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Abstract. We develop an extension of the statistical approach by Ribes et al. (2020), which was designed for
Gaussian variables, for generalized extreme value (GEV) distributions. We fit nonstationary GEV distributions
to extremely hot temperatures from an ensemble of Coupled Model Intercomparison Project phase 5 (CMIP)
models. In order to select a common statistical model, we discuss which GEV parameters have to be nonsta-
tionary and which do not. Our tests suggest that the location and scale parameters of GEV distributions should
be considered nonstationary. Then, a multimodel distribution is constructed and constrained by observations us-
ing a Bayesian method. The new method is applied to the July 2019 French heat wave. Our results show that
both the probability and the intensity of that event have increased significantly in response to human influence.
Remarkably, we find that the heat wave considered might not have been possible without climate change. Our
results also suggest that combining model data with observations can improve the description of hot temperature
distribution.

1 Introduction

In the context of climate change, extreme events such as heat
waves can happen more frequently due to the shift of tem-
perature to higher values. More generally, climate change
signals alter the probability distribution of many climate vari-
ables, with impacts on the frequency of rare events. More fre-
quent and/or more intense extreme events such as heat waves,
extreme rainfall or storms have been shown to have critical
impacts on human health, human activities and the broader
environment. Over the last decade, there has been extensive
research on the attribution of extreme weather and climate
events to human influence.

In order to model extremes of a physical variable in a
statistical sense, generalized extreme value (GEV) distribu-
tions are commonly used. Attribution analysis requires de-
riving the probability of an event occurring in the factual
world (our world) and in a counterfactual world (without an-
thropogenic signal), which can be done from their respec-
tive GEV distributions (see e.g., Stott et al., 2004; Pall et al.,
2011). The ratio between these two probabilities measures
the human influence on the extreme event considered. Two
approaches have been proposed to infer this ratio. The first

uses a large ensemble of simulations to sample the factual
and counterfactual worlds (see e.g., Wehner et al., 2018; Yiou
and Déandréis, 2019). The second approach infers the trend
from observations using a nonstationary GEV fit and then
derives the probabilities of interest (see e.g., Rahmstorf and
Coumou, 2011; Hansen et al., 2014; van Oldenborgh et al.,
2015a, 2018; Philip et al., 2018; Otto et al., 2018). In the lat-
ter case, the counterfactual world is typically a time period in
the past (e.g., the early 20th century) that potentially requires
extrapolation of the trend if observations are not available.

Recently, Ribes et al. (2020) have introduced a new ap-
proach in which transient climate change simulations are
merged with observations to infer the desired probabilities –
an idea also explored by Gabda et al. (2019). Using transient
simulations enables the use of large multimodel ensembles,
such as the Coupled Model Intercomparison Project phase 5
(CMIP5, 2011) and, as a consequence, a better sampling of
model uncertainty. The authors first fit nonstationary statis-
tical models to individual climate model outputs to estimate
changes occurring in these models. Then, a multimodel syn-
thesis is made, which provides a prior for the real-world pa-
rameters. Lastly, they implement observational constraints to
select values which are consistent with observations. Their
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entire procedure is based on nonstationary Gaussian distribu-
tions, which severely limits the range of application of that
method and relies on a covariate describing the response to
external forcings such as a regional mean temperature.

Here, we overcome two limitations of their approach.
First, we extend the procedure to nonstationary GEV dis-
tributions. Second, while only the stationary parameters and
the covariate were constrained by observations in Ribes et al.
(2020), here we propose a more comprehensive Bayesian ap-
proach to constrain all parameters in a consistent way, in-
cluding the nonstationary parameters. Our overall strategy
is to construct a prior of the statistical parameters of inter-
est, using an ensemble of climate model simulations, and
then derive the posterior given available observations. As a
main guideline, we propose studying the French heat wave
of July 2019. This heat wave has already been investigated
by Vautard et al. (2019) in a fast attribution study, summa-
rized by Vautard et al. (2020), using some of the methods
listed above.

In Sect. 2, we present the data set used and the event def-
inition, the mathematical framework of attribution, and the
Bayesian description of our study. In Sect. 3, we describe our
statistical method and present our main results. A large part
of our approach is directly taken from Ribes et al. (2020).
We also investigate which nonstationary GEV model is the
most appropriate. A discussion of the method and the results
obtained for the 2019 heat wave is provided in Sect. 4.

2 Event definition and general framework

2.1 Data set and event considered

To present our methodology, we propose implementing an
attribution analysis of the extreme heat wave of July 2019.
We focus on France (42–51◦ N, 5◦W–10◦ E), and we con-
sider the random variable of annual maxima of a 3 d average
of the mean temperature anomaly with respect to the period
1961–1990, noted as T .

The time series of observations of T , denoted as T o (note
the difference between the random variable, which is a math-
ematical abstraction, and the realization, which is the obser-
vations), comes from the Météo-France thermal index. This
index is built as an average of observations from 30 ground
stations, showing data available between 1947 and 2019.
The time series of T o is represented in Fig. 1a. The annual
2019 maximum occurred in July during the heat wave. The
anomaly of this event is equal to 4.98 K, slightly higher than
the 2003 maximum (4.93 K; second highest).

For climate models, we extract a simulated time series of
T from the CMIP5 data set (CMIP5, 2011). We select all
models for which simulations were produced between 1850
and 2100 and merge their historical runs with their represen-
tative concentration pathway 8.5 (RCP8.5; van Vuuren et al.,
2011; Riahi et al., 2007) scenario simulations. All models se-

lected are summarized in Table 1. In all, we have 26 climate
models over France representing the random variable T .

We use the summer mean temperature anomaly with re-
spect to period 1961–1990 over Europe as a covariate, noted
as Xt , consistent with previous attribution studies (van Old-
enborgh et al., 2015b; van der Wiel et al., 2017). For obser-
vations of the covariate, the data set HadCRUT4 (Jones et al.,
1999, 2001, 2012; Kennedy et al., 2011; Morice et al., 2012)
is used and noted as Xo

t . For each CMIP5 model included
in our analysis, we also extract this covariate by taking the
mean temperature anomaly over Europe.

