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Abstract. The North Atlantic Oscillation (NAO) is the dominant mode of climate variability over the North
Atlantic basin and has a significant impact on seasonal climate and surface weather conditions. This is the
result of complex and nonlinear interactions between many spatio-temporal scales. Here, the authors study a
number of linear and nonlinear models for a station-based time series of the daily winter NAO index. It is found
that nonlinear autoregressive models, including both short and long lags, perform excellently in reproducing the
characteristic statistical properties of the NAO, such as skewness and fat tails of the distribution, and the different
timescales of the two phases. As a spin-off of the modelling procedure, we can deduce that the interannual
dependence of the NAO mostly affects the positive phase, and that timescales of 1 to 3 weeks are more dominant
for the negative phase. Furthermore, the statistical properties of the model make it useful for the generation of
realistic climate noise.

1 Introduction

The large-scale atmospheric flow has attracted the attention
of climate scientists since the days of Gilbert Walker almost a
century ago (see, e.g., Walker and Bliss, 1932, Rossby, 1940,
Horel and Wallace, 1981, and the review of Hannachi et al.,
2017, and the references therein). An important driving force
behind this interest is the prospect of obtaining a better un-
derstanding of the different mechanisms involved and using
this knowledge to predict the system on long lead times. Of
particular interest is the challenge posed by the extratropical
atmospheric variability, which exhibits both nonlinearity and
considerable complexity.

The extratropical large-scale circulation can be described
by a number of interacting teleconnection patterns, including
the North Atlantic Oscillation (NAO) and the Pacific North
America (PNA) pattern; see e.g. Wallace and Gutzler (1981),
Hannachi et al. (2017) and Feldstein and Franzke (2017).
These teleconnections are characterized by typically large
spatial scales and low-frequency variability (timescales of

more than 10 d; Feldstein, 2000, 2002, 2003; Franzke and
Feldstein, 2005), which provides the potential for longer term
predictability compared, for example, to synoptic scales.

Being one of the main teleconnection patterns of the
Northern Hemisphere (NH), the NAO controls much of the
atmospheric variability, particularly over the North Atlantic
region, the Mediterranean and the Eurasian continent. It also
interacts with other teleconnections, such as the PNA and
the El-Niño–Southern Oscillation (ENSO), to produce re-
mote responses. The NAO is known to have a direct, strong
impact on surface weather and climate through changes in
the atmospheric mass and shifts of the jet stream. It varies
on a wide range of timescales, ranging from days to decades
and longer (Woollings et al., 2014, 2015). Descriptions of the
physical characteristics of the NAO can be found in Bene-
dict et al. (2004), Franzke et al. (2004), Stendel et al. (2016),
Hannachi and Stendel (2016) and the references therein.

Several meteorological centres issue regular forecasts
of the NAO for various purposes (e.g. NOAA CPC,
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
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pna/nao_index_ensm.shtml, last access: 5 October 2020).
These forecasts are based on dynamical numerical weather
prediction (NWP) models. Probabilistic or statistical models
are also used to issue such forecasts on short and extended
lead times. Statistical models have the advantage of be-
ing much simpler than their dynamical analogues, but
this advantage comes at the expense of neglecting some
interactions with other processes.

The NAO has a number of characteristic features. Its prob-
ability density function (PDF) is non-Gaussian, both in the
bulk and in both tails of the distribution. Furthermore, the
NAO has non-zero autocorrelation for short and long lags
(see, e.g., Önskog et al., 2018). A good forecasting model
for the NAO should, in principle, be able to reproduce these
main properties. The non-Gaussianity implies, in particular,
that linear models such as autoregressive (AR) models can-
not reproduce the main features. Note, however, that linear
models with non-Gaussian noise can of course produce non-
Gaussianity (Franzke 2017; Önskog et al., 2018). The NAO
is a nonlinear phenomenon and is related to synoptic Rossby
wave-breaking (Benedict et al., 2004; Franzke et al., 2004)
and regime behaviour (Hannachi et al., 2017). Based on this
observation, it is reasonable to expect that nonlinear proba-
bilistic models can be better suited to fit the NAO time series
and be able to reproduce the properties mentioned above.

In a previous article (Önskog et al., 2018), we studied the
properties of the time series of the daily NAO index, in par-
ticular the station-based time series published by Cropper et
al. (2015), and found that the distribution of the NAO index
has clear non-Gaussian features and long-range dependence
(Franzke et al., 2020). An autoregressive model with non-
standardized t-distributed noise, taking the values of the in-
dex during the last three days into account (AR), provided
a good model for the daily NAO index on timescales of
up to 2 weeks. By investigating forecasts of the future dis-
tribution of the NAO (considering both the expected value
and quantiles), we found that some, but not all, properties
were well described by the model. Features that the model
was unable to replicate included the long-range dependence
on timescales of the order of 20 d or more, the different
timescales of the positive and negative phases of the NAO
and the fact that the negative tail of the NAO distribution is
fatter than the positive tail. In this article, we study nonlinear
time series models and derive models that reproduce all these
features of the daily NAO index. In addition to considering
other classes of models compared to our previous article (Ön-
skog et al., 2018), we also develop the test statistics used to
compare and evaluate the models further.

Our aim here is to develop a statistical NAO model with
which we will be able to identify important dynamical pro-
cesses controlling the NAO. In order to make progress to-
wards this aim, we here address the following specific re-
search questions:

i. What are the nonlinearities and state-dependencies of
the NAO distribution?

ii. Is there a nonlinear time series model which reproduces
the properties of the NAO distribution?

iii. Does the inclusion of long lags on seasonal and interan-
nual timescale improve a nonlinear model for the NAO?

Addressing these important research questions can help us to
understand relevant physical processes controlling the NAO
and, therefore, provide guidelines on which important physi-
cal processes to include in a statistical NAO model.

Our article is organized as follows. First, in Sect. 2, we
shortly describe the time series of the winter NAO used in the
article. Next, in Sect. 3, we investigate the statistical proper-
ties of this time series and describe some of the analyses that
we carry out to evaluate the performance of the models that
we propose. In Sect. 3.1, we briefly review the results on lin-
ear models obtained in Önskog et al. (2018) and also provide
the rationale behind the model improvement. Section 4 de-
fines four different nonlinear models for the NAO, including
self-excited threshold AR models and state-dependent non-
linear models and models with nonlinear noise. Section 5
discusses the simulation of climate noise using the models
derived, and a concluding discussion is presented in the final
section.

