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Abstract. This paper proposes a new approach to detecting and describing differences in stationary processes.
The approach is equivalent to comparing auto-covariance functions or power spectra. The basic idea is to fit an
autoregressive model to each time series and then test whether the model parameters are equal. The likelihood
ratio test for this hypothesis has appeared in the statistics literature, but the resulting test depends on maximum
likelihood estimates, which are biased, neglect differences in noise parameters, and utilize sampling distributions
that are valid only for large sample sizes. This paper derives a likelihood ratio test that corrects for bias, detects
differences in noise parameters, and can be applied to small samples. Furthermore, if a significant difference is
detected, we propose new methods to diagnose and visualize those differences. Specifically, the test statistic can
be used to define a “distance” between two autoregressive processes, which in turn can be used for clustering
analysis in multi-model comparisons. A multidimensional scaling technique is used to visualize the similarities
and differences between time series. We also propose diagnosing differences in stationary processes by identi-
fying initial conditions that optimally separate predictable responses. The procedure is illustrated by comparing
simulations of an Atlantic Meridional Overturning Circulation (AMOC) index from 10 climate models in Phase
5 of the Coupled Model Intercomparison Project (CMIP5). Significant differences between most AMOC time se-
ries are detected. The main exceptions are time series from CMIP models from the same institution. Differences
in stationary processes are explained primarily by differences in the mean square error of 1-year predictions and
by differences in the predictability (i.e., R-square) of the associated autoregressive models.

1 Introduction

Climate scientists often confront questions of the following
types.

1. Does a climate model realistically simulate a climate
index?

2. Do two climate models generate similar temporal vari-
ability?

3. Did a climate index change its variability?

4. Are two power spectra consistent with each other?

Each of the above questions requires deciding whether two
time series come from the same stochastic process. Although
numerous papers in the weather and climate literature ad-
dress questions of the above types, the conclusions often

are based on visual comparison of estimated auto-covariance
functions or power spectra without a rigorous significance
test. Lund et al. (2009) provide a lucid review of some ob-
jective tests for deciding whether two time series come from
the same stationary process. An additional test that was not
considered by Lund et al. (2009) is to fit autoregressive mod-
els to time series and then to test differences in parameters
(Maharaj, 2000; Grant and Quinn, 2017). Grant and Quinn
(2017) showed that this test has good power and performs
well even when the underlying time series are not from an au-
toregressive process. The latter test has been applied to such
problems as speech recognition but not to climate time se-
ries. The purpose of this paper is to further develop this test
for climate applications.

The particular tests proposed by Maharaj (2000) and Grant
and Quinn (2017) test equality of autocorrelation without re-

Published by Copernicus Publications.



160 T. DelSole and M. K. Tippett: Comparing time series – Part 1

gard to differences in variances. However, in climate applica-
tions, differences in variance often are of considerable impor-
tance. In addition, these tests employ a sampling distribution
derived from asymptotic theory and therefore may be prob-
lematic for small sample sizes. In this paper, the likelihood
ratio test is derived for the more restrictive case of equality of
noise variances, which leads to considerable simplifications,
including a test that is applicable for small sample sizes. Fur-
ther comments about how our proposed test compares with
previous tests will be discussed below.

If the time series are deemed to come from different pro-
cesses, then it is desirable to characterize those differences
in meaningful terms and to group time series into clusters.
Piccolo (1990) and Maharaj (2000) propose such classifica-
tion procedures. Following along these lines, our hypothesis
test suggests a natural measure for measuring the distance
between two stationary processes that can be used for clus-
tering analysis. For multi-model studies, this distance mea-
sure can be used to give a graphical summary of the similari-
ties and differences between time series generated by differ-
ent models. In addition, we extend the interpretation of such
summaries considerably by proposing a new approach to di-
agnosing differences in stationary processes based on finding
the initial condition that optimally separates one-step predic-
tions.

2 Previous methods for comparing time series

In this section we review previous methods for comparing
two time series. These methods are based on the theory of
stochastic processes and assume that the joint distribution of
the values of the process at any collection of times is multi-
variate normal and stationary. Although non-stationarity is a
prominent feature in many climate time series, a stationary
framework is a natural starting point for non-stationary gen-
eralizations. Stationarity implies that the expectation at any
time is constant, and the second-order moments depend only
on the difference times (more precisely, this is called weak-
sense stationarity). Accordingly, ifXt is a stationary process,
then the mean is independent of time,

E[Xt ] = µX (a constant), (1)

and the time-lagged auto-covariance function depends only
on the difference in times,

E[(Xt+τ −µX)(Xt −µX)] = cX(τ ). (2)

Because a multivariate normal distribution is fully character-
ized by its first and second moments, the stochastic process is
completely specified by µX and the auto-covariance function
cX(τ ). Stationarity further implies that the auto-covariance
function is an even function of the lag τ . Following standard
practice, we consider discrete time series where values are
available at NX equally spaced time steps X1,X2, . . .,XNX .

Now consider another stationary process Yt , with mean
µY and auto-covariance function cY (τ ). The problem we
consider is this: given sample time series X1, . . .,XNX and
Y1, . . .,YNY , decide whether the two time series come from
the same stationary process. For stationary processes, we of-
ten are not concerned with differences in means (e.g., in cli-
mate studies, these often are eliminated through “bias correc-
tions”), hence we allow µX 6= µY . Therefore, our problem is
equivalent to deciding whether the two time series have the
same auto-covariance function, i.e., deciding whether

cX(τ )= cY (τ ) for all τ = 0,1, . . .. (3)

This problem can be framed equivalently as deciding
whether two stationary processes have the same power spec-
trum. Recall that the power spectrum is the Fourier transform
of the auto-covariance function. We define the power spec-
trum of Xt as

pX(ω)=
∞∑

τ=−∞

cX(τ )eiωτ . (4)

The spectrum of Yt is defined similarly and denoted as
pY (ω). Because the Fourier transform is invertible, equality
of auto-covariances is equivalent to equality of spectra. Thus,
our problem can be framed equivalently as deciding whether

pX(ω)= pY (ω) for all ω ∈ [0,π ). (5)

Estimates of the power spectrum are based on the peri-
odogram (Box et al., 2008).

The above hypothesis differs from hypotheses about a sin-
gle process that are commonly tested with auto-covariance
functions or power spectra. For instance, the hypothesis of
vanishing auto-correlation often is assessed by comparing
the sample auto-correlation function to ±1.96/

√
N , where

N is the length of the time series (e.g., Brockwell and
Davis, 2002, chap. 1). In the spectral domain, the hypothe-
sis of white noise often is tested based on the Kolmogorov–
Smirnov test, in which the standardized cumulative peri-
odogram is compared to an appropriate set of lines (e.g.,
Jenkins and Watts, 1968, Sect. 6.3.2). These tests consider
hypotheses about one process. In contrast, our hypothesis in-
volves a comparison of two processes.

Coates and Diggle (1986) derived spectral-domain tests
for equality of stationary processes. The underlying idea of
these tests is that equality of power spectra implies that their
ratio is independent of frequency and therefore indistinguish-
able from white noise. This fact suggests that standard tests
for white noise can be adapted to periodogram ratios. Coates
and Diggle (1986) derive a second parametric test that as-
sumes that the log ratio of power spectra is a low-order poly-
nomial of frequency.

