

2.
The bias, which mostly consists of an over-emphasis on the
very large scales, can be removed by multiplication with a
wavelet-specific matrix A−1

ψ . In analogy to the Fourier spec-
trum, the 3× J bias-corrected squared coefficients at each
grid point are called the local wavelet spectrum. Since any
practical application falls outside the realm of asymptotic
limits, the bias correction is only approximate, occasionally
overshoots its target and introduces negative values to the lo-
cal spectra. We will set such values, which have no useful in-
terpretation as “energy”, to zero before proceeding with our
verification.

The need for a bias correction limits our choice of mother
wavelet ψ to the Daubechies family (Daubechies, 1992) for
which Eckley et al. (2010) derived the corresponding matri-
ces A−1

ψ . We refer to the compactly supported Daubechies
wavelets as Dn. Intuitively, large values of the index n ∈ N
correspond to smooth functions with good localization in fre-
quency, whereas small n means good localization in space,
i.e., a small support size.

The support sizes of the first four Daubechies daughter
wavelets are listed in Table 1. A daughter with support size
greater than 2J is no longer unambiguously localized since
it “wraps around” the domain more than once (some grid
points are sampled multiple times due to the cyclic convolu-
tions of the transform). To avoid this effect, we truncate the
local spectra at the largest scale that fits inside the domain. In
order to avoid spreading the information from these untrust-

worthy daughters to the rest of the spectrum (and incidentally
spreading information from the uncertain boundaries), scales
that are too large are removed prior to bias correction.

For the model given by Eq. (1) to be appropriate, we select
theDn which is most similar to the data using the wavelet se-
lection procedure of Goel and Vidakovic (1995). A few de-
tails concerning this step are given in Appendix A. For the
present data set,D2 emerges as the overall winner and is used
for the rest of this investigation. Consequently, the largest
used scale is j = 7 (see Table 1). The three directional ver-
sions ofD2 are shown in Fig. 3. Observing their complicated
structure, we recognize that the location within the support
of ψj,d,u to which the corresponding spectral value should
be assigned is not obvious. As a heuristic solution, we sim-
ply select the centre of mass of ψ2

j,d,u. Features in the result-
ing local spectra are thus located close to the corresponding
features in the input image.

Concluding this section, we note that our spectrum is not
a consistent estimator of |Wj,d,u|

2 (it has non-vanishing vari-
ance in the limit of infinite domain sizes), which necessitates
a spatial smoothing of the wavelet coefficients (Eckley et al.,
2010). Unless noted otherwise we will omit this step from
our present investigation for several reasons: firstly, smooth-
ing introduces a number of additional free parameters which
are undesirable for a verification procedure. Secondly, in-
formation from the uncertain boundary regions (introduced
by expanding the field to 2J × 2J ) is spread across the do-
main. Lastly, some smoothing algorithms can incur signif-
icant additional computational costs. Asymptotic inconsis-
tency is therefore accepted as the cost of a more streamlined
verification procedure.

3.2 Logarithmic transformation

Before applying the RDWT to our observed and predicted
rain fields, we set all values below 0.1 mm to zero, 0.1 mm
being the smallest non-zero value registered by RADOLAN.
This step is generally advisable as it removes extremely low-
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Figure 3. Vertical (a), horizontal (b) and diagonal (c) daughter wavelet for D2.

Table 1. Side length of the daughter wavelets’ support as a function of the scale j for the first 10 Daubechies wavelets. For each mother
wavelet, the star marks the largest daughter wavelet with support size smaller than 29.

j = 1 2 3 4 5 6 7 8 9 10

D1 2 4 8 16 32 64 128 256∗ 512 1024
D2 4 10 22 46 94 190 382∗ 766 1534 3070
D3 6 16 36 76 156 316∗ 636 1276 2556 5116
D4 8 22 50 106 218 442∗ 890 1786 3578 7162

intensity model noise which cannot be interpreted as an ac-
tual forecast of precipitation. Next, we replace the original
rain fields by their binary logarithm. Casati et al. (2004) ar-
gue that this procedure corresponds to an approximate “nor-
malization” of the data. Schleiss et al. (2014), who studied
the non-stationary structure of rain fields, concur that this
type of variance stabilization facilitates structural analysis.

Thinking visually, the log-transform can be interpreted as
a change in colour scale: very few meteorological publica-
tions visualize precipitation on a linear scale since it fre-
quently over-emphasizes small, intense showers while ren-
dering the boundary between rain and no rain invisible. In
fact, only 5 of the 46 figures depicting rain fields in pub-
lications cited in this paper or Buschow et al. (2019) have
linear colour scales. The typical step-wise alternatives have
many bins near zero and few bins at large values. It is easy
to imagine situations where a human assessor will disagree
with algorithmically calculated scores if the scores are based
on the original data (linear colour scale) while the human is
looking at transformed data. The conflict is resolved by bas-
ing both judgements on the logarithm of the fields: a loga-
rithmic colour scale achieves a similar effect as the step-wise
alternatives mentioned above and can easily be used as the
input for our algorithm. This step furthermore dampens the
potential impact of strongly localized extreme events on our
evaluation: without such precaution, a single high-intensity
rain object could overshadow the rest of the field, shifting
the overall distribution of power to very small scales.