To summarize, we have the following:

– The observation T o of T , given by the Météo-France
thermal index.

– The observationXo
t ofXt , given by the HadCRUT4 data

set.

– A total of 26 time series of T from 26 CMIP5 models.

– A total of 26 time series of Xt coming from 26 CMIP5
models.

2.2 Goal of attribution

A goal, in attribution, is to find the probability of the realiza-
tion of the 2019 event, in the factual world (our world) and
in the counterfactual world (without human influence). Not-
ing PF

t and PC
t , the probability distribution of T in the factual

and counterfactual world, respectively, we are looking for the
following probabilities:

pF
t := PF

t (T ≥ 4.98), pC
t := PC

t (T ≥ 4.98).

Observe the dependence in time of PF
t and PC

t . It is justi-
fied by the anthropic and natural forcings (such as volcanic
eruptions) which alter the probability distribution with time.
From the two probability distributions, we can also derive
the intensity of the event. Noting QF

t and QC
t , the quantile

functions, the intensity IF
t and IC

t in the factual/counterfactual
world are defined by the following:

IF
t :=Q

F
t (1−pF

2019), IC
t :=Q

C
t (1−pF

2019).

Finally, the attribution is performed with the two following
indicators, namely the probability ratio and the change in in-
tensity, which measure the influence of anthropic forcing as
follows:

PRt :=
pF
t

pC
t

, 1It := IF
t − IC

t .

Consequently, an attribution study requires knowing the
probability distribution PF

t and PC
t . The next sections de-

scribe the statistical model and how to use the climate models
to infer these distribution with a Bayesian approach.
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Table 1. List of CMIP5 models used in the literature (CMIP5, 2011; Taylor et al., 2012; Meehl et al., 2009; Hibbard et al., 2007).

Modeling center (or group) Institute ID Model name

Commonwealth Scientific and Industrial CSIRO–BOM ACCESS1.0
Research Organization (CSIRO) and Bureau ACCESS1.3
of Meteorology (BOM), Australia

Beijing Climate Center, BCC BCC–CSM1.1(m)
China Meteorological Administration

Canadian Centre for Climate Modelling CCCMA CanESM2
and Analysis

National Center for Atmospheric Research NCAR CCSM4

Community Earth System Model Contributors NSF–DOE–NCAR CESM1(BGC)
CESM1(CAM5)

Centro Euro-Mediterraneo per I CMCC CMCC–CESM
Cambiamenti Climatici CMCC–CM

CMCC–CMS

Centre National de Recherches CNRM–CERFACS CNRM–CM5
Météorologiques / Centre Européen de
Recherche et Formation Avancéeen Calcul
Scientifique

Commonwealth Scientific and Industrial CSIRO–QCCCE CSIRO-Mk3.6.0
Research Organization in collaboration
with Queensland Climate Change Centre of
Excellence

NASA Goddard Institute for Space Studies NASA GISS GISS-E2-H
GISS-E2-R

Institute for Numerical Mathematics INM INM–CM4

Institut Pierre-Simon-Laplace IPSL IPSL–CM5A–LR
IPSL–CM5A–MR
IPSL–CM5B–LR

Japan Agency for Marine–Earth Science and MIROC MIROC–ESM
Technology, Atmosphere and Ocean Research MIROC–ESM–CHEM
Institute (The University of Tokyo),
and National Institute for Environmental
Studies

Atmosphere and Ocean Research Institute MIROC MIROC5
(The University of Tokyo), National
Institute for Environmental Studies and
Japan Agency for Marine–Earth Science and
Technology

Max-Planck-Institut für Meteorologie MPI-M MPI–ESM–MR
(Max Planck Institute for Meteorology) MPI–ESM–LR

Meteorological Research Institute MRI MRI–CGCM3

Norwegian Climate Centre NCC NorESM1-M
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Figure 1. (a) The red line shows the average of the mean temperature anomaly (with respect to 1961–1990) over Europe (35–70◦ N, 10◦W–
30◦ E), between 1850 and 2019, extracted from HadCRUT4 (Jones et al., 1999, 2001, 2012; Kennedy et al., 2011; Morice et al., 2012). The
blue line shows the annual maxima of the anomaly (with respect to 1961–1990) with a 3 d moving average of thermal index over France,
between 1947 and 2019 (30 stations over France, Météo-France data). (b) Example of a fit with a nonstationary GEV law (see Eq. 1) for the
CNRM–CM5 model. The gray points are the values of the model over France. The black line is the location parameter µ(t). The red shading
shows the scale parameters µ(t)± σ (t). The dotted black line is the upper bound, i.e., µ(t)− σ (t)/ξ (t) if ξ (t)< 0.

3 Description of the methodology

3.1 Statistical models

Classically, for the maximum temperature, the random vari-
able T is assumed following a generalized extreme value dis-
tribution, in which parameters vary with a covariate Xt (ei-
ther linearly or through a link function), depending on time
and describing the response to external forcings. Mathemat-
ically we write that T ∼ PF

t = GEV(µ(t),σ (t),ξ (t)), as fol-
lows:

(
Mµ,σ,ξ

) µ(t)= µ0+Xtµ1
σ (t)= exp(σ0+Xtσ1)
ξ (t)= ξ0+Xtξ1.

(1)

The parameters µ(t), σ (t) and ξ (t) are, respectively, the lo-
cation (similar to the mean), scale (similar to the variance)
and shape parameters. µ0, σ0 and ξ0 are called the stationary
parameters, while µ1, σ1 and ξ1 are called the nonstation-
ary parameters. The exponential link function is used for the
scale parameter to ensure its positivity. We note this model

Mµ,σ,ξ . Note that several studies assume that σ1 ≡ ξ1 ≡ 0
(see e.g., van Oldenborgh et al., 2015b; van der Wiel et al.,
2017), and we will test this hypothesis in the next section.