Lund et al. (2009) explored the above tests in the context of
station data for temperature. They found that spectral meth-
ods have relatively low statistical power – that is, the meth-
ods are unlikely to detect a difference in stationary processes
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when such a difference exists. Our own analysis using the
data discussed in Sect. 5 is consistent with Lund et al. (2009)
(not shown). The fact that spectral-domain tests have less sta-
tistical power than time-domain tests is not surprising. After
all, spectral tests are based on comparing periodograms in
which the number of unknown parameters grows with sam-
ple size. In particular, for a time series of length N , the pe-
riodogram combines coefficients for sines and cosines of a
Fourier transform into N/2 coefficients for the amplitude.
Thus, a time series of length N = 64 yields a periodogram
with 32 amplitudes; a time series of length N = 512 yields
a periodogram with 256 amplitudes; and so on. Because the
number of unknowns grows with sample size, the sampling
error of the individual periodogram estimates does not de-
crease with sample size. Typically, sampling errors are re-
duced by smoothing periodogram estimates over frequen-
cies, but the smoothing makes implicit assumptions about the
shape of the underlying power spectrum. In the absence of
hypotheses to constrain the power spectra, the large number
of estimated parameters results in low statistical power.

Lund et al. (2009) also develop and discuss a time-domain
test. This test is based on the sample estimate of the auto-
covariance function

ĉX(τ )=
1
NX

NX−|τ |∑
t=1

(
Xt+τ − µ̂X

)(
Xt − µ̂X

)
, (6)

where µ̂X is the sample mean of Xt based on sample size
NX. The analogous estimate for the auto-covariance function
of Yt is denoted ĉY (τ ). The test is based on differences in
auto-covariance functions up to lag τ0. That is, the test is
based on

1=


ĉX(0)− ĉY (0)
ĉX(1)− ĉY (1)

...

ĉX(τ0)− ĉY (τ0)

 . (7)

In the case of equal sample sizes NX =NY =N , Lund et al.
(2009) propose the statistic

χ2
=
N

2
1T Ŵ−11, (8)

where Ŵ is an estimate of the covariance matrix between
auto-covariance estimates, namely

Ŵi+1,j+1 =

K∑
k=−K

(
ĉ(k)ĉ(k− i+ j )+ ĉ(k+ j )ĉ(k− i)

)
, (9)

and ĉ(τ ) is the pooled auto-covariance estimate

ĉ(τ )=
ĉX(τ )+ ĉY (τ )

2
. (10)

The reasoning behind this statistic is lucidly discussed in
Lund et al. (2009) and follows from standard results in time

series analysis (see proposition 7.3.2 in Brockwell and Davis,
1991). Under the null hypothesis of equal auto-covariance
functions, and for large N , the statistic χ2 has an approxi-
mate chi-square distribution with τ0+ 1 degrees of freedom.
A key parameter in this statistic is the cutoff parameter K in
the sum for Ŵ. Lund et al. (2009) propose using K =N1/3

but acknowledge that this rule needs further study.
We have applied Lund et al.’s test to the numerical exam-

ples discussed in Sect. 5 and find that Ŵ is not always pos-
itive definite. In such cases, χ2 is not guaranteed to be pos-
itive and therefore does not have a chi-square distribution.
The lack of positive definiteness sometimes can be avoided
by choosing a slightly differentK , but in many of these cases
the resulting χ2 depends sensitively on K . This sensitivity
arises from the fact that Ŵ is close to singular, so changing
K by one unit can change χ2 by more than an order of mag-
nitude. Conceivably, some modification of Ŵ or some rule
for choosing K can remove this sensitivity to K , but without
such modification this test is considered unreliable. Further
comments about this are given at the end of Sect. 5.

3 Comparing autoregressive models

Several authors have proposed approaches to comparing
stationary processes based on assuming that the time se-
ries come from autoregressive models of order p, denoted
AR(p). Accordingly, we consider the two AR(p) models

Xt = φ
X
1 Xt−1+φ

X
2 Xt−2+ . . .+φ

X
p Xt−p + γX + ε

X
t , (11)

Yt = φ
Y
1 Yt−1+φ

Y
2 Yt−2+ . . .+φ

Y
pYt−p + γY + ε

Y
t , (12)

where the φs are autoregressive parameters, the γ s are con-
stants that control the mean, and the εt s are independent
Gaussian white noise processes with zero mean and vari-
ances

σ 2
X = var[εXt ] and σ 2

Y = var[εYt ]. (13)

By construction, Xt and Ys are independent for all t and
s. Our method can be generalized to handle correlations
between Xt and Ys , specifically by using a vector autore-
gressive model with coupling between the two processes,
but this generalization will not be considered here. For the
above models, there exists a one-to-one relation between
the first p+ 1 auto-covariances c(0), . . .,c(p) and the pa-
rameters φ1, . . .,φp,σ

2. This relation is expressed through
the Yule–Walker equations and a balance equation for vari-
ance (Box et al., 2008). Therefore, equality of the first p+ 1
auto-covariances is equivalent to equality of the AR(p) pa-
rameters. Furthermore, estimates of the parameters depend
only on the first p+1 auto-covariances. The remaining auto-
covariances of an AR(p) process c(p+ 1),c(p+ 2), . . . are
obtained through recursion formulas that depend only on the
first p+1 auto-covariances. Importantly, the auto-covariance
function of an AR(p) process does not depend on γ ; rather,
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Table 1. Definition of the variables in the test statistic Dφ,σ
(Eq. 17).

Fσ =
σ̂ 2
X

σ̂ 2
Y

Fφ|σ =

(
φ̂X−φ̂Y

)T
6HM

(
φ̂X−φ̂Y

)
pσ̂ 2

σ̂ 2
=
νX σ̂

2
X+νY σ̂

2
Y

νX+νY

φ̂X =


φ̂X1
φ̂X2
...

φ̂Xp

 and φ̂Y =


φ̂Y1
φ̂Y2
...

φ̂Yp


6HM defined in Eq. (A40)

γ controls the mean of the process. In climate studies, the
mean often is removed from time series before any analysis,
hence we do not require the means to be equal; i.e., we allow
γX 6= γY .

In previous tests, different authors make different assump-
tions about the noise variance. Maharaj (2000) allows the
noise in the two models to differ in their variances and to
be correlated at zero lag. Grant and Quinn (2017) allow the
noise variances to differ but assume the noises are indepen-
dent at zero lag. In the climate applications we have in mind,
differences in variance are important, hence we are interested
in detecting differences in noise variances. Accordingly, our
null hypothesis of equivalent stationary processes is the fol-
lowing:

H0 :
{
φX1 = φ

Y
1 , . . ., φXp = φ

Y
p

}
and σX = σY . (14)

The alternative hypothesis is that at least one of the above
parameters differs between the two processes. Constraining
processes to be AR(p) means that each process is charac-
terized by p+ 1 parameters, in contrast to the unconstrained
case in which the auto-covariance function or power spec-
trum is characterized by an infinite number of parameters.