It should be noted that the logarithm introduces one addi-
tional free parameter, namely the new value assigned to pix-
els with zero rain. For this study, it will be set to log2(0.1)≈
−3, i.e., the logarithm of the smallest considered non-zero
intensity. We have checked that moderate changes to this pa-
rameter hardly impact the local wavelet spectra.

3.3 Boundary conditions and missing data

Before our wavelet transformation can be applied, the input
field needs to undergo a transformation Rnx×ny → R2J×2J ,
which (i) continues the input realistically at the domain edge
while (ii) altering the values within the original domain as
little as possible. Ideally, this procedure should (iii) be math-
ematically simple and leave few degrees of freedom. It is fur-
thermore desirable that (iv) the appropriateness of the bound-
ary condition does not depend strongly on the data itself. Af-
ter the wavelet transform, the original domain is cut out of
the fields of wavelet coefficients.

Regarding requirements (ii–iv), the reflective boundary
conditions employed by Brune et al. (2018) are a very at-
tractive option: by simply mirroring the domain at each side
until the result is larger than 2J ×2J and then cutting out the
desired square, the fields can be extended to arbitrary dimen-
sions without altering the original data. This transformation
is furthermore inexpensive and has no free parameters and
the structure outside of the original domain is completely de-
termined by the structure within. We therefore generally rec-
ommend the use of reflective boundaries, as long as the do-
main boundary is a rectangle. In the present case, however,
the effective domain edge is given by the irregularly shaped
RADOLAN region (see Fig. 1), making the mirroring proce-
dure impractical. To ensure a fair comparison of forecasts,
reanalysis and observations, we resort to zero boundaries,
meaning that all pixels for which no RADOLAN data are
available are set to zero.

We note that a large fraction of the RADOLAN-fields
used contain further missing data due to failure of individ-
ual radars, thus creating even longer and more complicated
boundaries. Any rain object which touches these boundaries
generates an artificially sharp edge which might, in general,
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affect the resulting wavelet spectra in unexpected ways. The
importance of such effects is tested empirically in Sects. 4
and 7.

3.4 Aggregation of local wavelet spectra

The redundant wavelet transform results in 3×J spectral val-
ues at each grid point. In this study, we will follow Buschow
et al. (2019) and average the spectra over the three directions,
leaving us with one value per scale (some reasons for dis-
carding the directional information are given in Sect. 8). Be-
fore the structure information contained in the local wavelet
spectra can be used for analysis and verification, further data
reduction is required.

The straightforward approach consists of simply averag-
ing the local spectra over the complete domain. Kapp et al.
(2018) first demonstrated that the mean spectra are a solid
basis for forecast verification. This strategy generally leaves
open which feature in the underlying rain field corresponds
to which energy component – the localization potential of
the wavelets is under-utilized. Buschow et al. (2019) there-
fore suggested the map of central scales as an alternative ag-
gregation of the local wavelet spectra: instead of averaging
in space, each local spectrum is summarized by its centre of
mass. The resulting array of zC has the same dimensions as
the original field; the value at each pixel denotes the domi-
nant scale at that location. The authors cited above showed
that this form of visualization nicely separates small-scale
from large-scale features. The histogram of central scales can
replace the spatial mean spectrum as the basis of wavelet-
based verification.

We note that the greater their distance to the next rain
pixel, the larger the scales on which areas without rain will
appear. The addition of a tiny non-zero intensity to such a re-
gion can completely alter the local central scales. The spatial
mean spectra are naturally insensitive to regions with zero
intensity; for the scale histograms we simply remove them
from the analysis.

4 Climatology of wavelet spectra

For a first overview of the spatial structure in our data, we
apply the complete wavelet analysis (summarized in Algo-
rithm 1) to each of the 127× 22 rain fields. The resulting
mean spectra and scale histograms are then averaged over
days related to different weather situations (Fig. 4). We ob-
serve that purely convective cases, where thunderstorms oc-
curred without direct connection to a frontal structure, are
clearly recognized as small in scale, with energy peaking at
scale five (panel a) and the most frequent central scale be-
ing near four. The reverse situation, i.e., fronts without sig-
nificant thunderstorm activity, is characterized by a shift of
energy towards larger scales (energy concentrated at scale
seven, most centres near scale six). The forecast ensem-
ble and REA2 agree closely on this regime behaviour; the
relatively tight spread encompasses the observed spectra in
nearly all cases. The fact that almost no variability resides on
scales 1 and 2 is hardly surprising since the effective reso-
lution of the COSMO model, below which all processes are
unrealistically damped, is at 4 to 5 grid boxes (Bierdel et al.,
2012).

For the purely frontal cases, as well as the overall cli-
matology, precipitation in RADOLAN lives on systemati-
cally smaller scales than in the two model-based data sets,
with histograms shifted by about 0.5, reduced energy at scale
seven and increased energy below scale 5. Interestingly, this
discrepancy is not evident for the purely convective cases
where the curves corresponding to RADOLAN are even
closer to the centre of the ensemble range than REA2.