2 Daily index of the winter NAO

In this study, we are using the daily time series of the NAO
index published by Cropper et al. (2015). The index is cal-
culated from actual sea level pressure (SLP) observations
on Iceland and the Azores, but reanalysis data have been
used to fill in the gaps (1888–1905, 1940–1941 and on 145
other occasional days) in the observations. These station-
based data are freely available (https://zenodo.org/record/
9979#.V_9RG037X4i, last access: 14 March 2019). In the
generation of the time series, the seasonality was removed
by applying a tension spline method in which a daily annual
cycle (of mean SLP and the SLP standard deviation) was in-
terpolated from monthly values and forced so that the aver-
age of the daily values of the curve for each month was equal
to the monthly means. For details regarding the generation
of the time series, we refer to the original source (Cropper et
al., 2015).

We have restricted the present study to the winter season,
which we here define as starting on 1 December and ending
on 28 February (excluding 29 February for all leap years).
The study is based on data for 142 consecutive winters from
1872/1873 to 2013/2014. We have chosen the 71 winters
for which the month of December falls on an odd year
(1873/1874, 1875/1876 and so on) as our training data for
fitting of the models. The remaining 71 winters (1872/1873,
1874/1875 and so on) constitute our testing data used for val-
idation of the models. Both training and testing data consist
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of 6390 data points each. We have chosen to spread the train-
ing and testing data evenly during the time period to reduce
the effect of any non-stationarity in the data. Note that some
of the nonlinear models studied in Sect. 4 below incorporate
values of the NAO index during seasons other than the winter
and during the period 1850–1871 as input.

3 Statistical properties and validation measures for
the NAO

The analyses of the models that we propose for the NAO will
focus on the extent to which the models capture the distribu-
tion, autocorrelation and timescale of the NAO. The ability of
the models to reproduce the distribution of the NAO will be
visualized by means of density plots and Q–Q plots but also
quantified in terms of the Kullback–Leibler divergence (Kull-
back, 1959; Kullback and Leibler, 1951; Cover and Thomas,
2006; Lacasa et al., 2012; Kowalski et al., 2011). The sym-
metrized Kullback–Leibler divergence (KLD) between two
probability densities P,Q is defined as follows:

DKL(P,Q)=DKL(P |Q)+DKL(Q|P ),

where DKL(P |Q)=

∞∫
−∞

P (x) log
(
P (x)
Q(x)

)
dx (1)

and similarly for DKL(Q|P ). The KLD is non-negative for
all choices of P,Q and provides a measure of the differ-
ence between two distributions. Note that DKL(P,P )= 0.
We will use the KLD as a measure of the distance between
the empirical distribution of the NAO and the distributions
simulated from the models proposed in this article. In this
setting, both P and Q are discrete and are used to calcu-
late the KLD between two discrete distributions, and we have
used the default density kernel in R to obtain corresponding
smooth probability densities and then the KLD function in R
to calculate the KLD.

It should be noted that the comparisons based on KLD that
we carry out are somewhat flawed by the fact that the simu-
lated distributions are not fixed but influenced by statistical
simulation error. However, in this study each simulated dis-
tribution is based on almost 1.3×107 values, and for different
realizations of the same model, the KLD between the empiri-
cal and the simulated distributions varies by an amount of the
order of 10−4, which is negligible compared to the variation
between different models. Furthermore, if we let P andQ be
the empirical probability density of the training and testing
data, respectively, we obtainDKL(P,Q)= 3.2×10−3. We do
not expect the KLD between the NAO distribution simulated
by any of the models proposed and the empirical NAO dis-
tribution for the testing data to fall much below this bound,
but we note that slightly smaller values could occur, either
due to statistical error or due to the distribution predicted by
the model being, by chance, closer to the distribution of the

testing data than to the distribution of the data it was trained
on.

It is well known that the NAO distribution is non-Gaussian
in the sense that both the skewness and excess kurtosis of its
distribution are non-zero. Moreover, the values of higher mo-
ments and, hence, the size of the departure from normality,
tend to depend on the current state of the NAO. In Fig. 1,
we have plotted the values of the sample standard deviation,
skewness and excess kurtosis as a function of the sample
mean for each of the 71 winters in the testing data. We can
see that the relations between higher moments and the first
moment are close to linear, and Fig. 1 includes point esti-
mates and confidence intervals for the intercept and the slope
of the corresponding linear regression lines. The signs of the
intercept and slope are significant for all three higher mo-
ments (see also the left plot in Fig. 2). In the coming sections,
we will investigate how well the proposed models reproduce
these linear relations.

A simple measure for the persistence of NAO events is
provided by the sample autocorrelation function (ACF). Fig-
ure 3 contains plots of the sample ACF for six choices of lags
as a function of the sample mean for each of the 71 winters in
the testing data. The sample ACF clearly decreases with in-
creasing lag, but there is also a clear dependence on the sam-
ple mean, especially for lags up to 1 week and for lags of the
order of 1 month. This can be interpreted as the negative state
of the NAO being more persistent than the positive state, and
also that the negative state has a negative autocorrelation for
timescales around 1 month. The negative phase being more
persistent than the positive phase is consistent with the dy-
namics of the NAO in that the negative phase corresponds to
anticyclonic circulation, which is typically more persistent
than cyclonic circulation corresponding to the positive NAO
phase. In the right plot of Fig. 2 we have summarized the
signs of confidence intervals of the intercept and slope of re-
gressions of the sample ACF versus the winter mean for lags
up to 45 d. In the coming sections, we will investigate how
well the proposed models reproduce the sample ACF and its
dependence on the winter mean.

3.1 Autoregressive models

In a previous study (Önskog et al., 2018), we found that an
autoregressive (AR) model of order 3 with non-standardized
t-distributed noise reproduces the distribution of the daily in-
dex of the NAO to some extent. Figure 4a–c compare the dis-
tribution of the daily winter NAO index to that of simulated
values of the NAO index based on the AR model. We see
that the AR model is unable to reproduce the skewness and
tail behaviour of the NAO distribution. To quantify this, we
note that the KLD between the probability densities of the
testing data and the simulated AR model data is 2.1× 10−2,
which is 1 order of magnitude larger than the KLD between
the training and testing data.
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Figure 1. Relation between higher moments of the daily North Atlantic Oscillation (NAO) winter index and the sample mean for 71 winters.
The plots show the sample standard deviation (a), skewness (b) and excess kurtosis (c) as a function of the sample mean. The red lines are
fitted regression lines. Point estimates and 95 % confidence intervals for the intercepts and slopes of these lines are given above each plot.