The likelihood ratio test for hypothesis H0 is derived in
the Appendix. The derivation differs from that of Grant and
Quinn (2017) primarily by including the hypothesis σX = σY
in the null hypothesis, which leads to considerable simpli-
fications in estimation and interpretation. Furthermore, we
propose a modification to correct for biases and a Monte
Carlo technique for determining significance thresholds. We
describe the overall procedure here and direct the reader to
the Appendix for details. The test relies on sample estimates
of the above parameters, so we define these first. The au-
toregressive parameters in Eq. (11) are estimated using the
method of least squares, yielding the least squares estimates
φ̂X1 , . . ., φ̂

X
p , γ̂

X. (The least squares method arises when max-

imizing the conditional likelihood, which is conditional on
the specific realization of X1, . . .,Xp in the data. For large
sample sizes, the conditional least squares estimates will be
close to the familiar maximum likelihood estimates.) The
noise variance for Xt is estimated using the unbiased esti-
mator

σ̂ 2
X =

∑NX
t=p+1

(
Xt − φ̂

X
1 Xt−1− . . .− φ̂

X
p Xt−p − γ̂

X
)2

νX
, (15)

where νX =NX−2p−1 is degrees of freedom, computed as
the difference between the sample size NX−p and the num-
ber of estimated parameters p+ 1. This noise variance esti-
mate is merely the residual variance of the AR model and is
readily available from standard time series analysis software.
Similarly, the method of least squares is used to estimate the
AR parameters for Yt in Eq. (12), yielding the least squares
estimates φ̂Y1 , . . ., φ̂

Y
p , γ̂

Y and the noise variance estimate

σ̂ 2
Y =

∑NY
t=p+1

(
Yt − φ̂

Y
1 Yt−1− . . .− φ̂

Y
pYt−p − γ̂

Y
)2

νY
, (16)

where νY =NY −2p−1. Then, the test ofH0 is based on the
statistic

Dφ,σ =Dσ +Dφ|σ , (17)

where

Dσ = νX log(νX + νY /Fσ )+ νY log(νXFσ + νY )

− (νX + νY ) log(νX + νY ) (18)

Dφ|σ = (νX + νY ) log
(

1+
pFφ|σ

νX + νY

)
, (19)

and the remaining variables are defined in Table 1. Under the
null hypothesis H0, it is shown in the Appendix that Fσ and
Fφ|σ have the following approximate distributions:

Fσ ∼ FνX,νY , (20)
Fφ|σ ∼ Fp,νX+νY . (21)

Furthermore, the two statistics are independent. Critical val-
ues for Dσ and Dφ|σ are obtained individually from the
critical values of the F -distribution, taking care to use the
correct one-tailed or two-tailed test (see Appendix, partic-
ularly Eq. A31). In principle, the exact sampling distribu-
tion of Dφ,σ can be derived analytically because Dφ,σ is
the sum of two random variables with known distributions.
However, this analytic calculation is cumbersome, whereas
the quantiles of Dσ +Dφ|σ can be estimated accurately and
quickly by Monte Carlo techniques. Essentially, one draws
random samples from FνX,νY and Fp,νX+νY , substitutes these
into Eqs. (18)–(19), evaluates Dφ,σ in Eq. (17), and then re-
peats this many times (e.g., 10 000 times). Note that the re-
quired repetitions do not grow with sample size NX and NY
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since the F -distributions can be sampled directly. The 5 %
significance threshold for Dφ,σ , denoted Dcrit, is then ob-
tained from the 95th percentile of the Monte Carlo samples.
Although a Monte Carlo technique is used to obtain critical
values, the test still constitutes a test for small sample sizes.

The above test assumes that time series come from an
AR(p) process of known order and are excited by Gaus-
sian noise. Grant and Quinn (2017) use Monte Carlo simula-
tions to show that the test is robust to non-Gaussianity. Since
our proposed method assumes normal distributions through
Eqs. (20) and (21), its robustness to departures to Gaussian
remains an open question and is a topic for future study. If the
order of the process is unknown and has to be selected or the
time series does not come from an autoregressive model (e.g.,
the process is a moving average process), then the type I error
rate does not match its nominal value. In such cases, Grant
and Quinn (2017) propose using some sufficiently large value
of p, such as

p∗ = b(logmin[NX,NY ])νc, (22)

where bkc denotes the largest integer smaller than or equal to
k. The resulting AR(p∗) model can capture the first p∗+ 1
auto-covariances regardless of their true origin. Of course,
there will be some loss of power when a test based on p∗

is applied to a time series that comes from an AR(p) model
with p < p∗. This criterion seems to work well in our exam-
ples, as discussed in more detail in Sect. 5.

4 Interpretation of differences in AR processes

If a difference in the AR process is detected, then we would
like to interpret those differences. After all, such compar-
isons often are motivated to validate climate models, so if
a discrepancy is found we would like to describe those dif-
ferences in meaningful terms. The fact that the statisticDφ,σ
can be expressed as the sum of two independent terms sug-
gests that it is natural to consider the two terms separately.
The first term Dσ depends only on the difference in noise
variance estimates σ̂ 2

X and σ̂ 2
Y . The noise variance σ 2

X is the
one-step prediction error of the AR model. After all, if the AR
parameters in Eq. (11) were known exactly, then the condi-
tional mean would be

SX =E
[
Xt |Xt−1,Xt−2, . . .,Xt−p

]
= φX1 Xt−1

+φX2 Xt−2+ . . .−φ
X
p Xt−p + γX, (23)

where “S” stands for “signal”, and the one-step prediction
error would be

Xt −E
[
Xt |Xt−1, . . .,Xt−p

]
= εXt . (24)

Comparing the variance of one-step prediction errors is more
statistically straightforward than comparing variances of the
original time series because prediction errors are approxi-
mately uncorrelated, since they are the residuals of the AR

model, which acts as a pre-whitening transformation. In con-
trast, comparing variances of time series is not straightfor-
ward because of serial correlation. In practice, the residuals
are only approximately uncorrelated because the parameter
values are only approximate.

The second termDφ|σ vanishes when φ̂X = φ̂Y and is pos-
itive otherwise, hence it clearly measures the difference in
AR parameters. To further interpret this term, it is helpful
to partition the AR model for Xt into two parts, an unpre-
dictable part associated with the noise εXt and a predictable
part SX. The predictable part is the response to the “initial
condition”

u=


Xt−1
Xt−2
. . .

Xt−p

 . (25)

With this notation, ŜX = uT φ̂X is the estimated predictable
response of Xt . The estimated predictable response of Yt can
be defined analogously and denoted ŜY . The initial condi-
tions u may be drawn from the stationary distribution of Xt ,
the stationary distribution Yt , or some mixture of the two. In
fact, the covariance matrix 6HM defined in Eq. (A40) is pro-
portional to the “harmonic mean” of the sample time-lagged
covariance matrices for Xt and Yt . Assuming that the initial
condition u is drawn from a distribution with covariance ma-
trix 6HM independently of u, then

var
[
ŜX

]
= var

[
uT φ̂X

]
= φTX6HMφX. (26)

If the initial condition for Xt and Yt is contrived to be the
same u, then

var
[
ŜX − ŜY

]
= var

[
uT
(
φX −φY

)]
=
(
φX −φY

)T
6HM

(
φX −φY

)
. (27)

Comparing this expression to Fφ|σ in Table 1 suggests that
Fφ|σ is a kind of signal-to-noise ratio, where the “signal” is
a difference in predictable responses for the same initial con-
dition.