To assess the impact of the imperfect, padded boundary
conditions on the climatology of these wavelet spectra, we
have repeated the analysis for REA2 without setting pixels
missing from RADOLAN to zero (neglecting the second step
of Algorithm 1). As one might expect due to the possibility
for overall larger features, the resulting curves (dotted lines in
Fig. 4) are slightly shifted toward large scales. The effect is,
however, small compared to both the spread of the ensemble
and the difference between ensemble mean, RADOLAN and
REA2.

Besides the climatologies of the spatially aggregated
wavelet spectra, we are also interested in their average dis-
tribution across the domain. The map of central scales allows
us to investigate this behaviour in a straightforward manner
by simply averaging the locally dominant scales at each pixel
over all instances with rain. To ensure that the results are
reasonably robust, we only consider grid points with at least
three full weeks of non-zero data.

The resulting pattern of average central scales for the
reanalysis is shown in Fig. 5a. For this calculation no
RADOLAN mask was applied, thus enabling us to study the
variability across the complete COSMO-DE domain. We ob-
serve that the distribution of predominantly small and large
scales is closely tied to the orography: the Alps, Ore Moun-
tains, Black Forest and central German highlands are all as-
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Figure 4. Normalized spatial mean spectra (a) and histograms of central scales (b), averaged over cases with fronts and no convection
(green), convection and no fronts (blue), and all cases (red). Areas indicate the range of these mean curves over the 20 ensemble members.
Solid and dashed lines correspond to REA2 and RADOLAN, respectively. The dotted line represents the REA2 spectra obtained without
masking the fields with the available RADOLAN data.

Figure 5. Map of central scales, averaged over all instants with non-zero precipitation for COSMO-REA2 (a), COSMO-DE-EPS (b, aver-
aged over all 20 members) and RADOLAN (c, individual colour bar). Pixels with fewer than 21 d with precipitation were discarded. The
RADOLAN mask was not applied to REA2 and COSMO-DE-EPS.

sociated with decreased central scales. The Baltic Sea, north-
ern German flatlands and Alpine foothills in Bavaria and
Austria, on the other hand, tend to experience larger precipi-
tation features.

The corresponding climatological map for the forecasts,
averaged here over all ensemble members, is very similar to
the reanalysis albeit with slightly larger scales in the southern
half of the domain. The picture for RADOLAN, on the other
hand, looks completely different (Fig. 5c; note the separate
colour scale). Most notably, the overall scales are decreased
by roughly 1. Due to the limited area – both the Alps and the
Baltic sea are outside the domain – and sharp edges caused
by missing data, very little of the structure described above
can be recognized.

For a direct and fair comparison of models and observa-
tion, we repeat the calculation of the climatological maps of
central scales for REA2 and COSMO-DE-EPS, this time in-
cluding only pixels for which RADOLAN data are not miss-
ing. Noting furthermore that the differences in scale vary
mainly in the meridional direction, we average these maps
over all longitudes; the results are shown in Fig. 6. In this

visualization, we find that the overall pattern of larger scales
in southern and northern Germany and smaller scales near
the centre is present in all three data sets after all. The
RADOLAN profile is qualitatively similar to the others, but
shifted down by nearly one scale.

Figure 6 furthermore allows us to assess the differences
between groups of ensemble members. Anticipating the re-
sults, we have coloured ensemble members according to their
physics setting. We find that members with the first physics
setting, i.e., an increased entrainment rate (Theis et al., 2014),
produce more small-scale variability than the others. Con-
versely, members with the fifth parameter setting, i.e., in-
creased turbulent length scale, favour large-scale variabil-
ity. No clear-cut pattern emerges when we sort the ensemble
members by their boundary condition (not shown).

Throughout northern and central Germany, the reanal-
ysis lies near the centre of the ensemble spread. In the
South, however, all ensemble members produce systemati-
cally larger features than REA2. Since the slight discrepancy
in internal resolution is constant across the domain, this dis-
crepancy is likely the result of continuous data assimilation.
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Figure 6. Map of central scales, averaged over all instants with
non-zero precipitation and all longitudes. Ensemble members with
the same physics setting have the same colour, and RADOLAN and
REA2 are black and grey, respectively. Only pixels with available
RADOLAN observations and at least 21 d of non-zero rain were
included.

5 Wavelet-based scores

5.1 Scores based on the mean spectra and scale
histograms

Following Buschow et al. (2019), we compare the scale his-
tograms of two rain fields, i.e., forecast and observation, via
the earth mover’s distance (henceforth EMD): the count in
each histogram bin constitutes a pile of earth located at the
bin’s centre. The EMD is given by the minimum work (dirt
moved times distance travelled) required to transport the pre-
dicted arrangement of piles into the observed one. We prefer
this type of comparison over an element-wise difference be-
cause it treats shifts between neighbouring scales appropri-
ately: a displacement from one bin to the next increases the
total work and thus the EMD only slightly. A discrepancy
by several scales, which would lead to the same element-
wise difference between the histograms, is punished more
strongly. For further details about the merits of the EMD, the
reader is referred to Rubner et al. (2000). The EMD between
the two scale histograms (henceforth HEMD) constitutes our
first wavelet-based score.

The second score, SEMD is analogously given by the
EMD between the two normalized and spatially and direc-
tionally averaged spectra. Here, the locations of the dirt piles
are given by the scales j ∈ {1, . . .,J }, the spectral energy
corresponds to the amount of dirt. The normalization of the
spectra eliminates differences in total intensity and guaran-
tees that the EMD is a true metric, meaning that only per-
fectly predicted spectra achieve perfect scores.