Figure 2. Overview of the relations between higher moments and sample autocorrelation function (ACF) of the daily NAO winter index on
one hand and the sample mean for 71 winters on the other hand. As described in the captions of Figs. 1 and 3, we have performed ordinary
linear regressions and calculated 95 % confidence intervals for the intercepts and slopes of the regression lines. If a confidence interval is
strictly positive, the corresponding field in the plot is blue, if a confidence interval is strictly negative, the corresponding field in the plot is
green and if a confidence interval contains zero, the corresponding field in the plot is yellow.

Figure 5a displays the extent to which the AR model is
able to reproduce the higher moments of the NAO and the lin-
ear dependences between the higher moments and the winter
means. It is found that the model reproduces neither the aver-
age values nor the dependence on the winter means of higher
moments. Figure 5b shows the ability of the AR model to re-
produce the sample ACF of the NAO index and, in particular,
the dependence between sample ACF and the winter means.
The AR model reproduces the average value of the sample
ACF very well, but it is unable to reproduce its dependence
on the winter means.

We have also investigated the timescales of the two
phases of the NAO. Following the procedure in Woollings et
al. (2010), we first introduce two thresholds at ±1.64, which
are approximately equal to plus and minus 1 standard de-
viation of the NAO index, to identify positive and negative
NAO events. Then, for each of these events, we counted the
number of subsequent days that were of the same phase. The

data were then sorted to give a total of the number of events
that lasted at least n days. Figure 6a shows the durations for
the NAO index compared to the durations obtained by an
AR model for the NAO index, and, as seen, the AR model
is unable to differentiate between the timescales of the two
phases.

3.2 Testing the hypothesis that the NAO is described by
an AR model

It is unlikely that the skewness and different timescales of
the two phases of the NAO can be reproduced by a linear au-
toregressive model, as such models stipulate the same proba-
bilistic behaviour regardless of the current state of the NAO.
To validate this conjecture, we conduct a statistical test on
the hypothesis that all 142 winters in the data set can be suc-
cessfully modelled by the same AR model. To this end, we
have fitted AR models for all 142 winters separately using
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Figure 3. Relation between sample ACF of the daily NAO winter index and the sample mean for 71 winters. The plots show the sample
ACF for lags 1, 8, 15, 22, 29, and 36, respectively. The red lines are fitted regression lines. Point estimates and 95 % confidence intervals for
the intercepts and slopes of these lines are given above each plot.

Figure 4. (a–c) Properties of the autoregressive (AR), (d–f) self-exciting threshold autoregressive models (SETAR) and (g–i) state-dependent
nonlinear autoregressive models (SDNAR) models for the daily NAO winter index. The plots in the left and middle columns show the
probability density function (PDF) of the daily NAO winter index (blue) compared to the PDF of simulated values (black) in standard scale
(a, d, g) and logarithmic scale (b, e, h). Panels (c), (f) and (i) show Q–Q plots of the daily NAO winter index compared to the simulated
index.
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Figure 5. Plot of the ability of the AR (a–b), SETAR (c–d) and SDNAR (e–f) models to reproduce the higher moments and sample ACF
of the daily NAO winter index. The results are based on simulations of 142 000 winters, where the November data preceding each of the 71
winters in the testing data are used as initial values for simulations of 2000 winters. For the 142 000 winters, we have calculated the first
four sample moments and sample ACF for lags 1–45 and performed linear regressions using ordinary least squares for all variables, with
the sample mean as the explaining variable. Panels (a, c and e) show results for the regression intercept and slope for standard deviation,
skewness and excess kurtosis, and panels (b, d and f) show the results for sample ACF for lags 1–45. The colours in the plots indicate
the relation between the 95 % confidence intervals for the intercept or slope, based on simulations and the 95 % confidence interval of the
corresponding regression parameter for the testing data. A confidence interval based on simulations can, in relation to the corresponding
one based on observations, be strictly smaller (dark green), partly overlap but contain values smaller than the minimum of the interval based
on observations (light green), overlap entirely (yellow), partly overlap but contain values larger than the maximum of the interval based on
observations (light blue) or be strictly larger (dark blue), respectively.

Figure 6. Durations of the positive and negative phase of the NAO index as compared to durations derived from the AR (a), SETAR (b) and
SDNAR (c) models. The plots show the absolute frequency of positive (green crosses) and negative (red crosses) phase events of the winter
NAO index persisting more than a particular number of days. These frequencies are compared to those computed by the models for which
the median (green and red lines, respectively) and 5 %–95 % range (grey regions) of 1000 realizations are displayed. For the AR models, the
green and red lines overlap and are replaced by a black line.
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the Yule–Walker equations, first removing the mean of the
particular winter. Let φ̂i = (φ̂i1, φ̂

i
2, φ̂

i
3) denote the three pa-

rameters in the AR model fitted to the NAO index for the ith
winter in the data set. We saw in Fig. 3 that the lag 1 auto-
correlation is slightly higher for winters when the negative
phase is dominant. This is in agreement with the observation
that negative NAO events persist longer than positive ones,
and the same relationship holds between the first AR model
parameters, φ̂i1, and the mean NAO index during the ith win-
ter.

Under the null hypothesis that all winters are described
by the same AR model with fixed, unknown parameters
φ = (φ1,φ2,φ3) and standard deviation σ for the noise, it is
well known (see e.g. Brockwell and Davis, 1991) that φ̂i is
approximately normally distributed with mean φ and covari-
ance matrix n−1σ 20−1

p . Here, n is the length of each win-
ter, and the matrix 0p is defined as [0p]i,j = γ (i− j ) for
1≤ i,j ≤ p, where γ (h) is the autocovariance function at lag
h. Moreover, letting 0̂ip and γ̂ i(h) denote, respectively, sam-
ple estimates of 0p and γ (h) for the ith winter, the following
test statistic:

n(φ̂i −φ)′0̂ip(φ̂i −φ)

γ̂ i(0)− (φ̂i)′0̂ipφ̂
i
, (2)

is approximately chi-square distributed with three degrees of
freedom. Under the null hypothesis for the correct value of
φ, the values of the test statistic for the 142 winters are a
sample from an approximate chi-squared distribution with
three degrees of freedom. We use the Kolmogorov–Smirnov
test to calculate the p value for the event that the values of
the test statistic come from a chi-squared distribution with
three degrees of freedom. Regardless of the choice of φ, the
p value does not exceed 0.008. Thus, we can reject the hy-
pothesis that all 142 winters are well described by the same
AR model.