This difference in predictable responses, and hence Fφ|σ ,
can be related to the difference in R-squares of the individual
time series. To see this, expand Eq. (27) as

var [SX − SY ]= var [SX]+ var [SY ]− 2φTX6HMφY . (28)

The Cauchy–Schwarz inequality implies that

φTX6HMφY ≤
√

var [SX]var [SY ]. (29)

Hence, the above two expressions imply that

var [SX − SY ]≥
(√

var [SX]−
√

var [SY ]
)2
. (30)
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In the special case of equal noise variances, the above in-
equality becomes

var [SX − SY ]
σ 2 ≥

(√
SNRX −

√
SNRY

)2
, (31)

where SNRX and SNRY are the signal-to-noise ratios of the
two AR models:

SNRX =
var [SX]
σ 2
X

and SNRX =
var [SY ]
σ 2
Y

. (32)

Note that pFφ|σ is an estimate of the left-hand side of
Eq. (31). Recall that R-square is defined as one minus the
ratio of the noise variance to the total variance:

R2
X = 1−

var[εXt ]
var[Xt ]

=
SNRX

SNRX + 1
. (33)

Because R-square and signal-to-noise ratio are one-to-one,
inequality Eq. (31) implies the following: if the noise vari-
ances are identical, then a large difference in predictabilities
(i.e., R-squares) necessarily implies a tendency for Fφ|σ to
be large. This suggests that it may be informative to compare
R-squares. We use the sample estimate

R̂2
X = 1−

νXσ̂
2
X∑NX

t=p+1
(
Xt −X

)2
where X =

1
NX −p

NX∑
t=p+1

Xt , (34)

which is always between 0 and 1.
It should be recognized that a difference in R-square is

a sufficient, but not necessary, condition for a difference in
predictable responses. This fact can be seen from the fact
that R-square for an AR(p) model is

R2
X = φ

X
1 ρX(1)+ . . .+φXp ρX(p). (35)

In particular, two processes may have the same R-square be-
cause the combination of φs yields the same R-square, but
the specific values of the φs may differ. Although a differ-
ence in R-squares is not a perfect indicator of Fφ|σ , it is at
least a sufficient condition and therefore worth examination.

On the other hand, if the R-squares are the same, a dif-
ference in process still could be detected and should be ex-
plained. Simply identifying differences in φs would be unsat-
isfying because those differences have a complicated relation
to the statistical characteristics of the process when p > 1.
Accordingly, we propose the following approach, which de-
spite its limitations may still be insightful. Our basic idea is
to choose initial conditions that maximize the mean square
difference in predictable responses. To be most useful, we
want this choice of initial condition to account for a multi-
model comparison over M models. Accordingly, we define

the mean square difference between predictable responses as

0[u] =

M∑
m=1

M∑
m′=1

‖Sm(u)− Sm′ (u)‖2

=

M∑
m=1

M∑
m′=1

∥∥∥uT (φm−φm′)∥∥∥2
= uTAu, (36)

where

A=
M∑
m=1

M∑
m′=1

(
φm−φm′

)(
φm−φm′

)T
. (37)

Our goal is to choose the initial condition u that maximizes
0[u]. The initial condition u must be constrained in some
way, otherwise 0[u] is unbounded and there is no maximum.
If the initial conditions are drawn from a distribution with
covariance matrix 6M , then an appropriate constraint is to
fix the associated Mahalanobis distance:

uT6−1
M u= 1. (38)

The problem is now to maximize uTAu subject to the con-
straint uT6−1

M u= 1. This is a standard optimization prob-
lem that is merely a generalization of principal component
analysis (also called empirical orthogonal function analysis).
The solution is obtained by solving the generalized eigen-
value problem

Au= λ6−1
M u. (39)

This eigenvalue problem yields p eigenvalues and p eigen-
vectors. The eigenvalues can be ordered from largest to
smallest, λ1 ≥ λ2 ≥ . . .≥ λp, and the corresponding eigen-
values can be denoted u1,u2, . . .,up. The first eigenvector
u1 gives the initial condition that maximizes the sum square
difference in predictable responses; the second eigenvector
u2 gives the initial condition that maximizes 0 subject to
the condition that uT2 6

−1
M u1 = 0; and so on. The eigenvalues

λ1, . . .,λp give the corresponding values of 0. The eigenvec-
tors can be collected into the p×p matrix

U=
[
u1 u2 . . . up

]
. (40)

Because the matrices A and 6M are symmetric, the eigen-
vectors can be chosen to satisfy the orthogonality property

UT6−1
M U= I ⇒ 6M = UUT . (41)
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Summing 0 over all eigenvectors gives

p∑
k=1

0[uk] =

p∑
k=1

uTk Auk = tr

[
A

p∑
k=1

uku
T
k

]
= tr

[
AUUT

]
= tr [A6M ]

=

M∑
m=1

M∑
m′=1

(
φm−φm′

)T
6M

(
φm−φm′

)
. (42)

Note the similarity of the final expression to Eq. (27). This
similarity implies that if only two models are compared and
6M =6HM, then the solution exactly matches the variance
of signal differences (27). Unfortunately, 6HM and the noise
variance σ̂ 2 depend on (m,m′), so it is difficult to generalize
the optimal initial condition to explain all pair-wise values of
Fφ|σ . We suggest using a covariance matrix that is the har-
monic mean across all M time series:

6M =M
(
6̂
−1
1 + 6̂

−1
2 + . . .+ 6̂

−1
M

)−1
, (43)

where 6̂m is the sample covariance matrix of the initial con-
dition Eq. (25) for the mth time series. Finally, we note that

0sum =

p∑
k=1

0[uk] = λ1+ λ2+ . . .+ λp. (44)

Thus, λk/0sum is the fraction of sum total variance of signal
differences explained by the kth eigenvector. Conceptually,
each eigenvector uk can be interpreted as an initial condition
that has been optimized to separate predictable responses.

5 Example: diagnosing differences in AMOC
simulations

To illustrate the proposed method, we apply it to an index
of the Atlantic Meridional Overturning Circulation (AMOC).
This variable is chosen because it is considered to be a major
source of decadal variability and predictability (Buckley and
Marshall, 2016; Zhang et al., 2019). However, the AMOC
is not observed directly with sufficient frequency and con-
sistency to constrain its variability on decadal timescales.
As a result, there has been a heavy reliance on coupled
atmosphere–ocean models to characterize AMOC variability
and predictability. The question arises as to whether simula-
tions of the AMOC by different models can be distinguished
and, if so, how they differ.

The data used in this study come from pre-industrial con-
trol runs from Phase 5 of the Coupled Model Intercompari-
son Project (CMIP5; Taylor et al., 2010). These control simu-
lations lack year-to-year changes in forcing and thereby per-
mit a focus on internal variability without confounding ef-
fects due to anthropogenic climate change. We consider only

Figure 1. AMOC index simulated by 10 CMIP5 models under pre-
industrial conditions. Each time series is offset by a constant with
no re-scaling. The AMOC index is defined as the maximum an-
nual mean meridional overturning streamfunction at 40◦ N in the
Atlantic.

models that have pre-industrial control simulations spanning
at least 500 years and contain meridional overturning circu-
lation as an output variable. Only 10 models meet these cri-
teria. An AMOC index is defined as the annual mean of the
maximum meridional overturning streamfunction at 40◦ N in
the Atlantic. A third-order polynomial over the 500 years is
removed to eliminate climate drift. The AMOC index from
the 10 models is shown in Fig. 1. Based on visual compar-
isons, one might perceive differences in amplitude (e.g., the
MPI models tend to have larger amplitudes than other mod-
els) and differences in the degree of persistence (e.g., high-
frequency variability is more evident in INMCM4 than in
other models), but whether these differences are statistically
significant remains to be established.

To compare autoregressive processes, it is necessary to se-
lect the order of the autoregressive model. As discussed in
Sect. 3, we use Eq. (22), which for ν = 1.0 gives p∗ = 5.
One check on this choice is whether the residuals are white
noise. We find that AR(5) is adequate for all models except
MRI, in the sense that the residuals reveal no serious depar-
tures from white noise according to visual inspection and by
the Ljung–Box test (Ljung and Box, 1978). Another check is
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Figure 2. Akaike’s information criterion (AIC) as a function of
autoregressive model order for AMOC time series from selected
CMIP5 models. AIC is computed separately from the first and sec-
ond 250 years of the data. A box identifies the minimum AIC up
to order 11. The actual AIC values are shown – AIC values have
not been offset. Models have been selected primarily to avoid line
crossings.

to compute Akaike’s information criterion (AIC; Box et al.,
2008) for the two halves of the data (i.e., 250 years). Some
representative examples are shown in Fig. 2. As can be seen,
AIC is a relatively flat function of model order, hence small
sampling variations can lead to large changes in order selec-
tion. Indeed, the order selected by AIC is sensitive to which
half of the data is used. Nevertheless, because AIC is nearly
a flat function of order, virtually any choice of order beyond
AR(2) can be defended. The highest order selected by AIC is
p = 11. While we have performed our test for AR(11), this
order would be a misleading illustration of the method be-
cause one might assume that 11 lags are necessary to identify
model differences. Thus, in the results that follow, we choose
AR(5) for all cases and bear in mind that comparisons with
MRI may be affected by model inadequacy.