As mentioned in Buschow et al. (2019), we can obtain a
sign associated with the EMD by calculating the distance be-
tween the centres of the two curves, i.e., the difference in
expectation value for HEMD and the difference in central
scale for SEMD. When desired, the sign of these differences
can be attached to SEMD and HEMD in order to assess the
directions of the forecast errors (too large or too small).

5.2 Case study: 19 June 2011

To get a first impression of the kinds of errors which de-
termine the outcome of our wavelet-based verification, we
consider a case study for which the quality of the ensemble
members was deemed below average by both of our scores.
On 19 June 2011, a secondary depression near the end of its
life cycle made landfall on the German North Sea coast and
traversed northern Germany during the afternoon hours. Be-
tween 15:00 and 16:00 UTC, RADOLAN observed a large-
scale rain band near the cyclone’s centre in eastern Germany
and a large number of smaller, relatively intense, features
across the rest of the domain (Fig. 7a). The forecast consid-
ered in the example (member five, Fig. 7c) features a single,
substantially rounder, larger and smoother field in the east
and only a few scattered objects with very low intensity be-
sides. This discrepancy is clearly reflected by a surplus of
large-scale variability in both the mean spectra (panel b) and
the scale histograms (panel e). The resulting earth mover’s
distances amount to approximately one full scale in both
cases. Here, we have visualized the corresponding transports
as river plots (coloured lines between the histograms). Con-
sidering the maps of central scales (panels d and f), we find
that the features in the images are classified just as expected
with the large rain band living near scale 5 in RADOLAN
and scale 6 in the forecast, while the smaller features lie
closer to scales 3 and 4.

5.3 Case study: 26 February 2011

Our second case study similarly features a depression cross-
ing northern Germany. In contrast to the previous example,
the dominant weather phenomena are associated not with the
cyclone itself, but with its frontal system enclosing a very
narrow warm sector which crosses western Germany during
the afternoon of 26 February 2011 (Fig. 8). The resulting
rain field, as observed by RADOLAN (Fig. 9), consists of
two narrow rain bands, one with medium intensity associ-
ated with the cold front in the west and one with very low
intensities related to the warm front in the east. Neither the
reanalysis nor ensemble member 6 exhibit a separation be-
tween the precipitation fields of the two fronts, both showing
a single broad rain field across south-western Germany in-
stead. Member 1, on the other hand, produces two narrow
rain bands, albeit with increased width and length as well as
slightly wrong locations compared to RADOLAN.
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Figure 7. Wavelet-based verification for 19 June 2011 at 16:00 UTC: observed field (RADOLAN, a); observed spectrum, EMD components
and forecast spectrum (b); forecast field (Member 5, c). Bottom row: observed map of central scales (d); corresponding histogram, EMD
components, forecast scale histogram (e); forecast map of scales (f).

In terms of the overall structure, the first ensemble member
is arguably superior to member 6 and REA2. A point-wise
verification measure like the root mean square error does
not reward the correctly simulated separation into two rain
bands. The map of central scales (bottom row of Fig. 9), on
the other hand, adequately registers two disjoint rain bands
as smaller than the unified pattern. Consequently, member
1 receives a substantially better score (HEMD≈ 0.5) than
member 6 or REA (both close to HEMD= 1).

6 Non-wavelet scores

To investigate which properties of a forecast are punished
or rewarded by our wavelet-based verification, one natural
approach is to compare the scores presented above to alter-
native verification methods which also focus on the field’s
structure.

Our first candidate is the structure component of SAL
(Wernli et al., 2008, S). For the calculation of S, which is
implemented in the SpatialVx R package (Gilleland, 2018),
observed and predicted rain field are decomposed into dis-
crete objects. Here, we use the standard algorithm of the R
package, which first smooths the data with a simple disc ker-
nel, then discards all pixels below a given threshold Rmin and

Figure 8. UK Met Office surface pressure chart for 26 February
2011 18:00 UTC (cropped). Contains public sector information li-
censed under the Open Government Licence v1.0.

groups continuous regions of non-zero pixels into separate
objects. For each object (i), the ratio between total and max-
imal precipitation is calculated as

V(i) = Rtot,(i)/Rmax,(i) , (2)
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Figure 9. Logarithmic rain fields for 26 February 2011 at 19:00 UTC (top row) and corresponding maps of central scales (bottom). From
left to right: RADOLAN, REA and COSMO-DE-EPS ensemble members 1 and 6. All fields were cropped to the extent of the available
RADOLAN data.

where Rtot,(i) and Rmax,(i) refer to the total and maximum in-
tensity of the object, respectively. This “peakedness” is av-
eraged over all objects in both fields separately, weighted
by Rtot,(i). S is then given by the relative difference in
(weighted) mean peakedness of forecast and observation.
The sign is chosen such that S > 0 indicates forecasts with
features that are not peaked enough, i.e., too large and/or too
flat.