In the literature, the covariate Xt is assumed given by a
4-year moving average of the global mean surface tempera-
ture (GMST; see e.g., van Oldenborgh et al., 2015b; van der
Wiel et al., 2017). Here, we take the forced component of
the European summer mean temperature, which takes into
account the regional and seasonal effect of aerosols. Then,
we estimate the value of this covariate in the factual world,
i.e., in response to all external forcings, denoted as XF

t , and
in the counterfactual world, in response to natural forcings
only, denoted as XC

t . Ribes et al. (2020) have shown a large
uncertainty in the inference of Xt through the climate mod-
els and have proposed a method for considering uncertainty
in the covariateXt . Following their strategy in the GEV case,
we define the random variable θ as follows:

θ := (XF
t ,X

C
t ,µ0,µ1,σ0,σ1,ξ0,ξ1).
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The inference of the probability distribution of θ allows us to
know the probability distributions PF

t and PC
t just by replac-

ing the covariateXt withXF
t andXC

t , respectively, in Eq. (1).
Note that we assume that the coefficients µ0,µ1,σ0,σ1,ξ0
and ξ1 are the same in the factual and counterfactual world;
only the value of Xt differs between these two worlds.

Our goal is to infer the probability distribution of θ and to
constrain it with Bayesian techniques by the observationsXo

t

and T o. Mathematically, we want to derive the posterior of
the following:

P
[
θ |

(
T = T o

∩XF
t =X

o
t

)]
= P

[
θ |

(
T o
∩Xo

t

)]
. (2)

Our strategy is as follows. First, we estimate θ in each in-
dividual climate model considered. Second, we use the en-
semble of climate models, in particular the spread in the esti-
mated values, to derive a prior for the real-world value of θ .
Third, we apply Bayesian techniques to derive the posterior
of θ given observations Xo

t of XF
t and observations T o of T .

3.2 The covariate in the factual and counterfactual
worlds

Here, we estimate the covariate Xt , i.e., the forced response
of European summer mean temperature, for each single cli-
mate model over the period 1850–2100. This approach im-
plies some uncertainty in the value of Xt . Indeed, the value
of Xt is noise by the internal variability, and there is no link
between the internal variability of Xt and that of T . This is
done following the Ribes et al. (2020) approach closely, and
it provides estimates of XF

t and XC
t . Our goal is to find the

forced response from Xt , which requires a smoothing pro-
cedure. A generalized additive model (GAM; see e.g., Tib-
shirani, 1990) is used to decompose the time series of Xt as
follows:

Xt =X0+X
N
t +X

A
t + ε, (3)

where

– X0 is a constant,

– XN
t is the response to natural forcings only (such as

volcanoes) and is inferred from an energy balance
model (Held et al., 2010; Geoffroy et al., 2013),

– XA
t is the response to anthropogenic forcings; it is as-

sumed to be a smooth function of time and is estimated
using a smoothing procedure,

– ε is a Gaussian random term due to internal variability.

Each of these terms has been estimated, and the response
of Xt to external forcings in the factual and counterfactual
worlds is easy to derive, as follows:

XF
t :=X0+X

N
t +X

A
t ,

XC
t :=X0+X

N
t . (4)

Furthermore, a covariance matrix is associated with the
GAM decomposition in Eq. (3), describing the uncertainty of
X0, XN

t and XA
t (i.e., the covariance matrix of X0, the linear

regression coefficient involved in XN
t and the splines coef-

ficients involved in XFt ). We use it to draw 1000 perturbed
realizations of the pair (XF

t ,X
C
t ) to describe their probability

distribution.
We have represented, in Fig. S1, the two covariates and

their respective uncertainty for three climate models. We
can see different behaviors, with the model MIROC–ESM–
CHEM increasing to +8 K at the end of the 21st century in
the factual world, whereas the two others are between 4 and
5 K. Over the historical period, the CNRM model stays flat,
whereas the two others increase or decrease. By anticipating
a little, the synthesis of models shown in Fig. 4a and b depict
a large range of uncertainty, justifying taking the uncertainty
in the covariate into account.

This procedure (decomposition and perturbed realizations)
is applied to each of the 26 realizations Xt from our CMIP5
models. Thus, at this step, we have inferred 26 distributions
of the coupled (XF

t ,X
C
t ), which is a subdistribution of our

target θ . The next step involves fitting GEV models to each
climate model and selecting the most appropriate statistical
model.

3.3 Selection of the GEV model

We start by defining four submodels of Eq. (1), namely
Mµ,σ , Mµ,ξ , Mµ and M0, which assume, respectively,
that ξ1 ≡ 0, σ1 ≡ 0, σ1 ≡ ξ1 ≡ 0 and µ1 ≡ σ1 ≡ ξ1 ≡ 0. We
want to determine which GEV model out of Mµ,σ,ξ , Mµ,σ ,
Mµ,ξ , Mµ and M0 is the most relevant. We propose us-
ing a likelihood ratio test (LRT) from theorem 2.7 of Coles
et al. (2001). We start from two models, Ma and Mb, such
that Ma is a submodel of Mb, and we note k as being the
number of supplementary parameters in Mb with respect to
Ma . For example, if Ma =Mµ, Mb =Mµ,σ then k = 1.
The likelihood ratio test rejects Ma in favor of Mb at the
significance level α if, in the following:

D := 2(l(Mb)− l(Ma))> cα, (5)

where l is the maximum of the log-likelihood function, and
cα is the 1−α quantile of the k degree of freedom χ2

k distri-
bution. We propose identifying the best common GEV model
by increasing the complexity by 1 degree of freedom at a
time, i.e., k ≡ 1. The pairs of models tested are represented
as a tree in Fig. 2. Each edge of the tree is a test in which the
left model represents Ma , while the right model represents
Mb.

The parameters of all GEV model are fitted from the re-
alizations of T for each CMIP5 model, with the associated
covariate XF

t from the GAM decomposition, using the maxi-
mum likelihood estimation (MLE). More details about the fit
are given in Appendix A.
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Figure 2. Tree representing the likelihood ratio test (LRT) per-
formed in Sect. 3.3. The variable M0 is the GEV model with sta-
tionary parameters, and the variable Mµ is the model where µ is
nonstationary, etc. Each edge of the tree indicates a likelihood ratio
test of the new model on the right of the edge, compared to the old
model on the left of the edge.