The choice of AR(5) means that all information relevant
to deciding differences in stationary processes is contained
in the first six values of the sample auto-covariance func-
tion ĉ(0), . . ., ĉ(5). The sample auto-covariance function for
each AMOC index is shown in Fig. 3. Recall that the zero-
lag auto-covariance ĉ(0) is the sample variance. The figure
suggests that the time series have different variances and dif-
ferent decay rates, but it is unclear whether these differences
are significant. Note that a standard difference-in-variance
test cannot be performed here because the time series are se-
rially correlated. One might try to modify the standard F -test
by adjusting the degrees of freedom, as is sometimes advo-
cated in the t-test (Zwiers and von Storch, 1995), but the ad-
justment depends on the autocorrelation function that we are
trying to compare. An alternative approach is to pre-whiten
the data based on the AR fit and then test differences in vari-
ance, but this is exactly equivalent to our test based on Fσ .

Figure 3. Auto-covariance function of the AMOC time series
from each CMIP5 model, as estimated from Eq. (6) using the first
250 years of data.

Figure 4. Power spectra of AMOC time series from CMIP5 mod-
els. Spectra are estimated from the first and second 250 years of
each time series using Daniell’s estimator. The 95 % confidence in-
terval and bandwidth are indicated by the error bars in the top right
corner. The power spectra have been offset by a multiplicative con-
stant to reduce overlap (the y axis is log scale). The longest resolved
period is 60 years.

An alternative approach to comparing stationary processes
is to compare power spectra. Power spectra of the AMOC
time series are shown in Fig. 4. The spectra have been off-
set by a multiplicative constant to reduce overlap (otherwise
the different curves would obscure each other). While many
differences can be seen, the question is whether those differ-
ences are significant after accounting for sampling uncertain-
ties. The two spectral tests discussed in Sect. 2 find relatively
few differences between CMIP5 models, although they do
indicate that time series from INMCM4 and MPI differ from
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Figure 5. A measure of the “distance” between AMOC time series
between the first and second halves of CMIP5 pre-industrial con-
trol simulations. The distance is measured by the bias-corrected de-
viance statistic Dφ,σ using an fifth-order AR model. The light and
dark gray shadings show values exceeding the 5 % and 1 % signif-
icance levels, respectively (the threshold values are 12.7 and 17.0,
respectively).

those of other CMIP5 models (not shown). Presumably, these
differences arise from the fact that the INMCM4 time series
is closer to white noise and that the MPI time series have
larger total variance than those from other CMIP5 models.

To illustrate our proposed method, we perform the fol-
lowing analysis. First, the AMOC index from each CMIP5
model is split into equal halves, each 250 years long. Then,
each time series from the first half is compared to each time
series in the second half. Some of these comparisons will
involve time series from the same CMIP5 model. Our expec-
tation is that no difference should be detected when time se-
ries from two different halves of the same CMIP5 model are
compared. To summarize the comparisons, we show in Fig. 5
a matrix of the bias-corrected deviance statistic Dφ,σ for ev-
ery possible model comparison. This statistic is a measure of
the “distance” between stationary process. The two shades of
gray indicate a significant difference in AR process at the 5 %
or 1 % level. Values along the diagonal correspond to com-
parisons of AMOC time series from the same CMIP5 model.
No significant difference is detected when time series come
from the same model. In contrast, significant differences are
detected in most of the cases when the time series come from
different CMIP5 models. Interestingly, models from the same
institution tend to be indistinguishable from each other. For

Figure 6. A set of points in a two-dimensional Cartesian plane
whose pair-wise Euclidean distances most closely approximate the
pair-wise distances between autoregressive processes of AMOC
time series. The difference between AR processes is measured by
the bias-corrected deviance statistic Dφ,σ and the points are identi-
fied using multidimensional scaling techniques. There are 20 points
corresponding to 10 CMIP5 models, each model time series being
split in half. Time series from the same model have the same color
and are joined by a line segment. Circles around selected points
enclose models whose time series are statistically indistinguishable
from that of the center model at the 5 % significance level.

instance, the MPI models are mostly indistinguishable from
each other, and the CCSM and CESM-BGC models (from
the National Center for Atmospheric Research, NCAR) are
mostly indistinguishable from each other. We say “mostly”
because the difference depends on which half of the simula-
tion is used in the comparison. For instance, a difference is
detected when comparing the first half of the CESM1-BGC
time series to the second half to the CCSM4 time series, but
not vice versa. The models have been ordered to make natu-
ral clusters easy to identify in this figure. Aside from a few
exceptions, the pattern of shading is the same for AR(2) and
AR(10) models (not shown), demonstrating that our conclu-
sion regarding significant differences in AR process is not
sensitive to model order. Also, the pattern of shading is sim-
ilar if the comparison is based on only from the first half of
the simulations, or only from the second half of the simula-
tions (not shown), indicating that our results are not sensitive
to sampling errors.

To visualize natural clusters more readily, we identify a
set of points in a cartesian plane whose pair-wise distances
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match the above distances as closely as possible. These
points can be identified using a procedure called multidimen-
sional scaling (Izenman, 2013). The procedure is to compute
the deviance statistic between every possible pair of time se-
ries. Because there are 10 CMIP models and time series from
each model is split in half, there are 20 time series being com-
pared. Thus, the deviance statistic for every possible pair can
be summarized in a 20×20 distance matrix. From this matrix,
multidimensional scaling can find the set of points in a 20-
dimensional space that has this distance matrix. Moreover,
it can find the points in a two-dimensional space whose dis-
tance matrix most closely approximates the original distance
matrix in some objective sense. In our case, 87 % of origi-
nal distance matrix can be represented by two-dimensional
points. These points are shown in Fig. 6. Although 87 %
of the distance matrix is represented in this figure, isolated
points may have relatively large discrepancies. The average
discrepancy is about 2 units, with the largest discrepancy be-
ing about 3.6 units between MRI and MPI-LR. An attractive
feature of this representation is that the decision rule for sta-
tistical significance, Dφ,σ >Dcrit, is approximately equiva-
lent to drawing a circle of radius

√
Dcrit around a point and

identifying all the points that lie outside that circle. This geo-
metric procedure would be exact in a 20-dimensional space,
but is only approximate in the 2-dimensional space shown
in Fig. 6. The figure suggests that the MPI models and IN-
MCM4 form their own natural clusters. For other models, a
particular choice of clusters is shown in the figure, but this
is merely an example, and different clusters with different
groupings could be justified. Note that all line segments con-
necting results from the same CMIP model are shorter than
the circle radius, indicating no significant difference between
time series from the same CMIP model.

It is interesting to relate the above differences to the
auto-covariance functions shown in Fig. 3. It is likely
that INMCM4 differs from other models because its auto-
covariance function decays most quickly to zero. The MPI
models are distinguished from the others by their large vari-
ances. Interestingly, note that the auto-covariance function
for NorESM1-M is intermediate between that of two MPI
models, yet the test indicates that NorESM1-M differs from
the MPI models. Presumably, the MPI models are indistin-
guishable because their auto-covariance functions have the
same shape, including a kink at lag 1, whereas the NorESM1-
M model has no kink at lag 1. This example illustrates
that the test does not behave like a mean square differ-
ence between auto-covariance functions, which would clus-
ter NorESM1-M with the MPI models.