The key parameter of this procedure is the threshold Rmin,
which can, depending on the data, have a strong impact on
the outcome of the verification (Weniger and Friederichs,
2016). Radanovics et al. (2018) point out that such effects
can be minimized as long as thresholds below the respec-
tive minimum positive values of the fields are avoided. This
property is met by choosing individual thresholds for fore-
cast and observation, truncating each field at 1/15 of the
95 %-quantile of non-zero values. This approach greatly de-
creases the computational cost of the procedure since the ob-
ject decomposition has to be repeated only once per field,
not once per combination of observation and forecast. We
have checked that the results hardly differ from those ob-
tained with a common threshold.

Our second object of comparison is the weighted p-
variogram score of Scheuerer and Hamill (2015). Originally
designed for ensemble verification of multivariate quantities,
Buschow et al. (2019) adapted this score to a deterministic
setting. Assuming stationarity of the data, the score simpli-
fies to the mean squared difference between observed and
predicted empirical p variogram, weighted by the inverse

distance d−1 between pairs of points, i.e.,

VGS=
∑

all 0<d<dmax

d−1

 ∑
|ri−rj |=d

∣∣∣Robs(ri)

−Robs(rj )
∣∣∣p − ∑

|ri−rj |=d

∣∣∣Rfor(ri)−Rfor(rj )
∣∣∣p
2

. (3)

Here, Robs/for(ri) denotes the observed or predicted rain
value at a given location ri . In contrast to SEMD, HEMD and
S, scores of this form depend explicitly on the variance of the
two fields: for p = 2, i.e., the classic variogram, the expected
squared differences between distant points converges exactly
to the variance; changes in this parameter shift the curves up
and down. Since we wish to isolate structure from intensity
errors, we set p = 2 and standardize all fields to unit vari-
ance before calculating VGS. This guarantees that all curves
converge to the same value; their remaining differences are
due to discrepancies in correlation structure. Noting that the
inverse distance weighting limits the impact of very distant
pairs, we set dmax = 50px.

In order to check how strongly VGS and the other sup-
posed structure scores depend on intensity errors, we include
SAL’s amplitude component A, given as the relative differ-
ence in total rain, in our experiments as well. All wavelet and
non-wavelet scores used in this study are listed in Table 2, the
optimal score in each case is zero. The wavelet and variogram
transformations are applied to the logarithmic rain fields for
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the reasons detailed in Sect. 3.2. This transformation is not
appropriate for S andA because the resulting negative values
lead to unexpected behaviour of the score definitions. These
scores are therefore based on the untransformed rain fields
for which they were originally developed.

7 Verification of COSMO-DE-EPS in 2011

To study the behaviour of our structure verification in ag-
gregate, we apply the wavelet analysis of Algorithm 1 to all
127× 22 fields in our data set to obtain the mean spectra
and scale histograms on which SEMD and HEMD are based.
Similarly, we calculate the total precipitation (basis for A),
the average structure function V (Eq. 2, basis for S) and the
weighted stationary variogram (basis for VGS). Every field is
then compared to every other field, giving us approximately
four million realizations of each score listed in Table 2. Dif-
ferent subsets of this large data set are then used to address
the following questions:

1. How are these scores related to each other?

2. Can the structure scores discriminate good forecasts
from bad ones?

3. How sensitive are the wavelet scores to the choice of
mother wavelet, the log-transform, the boundary condi-
tions and the choice of reference data?

The following sections address each of these questions in
turn.

7.1 Comparison between scores

For a first overview of the verification results, we con-
sider the distributions of all scores (absolute values) for the
20 forecasts issued on each of the 127 d, verified against
RADOLAN. In Fig. 10, we have first separated the result-
ing distributions by weather situation: days where precipita-
tion was generated by a single type of weather phenomenon
(warm front, cold front etc.) are shown in individual box
plots, and all other days are grouped into the class “multi-
ple”.

It appears that, at least qualitatively, HEMD, SEMD and
VGS are in fair agreement: purely convective days and pure
cold fronts (of which our data set contains eight and four
cases, respectively; see Fig. 2) were forecast best (lowest
scores), followed by warm fronts and other fronts. S agrees
in the convective cases, but sees no clear differences between
the front types. The two pure convergence-line cases received
the unanimously worst scores, but the small sample size pro-
hibits any general conclusions from this observation. The
amplitude score A, which does not measure structural prop-
erties, shows no great variation across weather situation, the
only exception being the four cold-front cases, the total am-
plitude of which was predicted unusually well.

To quantify how close the agreement between the dif-
ferent scores actually is, we calculate their correlation ma-
trix, shown in Fig. 11a. Unsurprisingly, the strongest connec-
tion is found between the two wavelet scores (0.85), both of
which also have a notable connection to the variogram score
(0.64 and 0.68). The object-based S is slightly less similar to
the other structure scores and shows the closest relationship
with the amplitude error A. SEMD, HEMD and VGS, on the
other hand, are only weakly linked to A.

To get a broader overview of these interrelations in cases
where forecast and observation may be very dissimilar, we
have also calculated the same correlations over all possible
pairs of forecast and observation date (Fig. 11b). Across this
data set, which includes some exceedingly bad predictions,
the similarity between all four structure scores increases
slightly, and SEMD and HEMD become nearly identical. The
connection to the amplitude error A mostly vanishes.