An analysis of the parameters of the 142 AR models for
the various years shows that there is no significant autocor-
relation in the parameters. As these parameters are related to
the autocorrelation of the daily winter NAO index for the dif-
ferent years, the absence of significant autocorrelation in the
parameters should be interpreted as a lack of interannual de-
pendence between the perturbations of the sample ACF from
its mean. Conclusively, any interannual dependence in the
winter NAO is due to the dependence of the actual value on
past states of the index and not due to a dependence in its
autocorrelation function.

4 Nonlinear autoregressive models

In this section, we consider a couple of classes of nonlinear
time series models and investigate whether they provide a
better fit of the daily winter NAO index than standard linear
AR models.

4.1 Self-exciting threshold autoregressive models
(SETAR)

We conclude from Figs. 1 and 3 that both the distribution and
the autocorrelation structure of the daily winter NAO differ
between the positive and the negative phase. This regime be-
haviour has previously been noted by Woollings et al. (2010),
Franzke and Woollings (2011) and Franzke et al. (2011) for
the North Atlantic sector. A natural way of constructing a
model, taking this feature into account, is to use different
AR models for the different phases of the daily winter NAO.
Such a model is known as a self-exciting threshold autore-
gressive (SETAR) model and is natural to consider, given
previous observations of the existence of two regimes for
the NAO (Woollings et al., 2010). Let−∞= r0 < r1 < .. . <
rk−1 < rk =∞ be a partition of the real line into k regions or
regimes (ri, ri+1) separated by the thresholds r1, . . ., rk−1. A
SETAR(p) model Yt is defined as follows:

Yt =

k∑
i=1

(
φ

(i)
0 +

p∑
j=1

φ
(i)
j Yt−j + ε

(i)
t

)
I
(
Yt ∈ (ri−1, ri)

)
, (3)

for t ∈ {p+ 1, . . .,n}. Here, φ(i)
j , for 1≤ i ≤ k and 0≤ j ≤

p, are real valued parameters, ε(i)
t = σ

(i)εt for some real

numbers of σ (i) and εt
i.i.d.
∼ N (0,1), and I (x) is the indicator

function taking the value one if x is true and zero otherwise
(see e.g. De Gooijer, 2017).

As the optimal order of AR models for the daily winter
NAO index was found to be three in Önskog et al. (2018),
we also use p = 3 in the SETAR model for the daily winter
NAO. Using a two-regime model with threshold r1 = 0.39,
obtained from a grid search over the set of possible thresh-
olds, the optimal parameters in the SETAR model are given
in Table 1. The time series containing all winters is discon-
tinuous between different years, so the process of fitting the
SETAR model to the data requires some special care. First,
we have categorized every day in the time series according
to which regime Yt−1 belongs. For both regimes, we have
registered the values of Yt−j and 0≤ j ≤ 3 (note that on De-
cember 1–3 this requires knowledge of some autumn values
of the NAO), and then we performed ordinary multiple linear
regression of Yt on Yt−j for 1≤ j ≤ 3. The Bayesian infor-
mation criterion (BIC) was used to determine which factors
to include in the final model. Note that the lag 2 and lag 3
parameters, φ(2)

2 and φ(2)
3 , respectively, are not significant in

the right (positive) regime. Note also that the lag 1 parame-
ter is smaller in the right regime than in the left regime, and
that this observation is consistent with the shorter timescale
of the positive phase of the NAO.

The distributional properties of the SETAR model are
shown in the second row of Fig. 4. The SETAR model repro-
duces the distribution of the daily NAO index well, with the
exception of both tails of the distribution which the model
exaggerates. The KLD between the probability densities of

https://doi.org/10.5194/ascmo-6-141-2020 Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, 2020
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Table 1. Parameter estimates for the SETAR model for the daily
winter NAO index. Here, and throughout the article, ∗∗∗ denotes
parameters that are significant, with p value < 0.001; ∗∗ de-
note parameters that are significant, with p value in the interval
[0.001,0.01); and ∗ denote parameters that are significant with p
value in the interval [0.01,0.05).

σ (1) 0.912 σ (2) 0.837

φ
(1)
0 0.080± 0.042∗∗∗ φ

(2)
0 0.196± 0.066∗∗∗

φ
(1)
1 1.001± 0.040∗∗∗ φ

(2)
1 0.703± 0.040∗∗∗

φ
(1)
2 −0.167± 0.047∗∗∗

φ
(1)
3 0.067± 0.035∗∗∗

the testing data and the simulated SETAR model data are
3.5× 10−3, which is just 10 % larger than the KLD between
the training and testing data. As Fig. 5c–d show, the model
reproduces the dependence of the second, third and fourth or-
der moments on the winter mean. The average of the sample
ACF is well approximated by the SETAR model for all lags,
but the positive correlation between the sample ACF of lags
of the order of 4–5 weeks and the winter mean is missed by
the model. As seen in Fig. 6b, the SETAR model reproduces
the durations of both the negative and positive phases of the
NAO very well.

4.2 State-dependent nonlinear autoregressive models
(SDNAR)

Instead of assuming distinct regimes for the different phases
of the NAO, we may assume that the parameters of an AR
model depend on the present state of the NAO. If we assume
parameters of an AR(p) model to be polynomials of, at most,
second order, we obtain a state-dependent AR(p) model with
cubic power, here abbreviated as SDNAR(p). An SDNAR(p)
model Yt is defined as follows:

Yt = φ0+

3∑
i=1

p∑
j=1

φ
(i)
j Y

i
t−j + εt , (4)

for t ∈ {p+ 1, . . .,n}. Here, φ0 and φ(i)
j , for 1≤ i ≤ 3 and

1≤ j ≤ p, are real valued parameters, and εt denotes white

noise that is εt
i.i.d.
∼ N (0,σ ).

As for the AR and SETAR models, we use p = 3 for the
SDNAR model, but as the lag 3 terms turn out to be insignif-
icant in this setting, our final model turns out to be an SD-
NAR(2) model. To fit the SDNAR model to the data, we have
registered, for every day Yt in the time series, the values of
Y it−j (as for the SETAR model, this requires knowledge of
some autumn values of the NAO) and performed ordinary
multiple linear regression of Yt on Y it−j , for 1≤ i,j ≤ 3. The
BIC was used to determine which terms have a significant
impact. The result is given in Table 2. As seen, the quadratic

Table 2. Parameter estimates for an SDNAR model for the daily
winter NAO index.

φ0 0.076± 0.028∗∗∗ φ
(2)
1 −0.033± 0.007∗∗∗

φ
(1)
1 0.944± 0.031∗∗∗ φ

(3)
1 −0.0071± 0.0025∗∗∗

φ
(1)
2 −0.079± 0.025∗∗∗

and cubic lag 1 terms, φ(2)
1 and φ(3)

1 , respectively, are signifi-
cantly different from zero. Note also that the error is normally
distributed with standard deviation 0.879.