It is worth clarifying how the above clustering technique
differs from those in previous studies. Piccolo (1990) pro-
posed a distance measure based on the Euclidean norm of
the difference in AR parameters, namely

d(X,Y )=

{
∞∑
τ=1

(
φXτ −φ

Y
τ

)2
}1/2

. (45)

Figure 7. Noise variance versus the R-square of AR(5) models
estimated from 250-year segments of AMOC time series from 10
CMIP5 models. Estimates from the same CMIP5 model have the
same color and are joined by a line segment. The error bar in the
bottom left corner shows the critical distance for a significant differ-
ence in noise variance at the 5 % level. The x axis is on a log scale
so that equal variance ratios correspond to equal linear distances.
The error bar in the upper left shows a 95 % confidence interval
for R-square using the method of Lee (1971) and computed from
the MBESS package in R. The dashed line is the 5 % significance
threshold for the R-square.

In contrast, our hypothesis test uses a Mahalanobis norm for
measuring differences in AR parameters, where the covari-
ance matrix is based on the sample covariance matrices of the
time-lagged data (see Eq. A44). While the Euclidean norm
Eq. (45) does have some attractive properties as discussed
in Piccolo (1990), it is inconsistent with the corresponding
hypothesis test for differences in AR parameters. As a re-
sult, the resulting cluster may emphasize differences with
large Euclidean norms that are insignificant, or may down-
play differences in small Euclidean norms that are signifi-
cant. In contrast, the distance measure used in our study is
consistent with a rigorous hypothesis test. Maharaj (2000)
proposes a classification procedure that is consistent with hy-
pothesis testing, but that hypothesis test does not account for
differences in noise variances.

Having identified differences between stationary pro-
cesses, it is of interest to relate those differences to stan-
dard properties of the time series. Recall that our measure
of the difference between stationary processes Dφ,σ is the
sum of two other measures, namely Dσ and Dφ|σ . Measure
Dσ depends only on the noise variances, that is, it depends
on the mean square error of a 1-year prediction. In contrast,
Dφ|σ measures the difference in predictable responses of the
process. As discussed in Sect. 4, we suggest examining dif-
ferences in R-square. A graph of the noise variance plotted
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Figure 8. Predictions from each estimated AR(5) model using the
optimal initial condition derived from Eq. (39). The optimal initial
condition is the five black dots joined by lines, and the resulting
predictions are the colored lines. Each CMIP model has two predic-
tions corresponding to the two AR(5) models estimated from two
non-overlapping 250-year time series from the same CMIP model.

against R-square of each autoregressive model is shown in
Fig. 7. The error bars show the critical distance for a sig-
nificance difference in noise variance (lower left) and for
a difference in R-square (upper right). First note that the
projections of line segments onto the x axis or y axis are
shorter than the respective error bars, indicating that differ-
ences in noise and differences in predictability are insignifi-
cant when estimated from the same CMIP5 model. Second,
note that the relative positions of the dots are similar to those
in Fig. 6. Thus, the noise variance and R-square appear to be
approximate “principal coordinates” for distinguishing uni-
variate autoregressive processes. Third, using noise variances
alone, the MPI models would be grouped together, then IN-
MCM4 would be grouped by itself, while at the bottom end
CanESM2 and CCSM4 would be grouped together. These
groupings are consistent with the clusters identified above
using the full distance measure Dφ,σ , suggesting that differ-
ences in noise variances explain the major differences be-
tween stationary processes. Fourth, the AR models have R-
square values mostly between 0.25 and 0.5. Time series from
INMCM4 have the smallest R-square values while time se-
ries from NorESM1 have the largest R-square values.

An alternative approach to describing differences in AR
parameters is to show differences in response to the same
initial condition. We use the optimization method discussed
in Sect. 4 to find the initial condition that maximizes the sum
square difference in responses. The result is shown in Fig. 8.
Essentially, the models separate by predictability – the order

of the models from top to bottom closely tracks the order of
the models based on R-square seen in Fig. 7. For this initial
condition, INMCM4 damps nearly to zero in one time step,
whereas NorESM1-M decays the slowest among the models,
consistent with expectations from R-square. This initial con-
dition explains 82 % of the differences in response. Because
optimal initial conditions form a complete set, an arbitrary
initial condition can be represented as a linear combination
of optimal initial conditions. If the AR models were used to
predict an observational time series with covariance matrix
6M , then most differences between model predictions could
be explained by the differences in response to a single opti-
mal initial condition.

We end with a brief summary of our exploration of the
χ2 statistic proposed by Lund et al. (2009). As mentioned
earlier, the result is sensitive to the choice of K . However,
instead of summing based on the cutoff parameter K , we
summed over all possible lags, and set all sample auto-
covariances beyond lag p to zero. Using this approach, we
find that the resulting χ2 statistic gives results very simi-
lar to ours for p = 5, including clustering the MPI models
with each other, and separating them from NorEMS1-M. We
have not investigated this procedure sufficiently to propose
it as a general rule but mention it to suggest the possibility
that some alternative rule for computing the sum Eq. (9) may
yield reasonable results.

6 Conclusions

This paper examined tests for differences in stationary pro-
cesses and proposed a new approach to characterizing those
differences. The basic idea is to fit each time series to an
autoregressive model and then test for differences in parame-
ters. The likelihood ratio test for this comparison was derived
in Maharaj (2000) and Grant and Quinn (2017). We have
modified the test to correct for certain biases and to include a
test for differences in noise variance. The latter test is of ma-
jor interest in climate applications and leads to considerable
simplifications in estimation and interpretation. Furthermore,
the proposed test is applicable to small samples. In addition,
we propose new approaches to interpreting and visualizing
differences in stationary processes. The procedure was illus-
trated on AMOC time series from pre-industrial control sim-
ulations of 10 models in the CMIP5 archive. Based on time
series 250 years in length, the procedure was able to distin-
guish about four clusters of models, where time series from
the same CMIP5 model are grouped together in the same
cluster. These clusters are identified easily using a multidi-
mensional technique. The clusters obtained by this method
were not sensitive to the order of the autoregressive model,
although the number of significant differences decreases with
AR order due to the larger number of parameters being esti-
mated. Further analysis shows that these clusters can be ex-
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plained largely by differences in 1-year prediction errors in
the AR models and differences in R-square.

The proposed method can be used to compare any station-
ary time series that are well fit by an autoregressive model,
which includes most climate time series. Thus, this method
could be used to decide whether two climate models gen-
erate the same temporal variability. A natural question is
whether this approach can be generalized to compare mul-
tivariate time series. This generalization will be developed in
Part 2 of this paper. The method also could be used to com-
pare model simulations to observations, provided that the sta-
tionarity assumption is satisfied. If non-stationarity is strong,
then this method would need to be modified to account for
such non-stationarity, such as adding exogenous terms to the
AR model. The likelihood-ratio framework can accommo-
date such extensions and will be developed in Part 3 of this
paper.
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Appendix A: Derivation of the test

In this Appendix, we derive a test for equality of parame-
ters of autoregressive models based on the likelihood ratio
test. The derivation is similar to that in Maharaj (2000) and
Grant and Quinn (2017), except modified to test for differ-
ences in noise variance and to correct for known biases in
maximum likelihood estimates. In addition, we show how
the bias-corrected likelihood ratio can be partitioned into two
independent ratios and derive the sampling distributions for
each.