In the next step, we include the sign of S and endow
SEMD and HEMD with the signs of the corresponding centre
differences as described in Sect. 5.1. These scores now mea-
sure not only the severity of the structural error, but also the
direction, i.e., too small or too large. In accordance with the
classic SAL definition, the signs are chosen such that posi-
tive values indicate a forecast with too much large-scale vari-
ability. The joint distributions of the three signed scores are
shown in Fig. 12. Here, we have again included all 127×127
combinations of days in order to probe a broad range of
good and bad forecasts. HEMD and SEMD agree on the
sign of the error in 93 % of cases, and the sign of S matches
roughly 85 % of the time. As a result, the correlations rise
to cor(S,HEMD)= 0.87 and cor(S,SEMD)= 0.85, respec-
tively. The bivariate histograms furthermore show that ex-
treme disagreements, which would appear in the upper left
and lower right quadrants of the histograms, are rare. The
functional relationship of these scores follow a sigmoid-type
function.

7.2 Discrimination

The previous section has shown that structure scores based
on wavelets, variograms and object properties pass similar,
but by no means identical judgement of forecast quality. A
natural question is which (if any) of these assessments is cor-
rect in the sense that the best forecast receives the best score.
In a realistic setting, this question cannot be answered be-
cause the objectively best forecast is unknown. As a surro-
gate, we can consider the ensemble forecast issued for each
day as the “correct” prediction and compare it to the 126
forecasts issued for the other days: if the prediction system
were perfect and weather patterns never repeated, a sharp
verification tool should give the best scores to matching days.

The leftmost bars in Fig. 13 show the median rank of
those supposedly best forecasts, verified against RADOLAN.
Since there are 20 forecasts per day, the ideal rank is 10. Al-
though such perfect scores are not observed, matching days
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Table 2. All scores used in Sect. 7. Jmax and Jmin refer to the largest and smallest considered scale of the wavelet decomposition. In this
study, Jmax− Jmin = 7− 1= 6. The optimal value of each score is zero.

Abb. Description Range Signed log(rain)

HEMD EMD between histograms of central scale [0,Jmax− Jmin] (yes) yes
SEMD EMD between dir. averaged mean spectra [0,Jmax− Jmin] (yes) yes
VGS Weighted stationary variogram score, p = 2 [0,∞) no yes
S Relative difference in average feature “peakedness” [−2,2] yes no
A Relative difference in total rain intensity [−2,2] yes no

Figure 10. Distribution of absolute values for all scores (matching forecast and observation dates), separated by weather event.

Figure 11. Lower triangle: correlations between the absolute values
of all scores, calculated over (a) the 20× 127 pairs belonging to
matching days and (b) all 20× 127× 127 combinations of forecast
and observation. The upper triangles show bi-variate histograms for
all combinations of scores.

are nonetheless typically among the 25 % best forecasts, with
SEMD issuing the lowest median rank and S the highest.
When we use REA2 as the reference instead of RADOLAN,
the ranks of all scores improve by about 100 – all structure
scores clearly indicate that the COSMO-DE-EPS predictions
are structurally more similar to the reanalysis than the obser-
vations.

To focus on the discriminatory abilities of our scores, we
can take the quality of the predictions out of the equation
by selecting a member of the forecast ensemble as the “ob-
servation” against which all other forecasts are verified. Ide-
ally, the 20 ensemble members constitute independent real-
izations from a single distribution which changes from day to
day. When forecast and observation share neither physics set-
ting nor boundary conditions (centre of Fig. 13), the rankings
for matching days improve with respect to all four scores. In
a perfect world, the matching forecasts would rank at num-

ber six (since there are 12 unrelated ensemble members).
In reality, the ranks are between 326 for VGS and 424 for
S. Switching from an unrelated member to an “observation”
which shares the forecast’s physics settings (of which there
are four, making the perfect rank two) only marginally lowers
the ranks.

As a final experiment, we select an observation which
has the same boundary conditions as the prediction. Visual
inspection of example forecast ensembles shows that these
members are often extremely similar to one another. As a
result, SEMD, HEMD and VGS consider only a handful
of other predictions superior to those that share both the
boundaries and the date of the observation (rightmost bars
in Fig. 13). S, on the other hand, still prefers over 160 other
forecasts over the “correct” ones, indicating weaker discrim-
inatory ability.

7.3 Sensitivity of the wavelet scores

Concluding this statistical analysis of our wavelet-based
scores, we consider their sensitivity to the free parameters
of the method. To this end, the complete verification pro-
cedure is repeated three times: once with the Haar wavelet
instead of D2, once without the logarithmic transformation
and once without setting pixels missing from RADOLAN to
zero. The resulting joint distributions of original and altered
scores are shown in Fig. 14. Here, we have again included all
pairs of observation and forecast days in the bi-variate his-
tograms (colours).

Recalling the outcome of the wavelet selection (Sect. A),
as well as the results reported in Buschow et al. (2019), we
expect the impact of the chosen mother wavelet to be weak.
Figure 14a clearly confirms this expectation: SEMD experi-
ences only minor changes, and the scores remain correlated
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Figure 12. Bi-variate histograms of SEMD and S (a), HEMD and S (b), and SEMD and HEMD (c). The two wavelet scores have been
endowed with the sign of the corresponding difference in centre. Percentages indicate the fraction of cases where the two scores have the
same sign; cor denotes the correlation.