The distributional properties of the SDNAR model are
shown in the lower row of Fig. 4. The SDNAR model re-
produces the distribution of the daily NAO index even better
than the SETAR model and the KLD between the probability
densities of the testing data and the simulated SDNAR model
data are 2.1× 10−3, which is actually smaller than the KLD
between the training and testing data. As Fig. 5e–f show, the
SDNAR model reproduces the higher moments and sample
ACF to the same extent as the SETAR model. Moreover, as
Fig. 6b–c show, the SDNAR and SETAR show similar, excel-
lent, skill in reproducing the durations of both the negative
and the positive phases of the NAO. All subsequent mod-
els considered in this article show the same excellent skill in
reproducing the durations of the two NAO phases, and the
duration plots for these models have hence been omitted.

4.3 Nonlinear autoregressive models with longer lags
(extended SETAR and SDNAR)

From Figs. 4 and 5, it is seen that the SETAR and SDNAR
models do not perfectly reproduce all properties of the PDF
and sample ACF of the daily winter NAO. As an attempt to
construct a model that gives a better description of the sam-
ple ACF, we have constructed an extended linear regression
model, including a number of additional terms with longer
lags, and we reduced the model complexity stepwise, using
the BIC as parameter selection criterion until only the sig-
nificant parameters remain. In addition to the variables used
in the SDNAR model, the initial regression model included
the factors Yt−4, . . .,Yt−14, the mean of Yt−15, . . .,Yt−21, the
mean of Yt−22, . . .,Yt−28, the mean of Yt−29, . . .,Yt−35, the
mean of the preceding autumn, summer and spring, respec-
tively and, lastly, the mean of each of the last 16 winters.
Note that some of these variables include NAO index values
for seasons other than the winter.

The final model, which we refer to as the extended SD-
NAR (ESDNAR) model, is very similar to the SDNAR
model. The variables included in the model are the same, ex-
cept that the ESDNAR model includes an additional Yt−7
term. Moreover, the parameter values differ by less than
0.004, and as a consequence, the performance of the two
models is very similar. For example, the KLD is 2.1× 10−3

for the ESDNAR model – just as for the SDNAR model. The
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plots of the distribution of the ESDNAR model have been
omitted, but Fig. 7a–b show the higher moments and sample
ACF of the ESDNAR model. The results for the ESDNAR
model are very similar to those of the SDNAR model but, in
general, slightly better.

In a similar fashion, the SETAR model can be supple-
mented by additional terms with longer lags. Using the
thresholds r1 =−0.82 and r2 = 0.82, approximately corre-
sponding to minus and plus one half standard deviation, we
find the significant parameters in the three regimes listed in
Table 3 below. In the process of choosing parameters, we
have used the BIC as a selection criterion to make sure that
terms which do not give a significant contribution do not re-
main in the final model. The lag 1, lag 2 and lag 7 terms are
significant in the left regime, as was the case also for the ES-
DNAR model, but also the mean of the NAO 15–21 d ago.
In the middle regime, only the lag 1 and lag 2 terms are sig-
nificant, and in the right regime the lag 1 term and the mean
of the NAO seven winters ago are significant. Based on the
significant terms in this extended SETAR model, which we
from now on refer to as the ESETAR model, we can draw
some interesting conclusions regarding the timescales of the
different phases of the winter NAO. In the negative phase
of the NAO, a lag 7 term and the mean 15–21 d prior to the
present date gives a significant contribution to the model, but
there are no significant inter-seasonal or interannual terms.
Terms with lags of the order of 1–3 weeks for the negative
phase come as no surprise, as we know from observations
that there is an increased proportion in negative phase events
of such lengths. In the positive phase of the NAO, a term
for the seventh last winter is significant, showing that, ex-
cept for the lag 1 term, there is only dependence on very
long timescales (almost interdecadal). These results indicate
that the interannual dependence of the NAO mostly affects
the positive phase and that timescales of 1–3 weeks are most
dominant for the negative phase. It should be noted, however,
that the extended regression included 33 additional variables,
and that the large amount of covariates increases the risk that
one or more covariate is spuriously significant. The p values
of the long lag variables included in the ESETAR model are
0.0029 and 0.0047, respectively, and the probability of ob-
taining such a low p value for at least one of the variables
purely by chance when investigating 33 variables is of the
order of 10 %–15 %.

Figure 8a–c show the distributional properties of the ESE-
TAR model. The ESETAR model is slightly worse than the
SETAR model at reproducing the bulk of the distribution,
and the KLD for the ESETAR model is 6.2× 10−2, which is
twice as much as for the SETAR model. Moreover, as seen
in the lower row of Fig. 7, the higher moments are repro-
duced worse by the ESETAR model than the SETAR model.
On the other hand, the ESETAR model gives a very good fit
of the sample ACF, both in terms of intercept and slope, and
in contrast to all previously considered models, it reproduces

the positive correlation between the sample ACF of lags of
the order of 4–5 weeks and the winter mean.

4.4 Models with nonlinear noise

Up to now we have assumed the noise in all models to be in-
dependent and identically normally distributed. A necessary
condition for the independence of the elements of a time se-
ries is that the sample ACF of the squared entries in the series
is close to zero, and this fact can be used as a test of indepen-
dence. If a nonlinear model captures all the dependencies in
the data, we expect the sample ACF of squared residuals of
the model to be close to zero for all lags. But the lag 1 sam-
ple ACF of the squared residuals of all models investigated
up to now is between 0.035 and 0.045, which is significantly
larger than zero (at 5 % significance level, the values differ-
ing more than 0.025 from zero are significantly non-zero for
time series of the length used here), whereas for larger lags
the sample ACF is not significantly non-zero. This implies
that large residuals in terms of absolute value are likely to
be followed by residuals with large absolute value and vice
versa, and that the error variance can be well modelled by an
autoregressive model.

4.4.1 Generalized autoregressive conditional
heteroskedasticity (GARCH) noise

The noise clustering described above is often successfully
modelled by a generalized autoregressive conditional het-
eroskedasticity (GARCH) process (see e.g. De Gooijer,
2017). A GARCH(p,q) process {Zt } is defined as follows:

Zt =
√
htet , where ht = α0+

p∑
i=1

αiZ
2
t−i +

q∑
j=1

βjht−j , (5)

and et is independent and identically distributed noise. We
fit the residuals of the nonlinear models to a GARCH(1,1)
process, and based on the results in Önskog et al. (2018),
we model {et } as an independent, skewed t-distributed time
series with ν degrees of freedom and skew parameter ξ . For
the ESDNAR and ESETAR models, the optimal choice of
GARCH parameters are given in Table 5.