Results of our GEV model selection procedure are shown
in Fig. 3 in the form of LRT p values. Low p values indicate
that Ma is rejected in favor of Mb (green), i.e., a parameter
has to be added. High p values suggest Ma is suitable (red).
p values between 0.05 and 0.15 (blue) are considered to give
limited evidence.

First, all models agree with the consideration that µ must
be nonstationary (the first line is very close to 0). This result
is expected because the climate change signal in the RCP8.5
scenario is very high and directly alters the trend. Results are
less obvious for other parameters. A total of seven CMIP5
models do not show evidence of any other form of nonsta-
tionarity, while 14 models suggest that either the scale or the
shape are nonstationary. A total of eight (respectively, four)
of these models suggest that the scale (respectively, shape) is
nonstationary. For the two other models, it is not clear if the
scale and shape must be simultaneously nonstationary or if
we have a transfer of information between these two param-
eters.

Overall, these results suggest that we have to take into ac-
count a nonstationarity in the trend and in the scale or the
shape. Because the MLE can swap information between the
scale and the shape, and a small error of estimation in the
shape can have a big impact on the fit, we choose to select
the model Mµ,σ . So, in the rest of this paper, we assume
that ξ1 ≡ 0, and our nonstationary GEV model is written as
follows:

(
Mµ,σ

) µ(t)= µ0+Xtµ1,

σ (t)= exp(σ0+Xtσ1),
ξ (t)≡ ξ0.

Consequently, θ is now written as follows:

θ = (XF
t ,X

C
t ,µ0,µ1,σ0,σ1,ξ0).

We can now infer the probability distribution of θ for each
CMIP5 model. A bootstrapping procedure is used for each
climate model in which the variable T is resampled 1000
times, corresponding to the 1000 estimates of XF

t derived
from the previous section. Thus, 1000 perturbed µ̂0, µ̂1, σ̂0,
σ̂1 and ξ̂0 are estimated per CMIP5 model. The goodness of
fit of this model is assessed using a Kolmogorov–Smirnov
test (see Fig. S2 and Table S1 in the Supplement) and shows
a good agreement with the CMIP5 models. The best fit is
shown in Fig. 1b for the CNRM–CM5 model (Fig. S3 in
the Supplement shows the distribution of all fitted parame-
ters and exhibits a large variability). First, in that case, the
shape parameter is negative, equal to −0.23, implying the
existence of an upper bound. Second, the upper bound fol-
lows the trend, and an extreme event occurring in the future
might have been impossible in the past.

At this stage, we have 26 distributions of θ – one for each
CMIP5 model – modeling the uncertainty of the covariates
and the GEV parameters. Uncertainty of each distribution is
quantified through a sample of 1000 bootstrapped parame-
ters. We now focus on how to merge them into a single dis-
tribution representing multimodel uncertainty.

3.4 Deriving a prior from an ensemble of models

The goal is to synthesize our 26 distributions of θ into one
single multimodel distribution. In a nutshell, we assume that
each single model θ is a realization of this multimodel distri-
bution, which is a multivariate Gaussian law in the dimension
of 251+251+5= 507 (251 years for factual/counterfactual
world and 5 parameters for the GEV). This distribution is
therefore representative of the model spread – which is usu-
ally much larger than the uncertainty resulting from estimat-
ing θ in a single model. We subsequently use the “models are
statistically indistinguishable from the truth” paradigm (An-
nan and Hargreaves, 2010) and assume that this multimodel
distribution is a good prior for the real-world value. In prac-
tice, this synthesis is made following Ribes et al. (2017); de-
tails are given in Appendix B.

The effect of the multimodel synthesis is shown in Fig. 4.
Panels (a) and (b) depict the synthesis of the covariates XF

t

and XC
t , respectively. The dotted blue line is the best es-

timate, and the light blue shading is the 95 % confidence
interval. These two panels show a large uncertainty across
models for the covariates; note that the uncertainty is almost
null between 1961 and 1990 because the models are given
in anomalies with respect to this period. Panel (c) shows the
covariance matrix of the distribution of (σ0,ξ ) as ellipsis of
the 95 % confidence interval. The dotted red ellipsis are the
individual models, depicting many different behaviors. The
solid red ellipsis is the multimodel synthesis, which includes
almost all the best estimates from individual models.

So, with this approach, we obtain a good candidate θ for
our Bayesian prior, described in Eq. (2), inferred from the
climate models.

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 205–221, 2020 https://doi.org/10.5194/ascmo-6-205-2020
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Figure 3. Results of likelihood ratio test (LRT) to find which GEV model can be used for each CMIP5 model (x axis). M0 is the stationary
GEV model. Mµ is the GEV model where µ is nonstationary, etc. The y axis labels indicate the test of the right model against the left
model (see Fig. 2). For example, the first line test is if Mµ (right) is more adapted than M0 (left). The color map gives the p value of the
LRT. A value higher than 0.15 (red) indicates that the new model is rejected. A value lower than 0.05 (green) indicates that the new model is
accepted. The values between 0.05 and 0.15 (blue) are discussed in Sect. 3.3.

Figure 4. (a) Covariate XF
t in the factual world. The dotted blue line and the blue line are the best estimate of the multimodel synthesis

before and after applying the Bayesian constraint, respectively. The shading in light blue and dark blue are the 95 % confidence interval of
the multimodel synthesis before and after Bayesian constraint, respectively. (b) Covariate XC

t in the counterfactual world. The dotted blue
line and the solid blue line are the best estimate of the multimodel synthesis before and after applying the Bayesian constraint, respectively.
The shading in light blue and dark blue are the 95 % confidence interval of the multimodel synthesis before and after Bayesian constraint,
respectively. (c) Ellipsis are the 95 % confidence interval given by the covariance matrix for the 26 CMIP5 models (dotted red), the multimodel
synthesis before (solid red) and after (blue) Bayesian constraint. The crosses are the best estimate of the individuals models.