We consider only the conditional likelihood, which is the
likelihood function conditioned on the first p values of the
process. The conditional likelihood approach is reasonable
for large sample sizes and has the advantage that the esti-
mates can be obtained straightforwardly from the method of
least squares. Suppose we have a time series of length NX
for Xt . Then the conditional likelihood function for Xt is

LX = (2πσX)−(NX−p)/2

exp

−
∑NX
t=p+1

(
Xt −φ

X
1 Xt−1− . . .−φ

X
p Xt−p − γ

X
)2

2σ 2
X

 (A1)

(see Eq. A7.4.2b of Box et al., 2008). The maxi-
mum likelihood estimates of the parameters, denoted by
φ̂X1 , . . ., φ̂

X
p , γ̂

X, are obtained from the method of least
squares. The maximum likelihood estimate of σ 2

X is

σ 2
X =

∑NX
t=p+1

(
Xt − φ̂

X
1 Xt−1− . . .− φ̂

X
p Xt−p − γ̂

X
)2

NX −p
. (A2)

Substituting this into the likelihood function Eq. (A1) and
then taking−2 times the logarithm of the likelihood function
gives

−2logLX = (NX −p)
(

logσ 2
X + log2π + 1

)
. (A3)

Similarly, suppose we have a time series of length NY for Yt .
Then, the corresponding likelihood function is

LY = (2πσY )−(NY−p)/2

exp

−
∑NY
t=p+1

(
Yt −φ

Y
1 Yt−1− . . .−φ

Y
pYt−p − γ

Y
)2

2σ 2
Y

 ,
the maximum likelihood estimate of σ 2

Y is

σ 2
Y =

∑NY
t=p+1

(
Yt − φ̂

Y
1 Yt−1− . . .− φ̂

Y
pYt−p − γ̂

Y
)2

NY −p
, (A4)

and −2 times the logarithm of the likelihood function is

−2logLY = (NY −p)
(

logσ 2
Y + log2π + 1

)
. (A5)

Because Xt and Yt are independent, the likelihood function
for all the data is the product LXLY .

Under hypothesisH0, the likelihood function has the same
form asLXLY , except there is only a single set of autoregres-
sive parameters φ1, . . .,φp and a single noise variance σ . The
corresponding likelihood function is therefore

Lσ,φ = (2πσ )−(NX−p)/2(2πσ )−(NY−p)/2

exp


−
∑NX
t=p+1

(
Xt−φ1Xt−1−...−φpXt−p−γ

X
)2

−
∑NY
t=p+1

(
Yt−φ1Yt−1−...−φpYt−p−γ

Y
)2

2σ 2

 . (A6)

The maximum likelihood estimates of φ1, . . .,φp, denoted
φ̂1, . . ., φ̂p, are obtained from the least squares estimates of
the pooled sample. Again, these estimates are obtained eas-
ily by the method of least squares. The maximum likelihood
estimate of the common variance σ 2 is

σ
2
=

∑NX
t=p+1

(
Xt−φ̂1Xt−1−...−φ̂pXt−p−γ̂

X
)2

+
∑NY
t=p+1

(
Yt−φ̂1Yt−1−...−φ̂pYt−p−γ̂

Y
)2

NX +NY − 2p
. (A7)

The corresponding log-likelihood is

−2logLσ,φ = (NX+NY −2p)
(

logσ
2
+ log2π + 1

)
. (A8)

Finally, we compute the likelihood ratio, or equivalently,
the difference in the log-likelihood functions. This difference
(multiplied by −2) is called the deviance statistic and is

Dσ,φ =2logLX + 2logLY − 2logLσ,φ

= log

(
σ

2(NX+NY−2p)

σ
2(NX−P )
X σ

2(NY−p)
Y

)
. (A9)

It is well known that maximum likelihood estimates of
variance are biased. Accordingly, we define bias-corrected
deviance statistics before proceeding. This can be done by
replacing sample sizes by degrees of freedom. Care must be
exercised in such substitutions because replacing MLEs with
unbiased versions will yield likelihoods that are no longer
maximized, and therefore may yield deviance statistics that
are negative. Our goal is to define a bias-corrected deviance
statistic that is non-negative

To compute the degrees of freedom, note that the sample
size of Xt is NX −p, because the first p time steps are ex-
cluded from the conditional likelihood, and p+1 parameters
are being estimated, so the degrees of freedom is the differ-
ence, NX − 2p− 1. Similarly, the degrees of freedom for Yt
is NY − 2p− 1. Let the degrees of freedom be denoted

νX =NX − 2p− 1 and νY =NY − 2p− 1. (A10)

Accordingly, an unbiased estimate of σ 2
X is

σ̂ 2
X =

∑NX
t=p+1

(
Xt − φ̂

X
1 Xt−1− . . .− φ̂

X
p Xt−p − γ̂

X
)2

νX
, (A11)

https://doi.org/10.5194/ascmo-6-159-2020 Adv. Stat. Clim. Meteorol. Oceanogr., 6, 159–175, 2020



172 T. DelSole and M. K. Tippett: Comparing time series – Part 1

and an unbiased estimate of σ 2
Y is

σ̂ 2
Y =

∑NY
t=p+1

(
Yt − φ̂

Y
1 Yt−1− . . .− φ̂

Y
p Yt−p − γ̂

Y
)2

νY
. (A12)

As will be shown below, the appropriate bias correction for
σ

2
is

ˆ̂σ 2
= σ

2
(
NX +NY − 2p

νX + νY

)
. (A13)

Also, it proves helpful to define the unbiased estimate of the
common variance σ 2 as

σ̂ 2
=
νXσ̂

2
X + νY σ̂

2
Y

νX + νY
. (A14)

Then, the bias-corrected deviance statistic Eq. (A9) can be
defined as

Dφ,σ =Dσ +Dφ|σ , (A15)

where

Dσ = log

(
σ̂ 2νX+2νY

σ̂
2νX
X σ̂

2νY
Y

)
(A16)

Dφ|σ = (νX + νY ) log

(
ˆ̂σ 2

σ̂ 2

)
. (A17)

We now prove the Dσ and Dφ|σ are non-negative, inde-
pendent, and have sampling distributions related to the F -
distribution. To show that Dσ is non-negative, note that the
ratio in Eq. (A16) is the weighted arithmetic mean over the
weighted geometric mean of σ̂ 2

X and σ̂ 2
Y . Consequently, we

may invoke the AM-GM inequality to show that Dσ is non-
negative and vanishes if and only if σ̂X = σ̂Y . In this sense,
Dσ measures the “distance” between σ̂X and σ̂Y . Inciden-
tally, had we used the uncorrected likelihoods, the resulting
deviance statistic would vanish at σ 2

X = σ
2
Y , which would

give a biased measure of deviance.
To prove the remaining properties of Dσ and Dφ|σ , we

adopt a vector notation that is better suited to the task. Ac-
cordingly, let the AR(p) model Eq. (11) be denoted

wX = ZXφX + jγX + εX, (A18)

where wX is an (NX−p)-dimensional vector, ZX is a (NX−
p)×p matrix, j is a (NX −p)-dimensional vector of ones,
γx is a scalar, and the remaining terms have been defined
previously.

wX =


Xp+1
Xp+2
...

XNX

 ,

ZX =


Xp Xp−1 . . . X1
Xp+1 Xp . . . X2
...

...
. . .

...

XNX−1 XNX−2 . . . XNX−p

 ,

φX =


φX1
φX2
...