Considering now, instead of the residuals from the ESD-
NAR and ESETAR models, the standardized residuals ob-
tained by dividing the residuals by

√
ht , the non-zero lag 1

sample ACF of the squared residuals vanishes and this indi-
cates independence of standardized residuals. An even better
test for independence is the Brock, Dechert and Scheinkman
(BDS) test (Brock et al., 1996), which we now shortly de-
scribe. Let Xmt = (Xt ,Xt+1, . . .,Xt+m−1), and then define
the correlation integral with dimension m and distance ε as
follows:

C(m,ε)= lim
T→∞

(
T − n

2

)−1∑
s<t

Iε(Xmt ,X
m
s ), (6)
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Figure 7. Plots of the ability of the extended SDNAR (ESDNAR) (a, b) and extended SETAR (ESETAR) (c, d) models to reproduce the
higher moments and sample ACF of the daily NAO winter index. The plots are generated in the same way as the plots in Fig. 5.

Table 3. Parameter estimates for an ESETAR model for the daily winter NAO index.

σ (1) 0.910 σ (2) 0.883 σ (3) 0.792

φ
(1)
0 0.051± 0.097 φ

(2)
0 0.107± 0.041∗∗∗ φ

(3)
0 0.199± 0.093∗∗∗

φ
(1)
1 0.968± 0.059∗∗∗ φ

(2)
1 0.792± 0.040∗∗∗ φ

(3)
1 0.699± 0.051∗∗∗

φ
(1)
2 −0.106± 0.048∗∗∗ φ

(2)
2 −0.055± 0.034∗∗ φ

(3)
7 winter 0.088± 0.058∗∗

φ
(1)
7 0.052± 0.026∗∗∗

φ
(1)
15–21 d −0.044± 0.031∗∗

Table 4. GARCH parameter estimates for the noise in the ex-
tended models. Note: “ESDNAR and GARCH” denotes the ES-
DNAR model with GARCH noise, and “ESETAR and GARCH”
denotes the ESETAR model with GARCH noise.

ESDNAR and GARCH model ESETAR and GARCH model

α0 0.356± 0.331∗ α0 0.377± 0.348∗

α1 0.040± 0.029∗∗ α1 0.042± 0.029∗∗

β1 0.499± 0.443∗ β1 0.471± 0.464∗

ν 14.4± 4.6∗∗∗ ν 14.8± 4.8∗∗∗

ξ 1.04± 0.036∗∗∗ ξ 1.04± 0.036∗∗∗

where Iε(Xmt ,X
m
s ) is 1 if the supremum norm of Xmt −X

m
s

is below ε and 0 otherwise. The correlation integral is a mea-
sure of the proportion that any pairs of m vectors (Xmt and
Xms ) are within a certain distance ε. If the time series {Xt }
is indeed independent and identically distributed (i.i.d.), then
Xmt should exhibit no pattern in the m-dimensional space, so
that C(m,ε)= C(1,ε)m. The BDS test is designed to check
whether the sample counterparts of C(m,ε) and C(1,ε)m are
sufficiently close. Often, this closeness is tested for a number
of choices of the parameters m and ε.

Applying the BDS test to the standardized residuals, we
obtain the values shown in Table 5 below. Under the null hy-
pothesis of independence of the standardized residuals, 95 %
of the entries in Table 5 should be within ±1.96. We note an

overrepresentation of values exceeding 1.96 for ε = σ/2 and
large m, and this corresponds to too many events of subse-
quent small residuals.

Although the application of GARCH noise in the model
explains most of the dependence in the noise, it does not
improve the fit of the distributional properties of the daily
winter NAO index. The last two rows in Fig. 8 show that
the models with GARCH noise exaggerate the tails of the
NAO distribution more than the corresponding models with
i.i.d. noise. Comparing the sample ACF of the models with
GARCH noise in the first two rows of Fig. 9 with the results
in Fig. 7, we note that the GARCH noise models perform
very similar to the models with normally distributed noise.

4.4.2 Correlated additive and multiplicative (CAM) noise

The application of GARCH noise in the models explains
most dependence in the noise, but it does not improve the fit
of the NAO distribution and does not give a clear improve-
ment of the fit of the sample ACF. We therefore implement
another type of noise which has previously been suggested
in the literature (Sardeshmukh and Sura, 2009; Majda et al.,
2009; Franzke, 2017), namely correlated additive and multi-
plicative (CAM) noise. We define a time series model Yt with
CAM noise as follows:

Yt = µ+F (Yt−p, . . .,Yt−1)+ (σ1+ σ2(Yt−1−µ))ηt , (7)
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Figure 8. Properties of the ESETAR (a–c), ESDNAR and generalized autoregressive conditional heteroskedasticity (GARCH) (d–f) and
ESETAR model with GARCH noise (g–i) models for the daily NAO winter index. The plots are generated in the same way as the plots in
Fig. 4.

Table 5. BDS test results for the standardized residuals of the GARCH noise models. The test has been performed with parameter values
m ∈ {2, . . .,10} and ε ∈ {1/2,1,3/2,2}σ , where σ is the sample standard deviation of the residuals. Note: “ESDNAR and GARCH” denotes
the ESDNAR model with GARCH noise, and “ESETAR and GARCH” denotes the ESETAR model with GARCH noise.

ESDNAR and GARCH model ESETAR and GARCH model
ε = σ/2 ε = σ ε = 3σ/2 ε = 2σ ε = σ/2 ε = σ ε = 3σ/2 ε = 2σ

m= 2 1.05 0.85 0.55 0.09 m= 2 1.88 1.31 0.74 0.15
m= 3 1.41 1.16 0.69 −0.02 m= 3 2.15 1.45 0.83 0.01
m= 4 1.64 1.31 0.80 0.05 m= 4 2.31 1.61 0.94 0.10
m= 5 1.97 1.33 0.74 −0.06 m= 5 2.36 1.59 0.88 0.01
m= 6 2.36 1.23 0.63 −0.15 m= 6 2.57 1.50 0.78 −0.09
m= 7 2.73 1.29 0.64 −0.12 m= 7 2.69 1.50 0.78 −0.05
m= 8 2.76 1.39 0.67 −0.09 m= 8 2.64 1.58 0.82 −0.01
m= 9 2.80 1.27 0.60 −0.14 m= 9 3.18 1.51 0.79 −0.04
m= 10 3.28 1.33 0.64 −0.11 m= 10 5.15 1.59 0.84 0.00