3.5 Using observations to derive a posterior

To derive the posterior of θ |
(
T o
∩Xo

t

)
, we start by apply-

ing the Bayesian theorem, as follows:

P
[
θ |

(
T o
∩Xo

t

)]
=

P(θ ∩ T o
∩Xo

t )
P(T o ∩Xo

t )

=
P
[
(θ ∩Xo

t )∩ T o]
P(T o)

×
P(T o)

P(T o ∩Xo
t )

(conditioning w.r.t T o)=
P
[
(θ ∩Xo

t ) | T o]
P
[
Xo
t | T

o
]

(conditioning w.r.t Xo
t )= P

[
(θ | Xo

t ) | T o]
(Bayes theorem)=

P
[
T o
| (θ |Xo

t )
]
P(θ | Xo

t )
P(T o)

.

(6)

In other words, to constrain θ by T o and Xo
t , we can, first,

constrain θ by Xo
t , and, second, constrain the new random

variable (θ | Xo
t ) by T o. Note the two steps; the prior of θ

derived in the previous section is used to infer (θ | Xo
t ). This

new random variable is then used as a prior to derive the
posterior of the constraint by T o.

The posterior of (θ |Xo
t ) is already computed and used by

Ribes et al. (2020), under the name of CX constraint. This
distribution is easy to derive because both θ and XF

t are as-
sumed to follow Gaussian distributions, and XF

t is a sub-
vector of θ , so the Gaussian conditioning theorem (see e.g.,
Eaton, 1983) applies, and (θ | Xo

t ) also follows an explicit
Normal law. The effect of the constraint is represented in
Fig. 4a and b. The blue line is the constrained best estimate,
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and the blue shading is the new confidence interval. We can
see a significant decrease in the confidence interval. In the
historical period, the covariate is closer to 0, except during
volcanic episodes. For the projection period, the signal is in-
creased by removing the lowest covariates.

The last step is to draw from the posterior of the Eq. (6).
To draw a θ fully constrained from the posterior, we use a
Markov chain Monte Carlo (MCMC) method, namely the
Metropolis–Hastings algorithm (Hastings, 1970). We pro-
pose, for each sampling, performing 10000 iterations of
the MCMC algorithm (see Appendix C), and we assume
that the last 5000 samples are drawn from the posterior
P
[
θ |

(
T o
∩Xo

t

)]
. We uniformly draw one θ among these

5000 values, and we consider it as our new parameter. We
use the median of these posterior drawings as a best estimate
(e.g., for the final indicators 1I and PR). As example of the
effect of the constraint, we have added in Fig. 4c the covari-
ance matrix of the pairs of parameters (σ0,ξ ) in blue. We can
see the significant decrease in the uncertainty and the shift of
the parameters.

3.6 Summary

Finally, we obtain set of nonstationary parameters of a GEV
distribution from a multimodel synthesis. It is fully con-
strained via Bayesian techniques. We have a synthetic de-
scription of the variable T as a GEV law, with best estimates
of the parameters of that law and 1000 bootstrapped samples
characterizing uncertainty on these parameters. Furthermore,
using the decomposition of the covariate Xt , we can switch
between the factual and counterfactual worlds.

Once the parameters of the GEV distributions have been
inferred, we can compute the cumulative distribution func-
tion at any time t and derive the instantaneous probability of
our event in the factual world, denoted as pF

t , and in the coun-
terfactual world, denoted as pC

t . The usual attribution indica-
tors, such as the probability (or risk) ratio PRt := pF

t /p
C
t , the

fraction of attributable risk FARt := 1− 1/PRt and also the
change in intensity1It , can be derived consistently from our
description of T .

4 Discussion

4.1 About the statistical model

In the literature (see e.g., van Oldenborgh et al., 2015b;
van der Wiel et al., 2017), it is assumed (i) that σ1 ≡ ξ1 ≡ 0
(forcings do no affect the variability and shape), (ii) the co-
variate Xt is given by the observations of the 4-year moving
average of the global mean surface temperature or the Euro-
pean mean temperature, (iii) the GEV distribution is directly
fitted with the observations T o, and (iv) the GEV distribution
fitted describes only the factual world, while the counterfac-
tual world is defined as a particular time in the past (e.g., the
year 1900). In other words, PC

t ≡ PF
1900.

First, the main argument assumes that σ1 = ξ1 = 0 is the
large uncertainty during the fit, but we have seen that the cli-
mate models can exhibit at least a σ1 that is significantly dif-
ferent from 0. The uncertainty can be due to the small size of
T o (73 realizations currently). Second, the uncertainty of the
covariate Xt is not taken into account, while we were able
to see that it was not negligible, including over the period
when the observations are known. Third, the definition of the
counterfactual world depends on the date selected as being
representative of preindustrial conditions, e.g., 1900 by Vau-
tard et al. (2019). In particular, the counterfactual world can
be affected by some anthropogenic forcings already present
at that time. Our approach allows us to take this into account.

4.2 About the constraint

In this section, we discuss the effect of the Bayesian con-
straint on GEV model parameters. The multimodel parame-
ters and their confidence intervals are summarized in Fig. 5.

For the location parameter µ(t) in the factual world
(Fig. 5a), we can see the trend of RCP8.5 simulations for
each set of parameters. The effect of natural forcings is dis-
cernible over the period 1850–2000. The constraint tends to
slightly reduce the confidence interval to between 40 % and
60 %. The best estimate of the change in µ(t) is slightly in-
creased by the constraint, by about 0.5 K at the end of the
21st century. Note that in the counterfactual world (Fig. 5d)
the trend is flat during the 21st century due to the absence of
anthropogenic forcings in RCP scenarios over that period.

For the scale parameter in the factual world (Fig. 5b), ap-
plication of the constraint leads to a large reduction in un-
certainty by a factor of 2. A large trend in the scale becomes
visible in the confidence interval over the 21st century. Note
that the trend can be negative, or positive, corresponding to
different climate models. No trend is visible in the counter-
factual world (Fig. 5e). The Bayesian constraint suggests a
much higher upward trend in σ (t).