Figure 13. Median rank of the score obtained by the 20 ensemble
members belonging to the same day as the observation among the
set of all 2540 forecasts. From left to right, the designated “observa-
tions” are RADOLAN, REA2, an ensemble member which shares
neither boundary conditions nor physics settings with the forecast,
an ensemble member which shares the physics settings, and an en-
semble member which shares the boundary conditions.

at 0.96; HEMD is even less sensitive (cor= 0.98). We fur-
thermore observe no outliers, indicating that the verdict never
changes abruptly as a result of switching from one wavelet to
another.

Based on the discussion in Sect. 3.2, we expect the log-
arithmic transform to have a greater influence on the result
of the verification. For SEMD, our expectation is confirmed
(cor≤ 0.85, wide distribution), and HEMD is notably less
affected by the change in “colour scale”.

The experiment without the RADOLAN mask (panel c)
constitutes an ideal test for the impact of the wavelet-
transform’s boundary conditions: originally all values be-
yond the long and complicated edge of the available
RADOLAN data were simply set to zero; now we replace
them with the actually available model output, i.e., perfect
boundary conditions. The resulting difference in scores is
comparable in magnitude to that of the logarithmic trans-
form, but the distribution is different. While the overall cor-
relation over all cases is high, the range of occurring differ-

ences is broader, meaning that individual fields with promi-
nent features near or beyond the border can experience a
strong shift in the verification result. HEMD is again less
sensitive than SEMD and produces fewer outliers.

In a final step, we consider the impact of the chosen valida-
tion data (Fig. 14d). As one might expect based on the results
of previous sections, the change from RADOLAN to REA2
as “observation” can result in completely different verifica-
tion results, the sensitivity of both scores being similar in this
instance.

All correlations discussed so far decrease monotonically
when only matching pairs of forecast and observation date,
i.e., reasonably good forecasts, are considered (black dots in
Fig. 14). The qualitative results remain unchanged; HEMD
is the less sensitive score and the mother wavelet has the
least impact, while logarithm and boundary condition are
more important. The strongest decrease in correlations oc-
curs for the choice of validation data, meaning that, in our
data set, the ranking of individual forecasts for matching days
changes almost completely depending on the chosen obser-
vations. We note, however, that none of the effects discussed
in this section has a strong systematic component – the ex-
pected scores (white dots in Fig. 14) are nearly unchanged in
all four sensitivity experiments.

8 Summary and discussion

This study has applied the wavelet-based pure structure veri-
fication of Buschow et al. (2019) to the systematic evaluation
of numerical weather predictions against radar observations,
as well as a regional reanalysis.

In the first step, we have studied the climatological proper-
ties of the local wavelet spectra. Similar analyses of the pre-
dicted average spatial structure were carried out by Willeit
et al. (2015) and Wong and Skamarock (2016) using Fourier
transforms. Aggregation of these mean spectral properties
according to the weather situation has confirmed the find-
ings of Brune et al. (2018), who report that wavelet spectra
are very well suited to differentiate between rain fields with
different degrees of spatial organization. We furthermore find
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Figure 14. Bivariate histograms of the original wavelet-based scores (on the x axis) against their altered versions (y axis), including all
combinations of forecast and observation date. For (a)–(c), RADOLAN is the reference; (d) compares scores against RADOLAN to scores
against REA2. Numbers indicate the correlation over all scores, and the number in brackets is the correlation obtained for matching days
only (marked by black dots). The white dot represents the mean original and altered values for matching days.

that forecasts and reanalysis, which are based on similar con-
figurations of the same NWP model, have very nearly the
same average structure. RADOLAN, on the other hand, is
systematically shifted towards smaller scales in most situa-
tions. For purely convective rain fields, however, the fore-
cast ensemble is more similar to RADOLAN than to REA2.
The latter observation indicates that the discrepancy in scale
is not exclusively due to the slight difference in native res-
olution (1 km for RADOLAN, 2 km for REA2 and 2.8 km
for COSMO-DE-EPS) since the grid spacing also differs be-
tween forecast and reanalysis and does not depend on the
weather situation. By masking the forecasts with the avail-
able radar measurements, missing data have been ruled out as
a possible explanation as well. We therefore conclude that, ir-
respective of boundary conditions, physics settings and data-
assimilation scheme, the COSMO model tends to produce
frontal and other large-scale precipitation patterns which are
too large and too smooth.

An evaluation of the temporal mean map of central scales
has shown that the discrepancy is mostly constant in space.
This step furthermore revealed that the variation in aver-
age structure across the ensemble is mostly determined by
the physics parametrization. A systematic discrepancy be-
tween predictions and reanalysis was furthermore detected
over southern Germany. Since the difference in model res-
olution is constant in space, this observation indicates that
the model has an internal tendency to under-represent small-
scale variability in this region. Overall this type of clima-
tological analysis has proven to be a useful first evaluation
of the average model performance. The natural possibility
to localize errors in space constitutes an advantage over the
Fourier approach of Willeit et al. (2015) and Wong and Ska-
marock (2016).