where µ,σ2 are real valued constants, F is a (linear or non-
linear) function, which in our case is piecewise polynomial,
σ1 is a positive constant and {ηt } is a sequence of indepen-
dent, standard normally distributed random variables. Here
µ+F (Yt−p, . . .,Yt−1) can represent the right-hand sides of
Eqs. (3) or (4) but with the noise removed. Note that the
additive and multiplicative parts of the noise considered in
Eq. (7) are perfectly correlated. This is a special case of the
general definition of CAM noise in which the additive and
multiplicative parts of the noise have the correlation coeffi-
cient ρ ∈ [0,1]. With CAM noise, the size of the noise de-
pends linearly on the current state of the NAO. We note that
this is consistent with the gradual decrease in the parameters
σ (i) in the ESETAR model as i increases. The size of the

noise on subsequent days is not directly dependent, as was
the case for GARCH noise, but indirectly in the sense that
days with negative phase (and larger noise) are more likely
to be followed by days with negative phase (and larger noise)
and vice versa. To implement CAM noise, we first determine
µ+F (Yt−p, . . .,Yt−1) from the training data using some of
the methods described earlier in this article, and then we use
the method of moments to estimate σ1 and σ2. To this end,
we first define four different sample means as follows:
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Figure 9. Plots of the ability of the ESDNAR model with GARCH noise, denoted as ESDNAR and GARCH, (first row); the ESETAR model
with GARCH noise, denoted as ESETAR and GARCH, (second row); ESDNAR and correlated additive and multiplicative (CAM) noise,
denoted as EDSNAR and CAM, (third row); and the ESETAR model with CAM noise, denoted as ESETAR and CAM, (fourth row) models
to reproduce the higher moments and sample ACF of the daily NAO winter index. The plots are generated in the same way as the plots in
Fig. 5.

a =
1
N

N∑
t=1

(Yt −µ)2, b =
1
N

N∑
t=1

(Yt −µ)3,

c =
1

N −p

N∑
t=p+1

((Yt −µ)2
− (F (Yt−p, . . .,Yt−1))2),

d =
1

N −p

N∑
t=p+1

((Yt −µ)2

− (F (Yt−p, . . .,Yt−1))2)(Yt−1−µ). (8)

These sample means are easily calculated given the choice
µ+F

(
Yt−p, . . .,Yt−1

)
and the training data. By the method

of moments, we expand the expectations of (Yt −µ)2 and
(Yt −µ)2 (Yt−1−µ) and obtain the following set of equa-
tions for the unknown parameters σ1 and σ2:

c = σ 2
1 + aσ

2
2 d = 2aσ1σ2+ bσ

2
2 , (9)

expressed in terms of the estimates of the sample means
a,b,c and d. Solving these equations for σ1,σ2 with µ+
F (Yt−p, . . .,Yt−1) corresponding to the ESDNAR and ESE-
TAR models, respectively, we obtain the parameter estimates
in Table 7 below. We note that the multiplicative part of the

Table 6. CAM parameter estimates for the noise in the extended
models. Note: “ESDNAR and CAM model” denotes the ESDNAR
model with CAM noise, and “ESETAR and CAM model” denotes
the ESETAR model with CAM noise.

ESDNAR and CAM model ESETAR and CAM model

σ1 0.877 σ1 0.889
σ2 −0.020 σ2 −0.012

noise is quite weak, and that the sign of the multiplicative
term is consistent with larger noise for the negative phase of
the NAO.

Comparing Figs. 8 and 10, we see that the CAM noise
gives a slightly better fit of the NAO distribution. As a com-
parison, the KLD is 2.9× 10−3 and 4.7× 10−3 for the ES-
DNAR and ESETAR models with CAM noise as compared
to 3.6×10−3 and 8.0×10−3 for the ESDNAR and ESETAR
models with GARCH noise. For the fit of the sample ACF,
the GARCH and CAM noise models perform very similarly
(see Fig. 9). But running the BDS test for the models with
CAM noise (see Table 8 below), we see that the CAM noise
is unable to remove the dependence in the noise as efficiently
as the GARCH noise. To put the results into context, it should
be mentioned that the values of the BDS test variable for the
models with normally distributed noise are in general 0.2–
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Figure 10. Properties of the ESDNAR model with CAM noise (a, b, c), denoted as ESDNAR and CAM model, and the ESETAR model
with CAM noise (d, e, f), denoted as ESETAR and CAM model, models for the daily NAO winter index. The plots are generated in the same
way as the plots in Fig. 4.

0.4 higher than the values for the corresponding model with
CAM noise. Hence, the CAM noise model reduces the de-
pendence of the noise slightly, but not sufficiently.

5 Simulation of climate noise

The models investigated in this article only use present and
past values of the NAO index to compute the future NAO in-
dex and not any other covariates. For this reason, the predic-
tive skill of these models will be inferior to that of dynamical
models taking many other variables than the NAO index it-
self into account. To give an example, comparing the forecast
skill of one of the nonlinear statistical models proposed in
this article to that of the dynamical forecast model issued by
NOAA (ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.
ensf.z500.b14sep2001_current, last access: 17 May 2019),
we see that the mean absolute error (MAE) of the 1 d fore-
cast of the statistical model is similar to the MAE of the 6 d
forecast of the NOAA model. However, in this context, we
stress that the comparison between the dynamical and statis-
tical models is flawed by the fact that the NAO index used by
NOAA is based on reanalysis data which are differently nor-
malized than the station-based data used in this article and,
as a result, we cannot directly compare the results of the two
classes of models. Moreover, the reanalysis data-based NAO
index, being based on an empirical orthogonal function anal-
ysis, is much smoother than the station-based NAO index and
this will affect the predictability of the two types of NAO in-
dices.

We next investigate if simulations of the models proposed
in this article generate surrogate time series which have the
same properties as the daily winter NAO index on timescales
other than days. To this end, we have simulated n= 10000
winters of daily NAO data with the AR and ESETAR model
with GARCH noise, respectively. Although the ESDNAR
model with GARCH noise generally reproduces the daily

NAO index slightly better than the ESETAR model with
GARCH noise, we have chosen to use the latter model here
as it contains terms with longer lags, which could help cap-
turing long-term relationships. To obtain starting values for
each of the winters, we have run the models for 2 months.
We have calculated weekly, monthly and winter means of
the simulated NAO and compared these means to those of the
observed NAO index in terms of PDF and sample ACF. Fig-
ure 11 shows that the ESETAR model with GARCH noise re-
produces the distribution of weekly means of the daily winter
NAO index slightly better than the AR model and that both
models perform similarly with respect to the sample ACF.
The models slightly underestimate the sample ACF, but the
difference is not significant.