Figure 5c shows the shape parameter, which is the same
in the factual and the counterfactual worlds (the shape does
not depend on the covariate). The shape, as estimated in the
multimodel distribution, is always negative and is in the in-
terval [−0.35,−0.15]. Applying the Bayesian constraint, the
uncertainty range is reduced to [−0.3,−0.1], with a best es-
timate equal to −0.2. An upper bound always exists in this
case.

We have represented, in Fig. 6, the parameters σ0,σ1 and ξ
for the prior (i.e., the multimodel), the Bayesian constraints
and for observations T o. The parameters fitted for observa-
tions are derived from the same GEV model, and the covari-
ate used is a spline smoothing of Xo

t . The observed time se-
ries is bootstrapped 5000 times to sample the joint distribu-
tion between all three parameters. The Bayesian constraint
is locked at the intersection between the prior and the obser-
vations. The prior and the distribution derived from obser-
vations often exhibit some overlap. This suggests that there
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Figure 5. GEV parameters µ(t), σ (t), ξ (t) and their uncertainty. Values in light blue describe the multimodel distribution, i.e., no obser-
vational constraint is applied. Values in dark blue illustrate the Bayesian constraint. The (dotted) blue lines are the best estimates, and the
shading shows the 95 % confidence ranges. (a) Parameter µ(t) in a factual world. (b) Parameter σ (t) in a factual world. (c) Parameter ξ (t) in
a (counter)factual world. (d) Parameter µ(t) in a counterfactual world. (e) Parameter σ (t) in a counterfactual world. (f) Upper bound of the
fitted GEV distribution in the factual world, given by µ(t)−σ (t)/ξ (t), if ξ (t)< 0 or otherwise∞. The black points are the observations, and
the dotted black line is the maximal value of observations (in the year 2019).

is no clear evidence of observations being inconsistent with
model-simulated parameters given the sampling uncertainty
in observations, i.e., the difficulty in directly fitting a nonsta-
tionary GEV distribution to a very small sample (71 obser-
vations). We can also deduce that the prior has a relatively
strong influence on the posterior; in particular, the range of
σ0 is narrowed.

Figure 5f shows the upper bound of the fitted GEV dis-
tribution in the factual world. This bound is given by µ(t)−
σ (t)/ξ (t) if the shape is negative and is infinite if the shape is
positive. Here, the effects of the constraint are critical. In the
unconstrained multimodel distribution, the estimated upper
bound is sometimes lower than observed events; such events
should be impossible, which suggests that this estimate is un-
reliable. After applying the constraint, the estimated upper
bound is always higher than observations, consistent with ex-
pectations. Furthermore, we notice that the observed 2019
value is above plausible values of the GEV upper bound
over the 19th and 20th centuries (i.e., within the confidence
range), suggesting that the 2019 event might have had a null
probability of occurring at that time.

4.3 About the heat wave

In this section, we discuss the attribution results derived from
our methodology, based on the two indicators defined above.
The first is the probability ratio PRt := pF

t /p
C
t , shown in

Fig. 7a and b. The second is the change in intensity 1It be-
tween the factual and counterfactual worlds, shown in Fig. 7c
and d. The statistics for the years 2019 and 2040 are sum-
marized in Table 2, where RTF

t := 1/pF
t is the factual world

return time.
The probability ratio can be undetermined, e.g., if pF

t =

pC
t = 0. In this case, if the proportion of undetermined val-

ues is greater than 0.05, we assume the confidence interval
to be [0,∞] (∞ included). Specifically, the upper (respec-
tively, lower) bound of the confidence interval is computed
by assuming that all undetermined values are equal to∞ (re-
spectively, 0), corresponding to the least confident case. The
proportion of undetermined values is indicated in gray along
the timeline below each panel. After the 1990s, the ratio of
undetermined values is lower than 0.05. We note that, to a
certain extent, undetermined values indicate that the odds of
the event have not changed (i.e., similar to PR= 1) because
the event is impossible in both the factual and the counterfac-
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Figure 6. (a) Examples of the sample of σ (t) after the Bayesian constraint. (b) Stationary scale parameters versus shape parameters for
multimodel synthesis (red), Bayesian constraint (blue) and from observations (green). (c) Same as (b) but between nonstationary scale
parameters and shape parameters. (d) Same as (b) but between stationary and nonstationary scale parameters.

tual worlds. The key point is that the heat wave is assessed as
impossible in the factual and counterfactual worlds over the
19th and 20th centuries, with a probability between 5 % and
50 % particularly when volcanic eruptions occur.

Before 1990, the PR is not well defined, indicating no ev-
idence of human influence on such an event. After 1990, the
lower bound of the PR confidence interval increases quickly
above 1. The probability of an event like the 2019 event is
found to have increased by a factor in the range 19–∞ in
2019 and by a factor in the range 75–∞ in 2040. The value∞
comes from realizations in which the event has a null proba-
bility in the counterfactual world. The estimated return time
is in the range 13–153 years in 2019 and 3–20 years in 2040.

Estimated changes in intensity are consistent with the
above picture. No change is detected before the year 1980,
and then a sharp increase is found after that date, reaching1I
to +2 K in the year 2019 (95 % confidence intervals of 1.5–
2.7), which is consistent with the long-term climate change
signal estimated over France in summer (currently nearing
+2 K; see e.g., Ribes et al., 2016). According to the RCP8.5
scenario, the1I will continue to increase to 3.6 in 2040 (2.6–

4.6). We note that the upper bound in the year 2100 is ap-
proaching +12 K, which corresponds to an annual maxima
of mean temperature around 39 ◦C (29 ◦C in 2019).