Our second set of results concerns the typical behaviour of
the two wavelet-based structure scores SEMD and HEMD.
Buschow et al. (2019) report that these scores, as well as the
object-based S and the variogram score VGS, can discrimi-
nate between good and bad predictions of spatial structure in
a controlled environment. Exploiting the fact that each indi-
vidual forecast ensemble essentially contains 20 draws from
an ever-changing probability distribution, we have demon-
strated that many of the results previously obtained with syn-
thetic rain fields can be transferred to the real world: all four
scores are reasonably good at distinguishing matching fore-
casts from non-matching ones, S being the worst at this ex-
ercise and VGS marginally better than the two wavelet al-
ternatives. Interpreting this experiment, is important to real-
ize that discrimination is not the only desirable property for
the scores under consideration, since we also wish to isolate
information on the field’s structure from all other kinds of
errors.

To learn more about the kinds of forecast errors punished
by our structure scores, we have considered two selected case
studies. Here, HEMD was found to be particularly easy to in-
terpret since we can plot the map of central scales on which
it is based. In this manner we found that the score can, for ex-
ample, reward the correctly predicted split precipitation field
in a nearly but not completely occluded frontal system, or
punish the lack of small-scale rain features surrounding a
secondary depression.

A statistical analysis across the complete data set revealed
that, in realistic forecast situations, HEMD and SEMD
are usually in very close agreement with each other. The
wavelets furthermore typically find the same sign of the er-
ror as the object-based S. The moderate correlation between
S and the wavelet scores is likely due to low-intensity areas
which are removed during the object identification procedure

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, 2020 www.adv-stat-clim-meteorol-oceanogr.net/6/13/2020/



S. Buschow and P. Friederichs: Using wavelets to verify the scale structure of precipitation forecasts 27

required for SAL, but may have a big impact on the aver-
age wavelet spectra. The variogram-based VGS is, on aver-
age, more similar to the wavelets. Here, the remaining dif-
ferences are probably related to the fact that the incarnation
of VGS, recommended by Scheuerer and Hamill (2015) and
employed in this study, down-weights long-distance correla-
tions while the wavelet spectra treat all scales equitably. It is
worth noting that the overall performance of the variogram
score is surprisingly good, despite the questionable assump-
tion of spatial stationarity.

Based on the discussion above, we can overall recommend
HEMD as a useful tool for purely structural verification of
quantitative precipitation forecasts. Its verdict is very simi-
lar to that of SEMD, but less sensitive to the choice of the
mother wavelet and boundary conditions, and easier to in-
terpret thanks to the underlying map of central scales. We
have demonstrated that our score can provide useful addi-
tional information on a very specific aspect of forecast per-
formance and should be used in conjunction with other tech-
niques which isolate errors in feature location, intensity and
total area.

Another property, which has so far been left out of the
analysis, is the orientation and anisotropy of the rain fields.
Since several important weather phenomena such as fronts
and squall lines have very characteristic anisotropic shapes,
these are clearly relevant aspects of forecast quality to which
all scores tested in this study are insensitive. We have in-
tentionally removed the directional information from our
wavelet spectra because the underlying transformation is in-
variant under shifts, but not under rotations. Consequently,
the perceived degree of anisotropy, as well as the difference
in the orientation of two fields, depends on the orientation
itself – one could rotate observation and forecast simultane-
ously in the exact same way and receive a changed verifica-
tion result. To avoid this problem, future studies will explore
the use of different wavelet transforms which have the neces-
sary redundancy in both location and orientation. A second
important direction for future research is the application to
the problem of wind verification, which faces many of the
same issues as precipitation and has recently received much
attention in the spatial verification community (Dorninger
et al., 2018).
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Figure A1. Entropy of the transforms for the first 10 Daubechies
wavelets (specifically the “extremal phase” versions). Points denote
the median, lines the interquartile range over all forecasts and ob-
servations from our data set.

Appendix A: Wavelet selection

In order to objectively select the most appropriate mother
wavelet, we follow Goel and Vidakovic (1995), who demon-
strate that the similarity between data and basis function
can be optimized by minimizing the entropy of the mother
wavelet’s corresponding orthogonal transform. In a nutshell,
wavelets with many vanishing moments and large support ar-
eas are good at representing smooth internal structures while
shorter wavelets can handle discontinuities better. For a more
detailed discussion of this approach and its appropriateness
to our application, we refer to Buschow et al. (2019). Ap-
plying the same method to synthetic rain fields with tunable
smoothness and scale, these authors found that the differ-
ences between the Daubechies wavelets are only moderate
compared to the difference between parameter settings – the
wavelet spectra are determined mostly by the structure of the
field, not the shape of the basis function.

Figure A1, summarizing the entropies for all rain fields
from our data set, largely confirms this result. While the op-
timum lies between one and four vanishing moments, the
differences between these wavelets of short to intermediate
smoothness are marginal compared to the sample variability
across the different fields. Faced with the choice betweenD2
and D3, which have very nearly identical results, we select
D2 because it has a shorter support, thereby allowing us to
utilize the first seven scales (see Table 1).
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Data availability. The RADKLIM data
set is available from the DWD servers
(https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002,
Winterrath et al., 2018). The regional reanalysis COSMO-
REA2 is available from the “Hans-Ertel-Zentrum” website:
ftp://ftp.meteo.uni-bonn.de/pub/reana/COSMO-REA2/ (Wahl
et al., 2017). COSMO-DE-EPS forecasts are available from DWD
upon request.
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