φXp

 . (A19)

Since H0 does not restrict γX, it proves convenient to elim-
inate this parameter by projecting onto the complement of
j . Therefore, we multiply both sides of the equation by the
projection matrix

H= I−
1

NX −p
jjT . (A20)

This multiplication has the effect of eliminating the γX term
and centering each column of wX and ZX. Henceforth, we
assume that each column of wX and ZX has been centered.
One should remember that the degrees of freedom associated
with estimating the noise variance σ 2

X should be reduced by
one to account for this pre-centering of the data. Similarly,
the corresponding model for Yt in Eq. (12) is written as

wY = ZYφY + jγY + εY , (A21)

wherewY is an (NY−p)-dimensional vector, and the remain-
ing terms are analogous to those in Eq. (A18). As for X, we
assume that each column ofwY and ZY is centered. The least
squares estimates for φX and φY are

φ̂X =
(

ZTXZX
)−1

ZTXwX

and φ̂Y =
(

ZTYZY
)−1

ZTYwY , (A22)

and the corresponding sum square errors are

SSEX = ‖wX −ZXφ̂X‖
2

and SSEY = ‖wY −ZY φ̂Y ‖
2, (A23)

where ‖a‖ = aT a denotes the Euclidean norm of vector a.
The sum square errors are related to the estimated variances
as

SSEX = (NX −p)σ 2
X = νXσ̂

2
X, (A24)

SSEY = (NY −p)σ 2
Y = νY σ̂

2
Y . (A25)

Following the standard theory of least squares estimation
for the general linear model, Brockwell and Davis (1991;
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Sect. 8.9) suggest that the sum square errors have the fol-
lowing approximate chi-squared distributions:

SSEX
σ 2
X

∼ χ2
νX
, and

SSEY
σ 2
Y

∼ χ2
νY
. (A26)

Because Xt and Yt are independent, the associated sum
square errors are independent, hence under H0, the statistic

Fσ =
σ̂ 2
X

σ̂ 2
Y

(A27)

has an F -distribution with (νX,νY ) degrees of freedom, as
stated in Eq. (20). Furthermore, if H0 is true, then

SSEσ = SSEX +SSEY = (NX +NY − 2p)σ 2

= (νX + νY )σ̂ 2 (A28)

has a (scaled) chi-squared distribution with νX + νY degrees
of freedom; i.e.,

SSEσ
σ 2 ∼ χ

2
νX+νY

. (A29)

Straightforward algebra shows that Dφ in Eq. (A16) can be
written as a function of Fσ as

Dσ (Fσ )=νX log(νX + νY /Fσ )+ νY log(νXFσ + νY )

− (νX + νY ) log(νX + νY ). (A30)

This is a U-shaped function with a minimum value of zero
at Fσ = 1 and monotonic on either side of Fσ = 1. Note that
if Xt and Yt were swapped, then the X and Y labels would
be swapped and Fσ → 1/Fσ , which yields the same value
of Dσ . Let Fα,νX,νY denote the critical value such that F >
Fα,νX,νY has probability α when F has an F -distribution with
(νX,νY ) degrees of freedom. Then, the α100% significance
threshold for rejecting H0 is

Dσ,α =Dσ
(
Fα/2,νX,νY

)
, (A31)

where α on the right-hand side is divided by 2.
The least squares estimate of the common regression pa-

rameters φ is

φ̂ =
(

ZTXZX +ZTYZY
)−1(

ZTXwX +ZTYwY
)

=

(
ZTXZX +ZTYZY

)−1((
ZTXZX

)
φ̂X

+

(
ZTYZY

)
φ̂Y

)
, (A32)

and the corresponding sum square error is

SSEφ,σ = ‖wX −ZXφ̂‖2+‖wY −ZY φ̂‖2. (A33)

We now express this in terms of parameter estimates of the
individual AR models. To do this, we invoke the standard

orthogonality relation

‖wX −ZXφ̂‖2= ‖wX −ZXφ̂X‖
2
+‖ZX(φ̂X − φ̂)‖2, (A34)

‖wY −ZY φ̂‖2 = ‖wY −ZY φ̂Y ‖
2
+‖ZY (̂φY − φ̂)‖2. (A35)

It follows that

SSEφ,σ = (SSEX +SSEY )+‖ZX (̂φX − φ̂)‖2

+‖ZY (φ̂Y − φ̂)‖2. (A36)

The difference between least squares estimates φ̂X and φ̂ is

φ̂X − φ̂ =
(

ZTXZX +ZTYZY
)−1(

ZTYZY
)

(
φ̂X − φ̂Y

)
, (A37)

while that between φ̂Y and φ̂ is

φ̂Y − φ̂ =−
(

ZTXZX +ZTYZY
)−1(

ZTXZX
)

(
φ̂X − φ̂Y

)
. (A38)

Substituting these expressions into Eq. (A36) and invoking
Eq. (A28) yields

SSEφ,σ = SSEσ +
(
φ̂X − φ̂Y

)T
6HM

(
φ̂X − φ̂Y

)
, (A39)

where

6HM =

((
ZTXZX

)−1
+

(
ZTYZY

)−1
)−1

. (A40)

6HM is proportional to the harmonic mean of two covariance
matrices. This matrix arises naturally if we recall the fact that
the sample estimates of the parameters have the following
distributions:

φ̂X ∼N
(
φX,

(
ZTXZX

)−1
σ 2
X

)
and φ̂Y ∼N

(
φY ,

(
ZTYZY

)−1
σ 2
Y

)
. (A41)

Therefore, under H0,

φ̂X − φ̂Y ∼N
(

0,
((

ZTXZX
)−1
+

(
ZTYZY

)−1
)
σ 2
)
, (A42)

hence(
φ̂X − φ̂Y

)T
6HM

(
φ̂X − φ̂Y

)
σ 2 ∼ χ2

p. (A43)

Again, by analogy with the standard theory of least squares
estimation for the general linear model, SSEσ and the
quadratic form in Eq. (A39) are approximately independent
of each other. Thus, if H0 is true, then

Fφ|σ =
1
p

(
φ̂X − φ̂Y

)T
6HM

(
φ̂X − φ̂Y

)
σ̂ 2 (A44)
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has an approximate F -distribution with (p,νX+νY ) degrees
of freedom, as indicated in Eq. (21). Using the identity

SSEφ,σ = (NX +NY − 2p)σ
2
= (νX + νY ) ˆ̂σ 2, (A45)

it follows that

ˆ̂σ 2
= σ̂ 2

+

(
φ̂X − φ̂Y

)T
6HM

(
φ̂X − φ̂Y

)
νX + νY

, (A46)

and therefore

Dφ|σ (Fφ|σ )= (νX + νY ) log

(
ˆ̂σ 2

σ̂ 2

)

= (νX + νY ) log
(

1+
pFφ|σ

νX + νY

)
. (A47)

It is clear that Fφ|σ is non-negative, and therefore Dφ|σ is
non-negative. Furthermore, Dφ|σ is a monotonic function of
Fφ|σ . Therefore, the α100% significance threshold for reject-
ing H0 is

Dφ|σ,α =Dφ|σ (Fα,φ|σ ). (A48)

It remains to define the critical value for rejecting H0
based on Dφ,σ . Dσ and Dφ|σ are independent because Dσ
depends on the ratio of χ2

X and χ2
Y , while Dφ|σ depends

on the sum χ2
X +χ

2
Y , and the ratio and sum are indepen-

dent as a consequence of Lukacs’ proportion-sum indepen-
dence theorem (Lukacs, 1955). Therefore, we may sample
from the F -distributions (20) and (21) and then use Monte
Carlo techniques to estimate the upper α100th percentile of
Dφ,σ =Dσ +Dφ|σ under H0.
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