4.4 About the world weather attribution (WWA) paper

We finish with a comparison to the fast attribution paper by
Vautard et al. (2019, hereafter V19), who investigated the
same event. V19 considers a T time series extracted from E-
OBS observations (Cornes et al., 2018) and fits a GEV model
with a nonstationary location parameter (a smoothed global
mean temperature is used as a covariate) and a constant scale
and shape. The method used to build confidence intervals has
not been published, so the discussion below focuses on the
best estimates.

V19 reports a return period of around 134 years (i.e.,
pF

2019 = 7×10−3), with a probability ratio at least equal to 10
and a change in intensity between 1.5 and 3 K from E-OBS.
Results from CMIP5 models were rejected due to a scale
parameter in models (= 1.78, with uncertainty range [1.74,
1.83]) being in sharp disagreement with that estimated from
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Table 2. Statistics of multimodel synthesis after Bayesian con-
straint in the years 2019 and 2040. The first column shows the statis-
tics, the second the best estimate, the third the quantile 0.025 and
the last the quantile 0.975.

Indicator Best estimate Quantile 0.025 Quantile 0.975

FAR (2019) 1.00 0.95 1.0
FAR (2040) 1.0 0.99 1.0

PR (2019) 580 19 ∞

PR (2040) 3402 75 ∞

1I (2019) 2.06 1.49 2.65
1I (2040) 3.61 2.55 4.62

pF (2019) 3× 10−2 7× 10−3 8× 10−2

pF (2040) 0.16 5× 10−2 0.36

pC (2019) 5× 10−5 0.0 3× 10−3

pC (2040) 5× 10−5 0.0 3× 10−3

IF (2019) 4.98 4.98 4.98
IF (2040) 6.53 6.01 7.04

IC (2019) 2.92 2.33 3.49
IC (2040) 2.93 2.35 3.5

RTF (2019) 38 13 153
RTF (2040) 6.1 2.77 20

E-OBS observations (1.08, with uncertainty range [0.81,
1.25]). Here, by making the best use of all available infor-
mation, we find a return period between 13 and 153 years, a
probability ratio at least equal to 19 and a change in intensity
between 1.5 and 2.6.

Attribution results, i.e., PR and 1I, agree reasonably well
between the two studies. However, there is a substantial dis-
crepancy in the estimated return time. We can propose some
explanation for this discrepancy. (i) Our GEV model assumes
a nonstationary scale parameter. In practice, we find a signif-
icant change in that parameter after the end of the 20th cen-
tury, contributing to a shorter return time of the event. (ii) We
use the entire historical record to apply our Bayesian con-
straint, while V19 excluded the observed 2019 value from
their estimation procedure.

Another noticeable difference between these two studies
involves the method of combining climate models and ob-
servations. For V19, the parameters of the GEV distribution
are fitted from observations, and all models that are in dis-
agreement (e.g., scale parameter too far) are rejected. They
assume that the climate models rejected are lacking some
physical process vital for the generation of extremes in the
real world. We, instead, are assuming that the physical pro-
cesses are there but potentially misrepresented in some way.
After exploring the model uncertainty comprehensively, we
find no inconsistency between models and observations. We
therefore derive parameter ranges which are consistent with

Figure 7. (a) Probability ratio, PRt := pF
t /p

C
t , of multimodel syn-

thesis after the Bayesian constraint. The gray line is the proportion
of undetermined values (i.e., 0/0). If the gray line is larger than
0.05 (the dotted gray line), the confidence interval is [0,∞]. The
red shading is the 95 % confidence interval of undetermined values
(pF
t > 0 or pC

t > 0). The red line is the best estimate. (b) Change
in intensity 1It , i.e., the difference between the value of an event
with probability pF

2019 in a factual and counterfactual world for each
year. The red shading is the 95 % confidence interval, and the red
line is the best estimate.

these two sources of information. In the end, model data do
not play the same role in these two studies.

5 Conclusions

In this paper, we propose an extension of the method of Ribes
et al. (2020), which was designed for Gaussian variables,
for the analysis of extreme events and, in particular, general-
ized extreme value distributions. This extension can be used
as soon as the event is sufficiently extreme under both the
factual and counterfactual worlds in which the GEV model-
ing is applicable. We also provide new insights on observa-
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tional constraints for attribution, and a new constraint based
on Bayesian techniques is developed. This approach shows a
good capacity to restrict the CMIP5 multimodel distribution
to trajectories which are consistent with the observed time se-
ries. This method is applied to annual maxima of a 3 d mov-
ing average over France, with a focus on the July 2019 heat
wave.

This method illustrates how CMIP5 models can be used to
estimate the human influence on extremely hot events. A key
point is the nonstationarity of the scale parameters, which is
often assumed to be constant. Some CMIP5 models exhibit
a strong change in this parameter. For a small subset of these
models, the shape parameters could also be nonstationary.
Over the observed period, such changes are limited and hid-
den by internal variability, so they cannot be ruled out by the
observational constraint.

Potentially, our new method can be applied to any variable
by just considering the maxima. Illustrating the potential of
this technique on another type of extreme event, such as ex-
treme rainfall, is an important area of exploration for future
work. Examining the response of hot extremes to climate
change in the new generation of climate models (CMIP6)
would also be an attractive approach for assessing the non-
stationarity of the scale and shape parameters from a broader
ensemble.
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Appendix A: Fit the GEV model

The goal of this section is to explain how the coefficients
θ = (µ0,µ1,σ0,σ1,ξ0) of the model in Eq. (1) can be fitted.
Classically, in a stationary context the parameters can be ex-
plicitly inferred with L moment estimators (Hosking et al.,
1985; Hosking, 1990; Wang, 1996). Here, because we are in
a nonstationary context, we have to use the maximum likeli-
hood estimation (MLE). Given the density of the GEV distri-
bution and {T1, . . .,TI }, the time series to be fitted, we want
to minimize over θ the negative log-likelihood function as
follows:

NL(θ,T )=
I∑
i=1

(
1+

1
ξ0

)
log(Zi)+Z−1/ξ0

i + log(σ (i)),

Zi = 1+ ξ0Zi,

Zi =
Ti −µ(i)
σ (i)

,

µ(i)= µ0+µ1Xi,

σ (i)= exp(σ0+ σ1Xi).