Figures 12 and 13 show that the sample ACF for the
monthly means is significantly different from zero for lags
of 1 and 4 months, with sample ACF values just above 0.1.
For the winter means, the sample ACF is not significantly
different from zero for any choice of lag. The lag 1 sample
ACF for the monthly means is captured by both models, but
not the lag 4 value. We note that the term corresponding to
the mean of the winter of 7 years ago does not give rise to
any significantly non-zero sample ACF, neither for the win-
ter means nor for the monthly means, and this is reflected by
the absence of non-zero sample ACF for the winter NAO for
all interannual lags. The ESETAR model with GARCH noise
provides a slightly better fit of the NAO PDF than the AR
model. It is interesting to note that the distribution of the ob-
served winter means almost appears to be bimodal, but this is
probably an effect of too short a time series. A Kolmogorov–
Smirnov test for normality has p value 0.21, so we cannot
reject the hypothesis that the distribution of winter means is
normal.
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Table 7. BDS test results for the standardized residuals of the CAM noise models. The test has been performed with parameter values
m ∈ {2, . . .,10} and ε ∈ {1/2,1,3/2,2}σ , where σ is the sample standard deviation of the residuals. Note: “ESDNAR and CAM model”
denotes the ESDNAR model with CAM noise, and “ESETAR and CAM model” denotes the ESETAR model with CAM noise.

ESDNAR and CAM model ESETAR and CAM model
ε = σ/2 ε = σ ε = 3σ/2 ε = 2σ ε = σ/2 ε = σ ε = 3σ/2 ε = 2σ

m= 2 3.49 3.40 3.19 2.82 m= 2 4.37 4.03 3.64 3.06
m= 3 4.25 4.11 3.73 3.02 m= 3 4.96 4.55 4.04 3.24
m= 4 4.50 4.35 3.97 3.18 m= 4 5.17 4.76 4.22 3.39
m= 5 4.79 4.37 3.89 2.99 m= 5 5.22 4.72 4.09 3.21
m= 6 5.12 4.18 3.69 2.79 m= 6 5.37 4.53 3.88 3.00
m= 7 5.33 4.17 3.60 2.63 m= 7 5.70 4.42 3.78 2.93
m= 8 5.40 4.21 3.53 2.63 m= 8 5.78 4.41 3.71 2.85
m= 9 5.56 4.07 3.36 2.46 m= 9 5.94 4.32 3.58 2.71
m= 10 5.65 4.04 3.31 2.38 m= 10 7.76 4.33 3.52 2.64

Figure 11. Simulation of weekly means of the NAO. Panel (a) shows the PDF of weekly means of the observed daily NAO winter index
(blue) compared to weekly means of simulated NAO index obtained by the AR model (red) and the ESETAR model with GARCH noise,
denoted as “ESETAR and GARCH model”, (green), respectively. Panels (a–c) are Q–Q plots of the weekly means of the daily NAO winter
index compared to the simulated indices. Panels (d–f) show the sample ACF of weekly means of the observed daily NAO winter index
(d), the simulated index obtained by the AR model (e) and the simulated index obtained by the ESETAR model with GARCH noise (f).
Confidence intervals with confidence level 95 % are indicated by dashed blue lines in the sample ACF plots.

6 Conclusions and discussion

In this study we have shown that the NAO can be well de-
scribed by nonlinear autoregressive models. Different mod-
els have different benefits and drawbacks, but in general the
performances of the various nonlinear models are fairly sim-
ilar. Putting all the analyses together, the time series model
that provides the best description of the station-based daily
winter NAO index is of polynomial form with GARCH-type
noise. This model is able to reproduce the skewness and fat
tails of the observed NAO index and the autocorrelation and
timescales of the positive and negative phases of the NAO.

The nonlinear and state-dependent NAO model gives some
indication of dominant timescales for the NAO. Our model
elucidated that the interannual variability mainly affects the
positive phase of the NAO, while the negative phase is more
affected by processes acting on timescales of 1–3 weeks.
These findings are in agreement with the recent results of Ca-
ian et al. (2018), who analysed the interannual link between
Arctic sea ice and the NAO using reanalysis data and climate
model simulations. It was found, in particular, that anoma-
lous Arctic sea ice, associated with a quasi-steady positive
gradient of sea ice anomalies about coastal line, act to force
precisely the positive NAO phase on interannual timescales.
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Figure 12. Simulations of monthly means of the NAO. The plots are identical to Fig. 11, but with weekly means replaced by monthly means.

Figure 13. Simulations of winter means of the NAO. The plots are identical to Fig. 11, but with weekly means replaced by winter means.

Interestingly, the ESETAR model for the NAO index re-
veals significant association with slow timescales of the or-
der of 7 years. A similar long-range behaviour for the NAO
has previously been observed in several studies on the spec-
trum of the NAO, which found peaks of the NAO spectrum in
the broad range of 7–10 years (e.g. Gámiz-Fortis et al., 2002;
Wunsch 1999). This extended range dependence could be an
imprint of the Hurst phenomenon (e.g. Franzke et al., 2020)
and has been observed in various branches of natural sci-
ences, such as hydrology (Mandelbrot and Wallis, 1968) and
the atmospheric circulation (Franzke et al., 2015b). However,
this long timescale did not show up in the sample ACF of the

NAO time series, and it is unclear if this is due to the limited
length of the data or that the dependence is not manifested in
the sample ACF.

The better performance of the SDNAR model compared
to the SETAR model might suggest that it is not possible
to straightforwardly represent the nonlinearity by conditional
linear models as was proposed by Horenko (2010), O’Kane
et al. (2013), Franzke et al. (2015a) and Risbey et al. (2015).
The idea, in these studies, is that the nonlinear behaviour of
the atmospheric circulation can be captured by piecewise lin-
ear models. While models in these studies are not exactly
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similar to the SETAR class of models, they share the under-
lying idea.

The NAO is not an isolated and self-sustained phe-
nomenon. It interacts with many other processes, including
mainly the bottom boundary forcing. The sea surface tem-
perature, for example, varies on a wide range of timescales,
with the particular predominance of low frequencies, and can
affect the NAO on those scales. Land surface and, in partic-
ular, sea ice interactions, can also affect NAO variability on
those same scales. A comprehensive probabilistic model for
the NAO that is able to provide a better long-term prediction
should possibly include those processes as predictors, in ad-
dition to the nonlinear terms considered here. This is beyond
the scope of this paper and is left for future research.
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