This minimization cannot be solved explicitly, and we
use the classic algorithm of Broyden–Fletcher–Goldfarb–
Shanno (BFGS; Nocedal and Wright, 2006). This method is
a gradient method (with an estimation of the Hessian matrix),
and requires a starting point to converge to the solution. The
gradient can be explicitly written as follows:

∇NL=



∂µNL =
∑I
i=1

Z−1/ξ0
i −1−ξ0
σ (i)Zi

∂σNL =
∑I
i=11+Zi

Z−1/ξ0
i −1−ξ0

Zi

∂ξ0NL =
∑I
i=1

Z−1/ξ0
i −1
ξ2

0
log(Zi)

+

(
1+ 1

ξ0
+

1
ξ0
Z−1/ξ0
i

)
Zi
Zi .

We focus on selecting the starting point. Classically, the L-
moment estimators are used to initialize µ0, σ0 and ξ0, and
it is assumed, for the starting point, that µ1 = σ1 = 0. This
choice, mostly if µ1 and σ1 are far from 0, can make the like-
lihood and/or its gradient undetermined at the starting point,
leading to a failed minimization.

We propose using the following modification of the initial-
ization. We perform a quantile regression (Koenker and Bas-
sett, 1978; Koenker and Hallock, 2001), with the covariate
Xt of T for quantiles from 0.05 to 0.95 by steps of 0.01. The
Frish–Newton algorithm (Koenker and Ng, 2005) is used to
solve the quantile regression problem. We have 91 samples
per unit time. For each time, we compute theLmoments and,
with a least square regression, we find an estimation of the
nonstationary L moments. Applying the equation of Hosk-
ing et al. (1985), we find a first approximation of µ, σ and
ξ0. Now, with a final least square regression, we can find an
estimation of θ and then use this estimate to initialize the
BFGS algorithm.

Appendix B: Multimodel synthesis

The main hypothesis of this multimodel synthesis is the
paradigm that models are statistically indistinguishable from
the truth. Following Ribes et al. (2017), we note that θ∗ is the
multimodel synthesis and µθ is the truth. We decompose any
models θi as θi ∼N (µθ +µi,6u+6i) and µi ∼N (0,6u),
where µθ +µi is the mean of the model θi , 6u is the climate
modeling uncertainty – assumed equal for each model – and
6i is the internal variability of the model θi . The paradigm
allows us to assume the following:

µθ − θ
∗
∼N (0,6u).

Taking θ = 1
n

∑n
i=1θi , the multimodel mean, it follows:

θ ∼N
(
µθ ,

1
n
6u+

1
n2

n∑
i=1

6i

)
.

Using our paradigm again, we have θ − θ∗ ∼N (0,6u), so
Cov(θ )+Cov(θ∗)=6u, and we find the following:

Cov(θ∗)=
(

1+
1
n

)
6u+

1
n2

n∑
i=1

6i .

We have to find an estimator of 6u. The difference between
an individual model and the multimodel mean is given by the
following:

Cov(θi − θ )=
(

1−
1
n

)2

Cov(θi)+
1
n2

∑
j 6=i

Cov(θj )

=

(
1−

1
n

)2

(6u+6i)+
1
n2

∑
j 6=i

(6u+6j )

=

(
1−

1
n

)
6u+

(
1−

1
n

)2

6i +
1
n2

∑
j 6=i

6j .

Consequently, it follows that:

E

(∑
i

Cov(θi − θ )

)
=

n∑
i=1

[(
1−

1
n

)
6u+

(
1−

1
n

)2

6i

+
1
n2

∑
j 6=i

6j

]

= (n− 1)6u+

(
1−

1
n

) n∑
i=1

6i

=:6e.

An estimator of 6e is given by the moment method, by tak-
ing the empirical covariance matrix of all samples from all
models. Thus, by noting +, the positive part of a matrix, we
find finally, in the following:

6̂u =
1

n− 1

[
6̂e−

(
1−

1
n

) n∑
i=1

6̂i

]
+

.
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Appendix C: Metropolis–Hastings algorithm

In this section, we describe a Markov chain Monte Carlo
method, namely the Metropolis–Hastings algorithm (Hast-
ings, 1970). We have a random variable, X, with law PX pa-
rameterized by a set of parameters θ . It is assumed that θ is
also a random variable, with law Pθ , and we have an estima-
tion of it. Finally, we also have an observation Xo of X. Our
problem is constraining the law of θ , given the observation
Xo. Mathematically, we want to draw samples from the pos-
terior distribution P(θ | Xo). Using Bayesian theorem, we
can write the following:

P
(
θ | Xo)

=
P(Xo

| θ )P(θ )
P(Xo)

=
PX(Xo

| θ )Pθ (θ )
P(Xo)

.

Focus on the right term. The numerator is known; this is
just the law PX and Pθ , assumed known. The problem is
the denominator because the law P(Xo) is unknown. The
Metropolis–Hastings algorithm starts with the following re-
mark – for two realizations, θ0 and θ1, this ratio can be eval-
uated, and does it not depend on P(Xo), as follows:

ρ =
P (θ1 | X

o)
P (θ0 | Xo)

=
PX(Xo

| θ1)Pθ (θ1)
PX(Xo | θ0)Pθ (θ0)

.

Thus, starting from a random θ0, a perturbation is applied to
it, generating a θ1. The ratio ρ is computed, and if ρ > 1,
then θ1 is better than θ0 with respect to observations Xo, and
it is accepted. Otherwise, a random number u is drawn from
the uniform distribution in [0,1]. If ρ > u, then θ1 is accepted
(and we accept a degradation) or else θ0 is kept. And this pro-
cedure is repeated. After a sufficiently large number of itera-
tions, the sequence of θi generated is a Markov chain, draw-
ing from the posterior distribution θ | Xo. Here, in Sect. 3.5,
we wait 5000 iterations before drawing 5000 new samples
from the posterior.
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Source codes to reproduce the analysis of this article are
packed into the library NSSEA under the CeCILL-C license
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