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Abstract. A conventional parameterization of midlatitude warm fog occurrence, based on in situ observations,
is employed to estimate marine surface visibility in the Arctic and North Atlantic from three datasets: an en-
semble member of the Hadley Earth System (HadGEM2) model and a nested regional WRF simulation that
follow historical and future emissions scenarios for 1979–2100, and the ERA-Interim reanalysis for 1979–2004.
Over large scales (of an entire year and region), all three gridded datasets agree well in terms of variables like
surface air temperature, whose systematic differences seem small by comparison with its predicted change over
the course of this century. On the other hand, systematic differences are more apparent in large-scale estimates
of relative humidity and visibility. Large differences are attributed to a sensitivity to representation bias that is
inherent in the formulation of each individual model and analysis.

Two simple linear calibrations are examined, both of which assume that an in situ based parameterization is
broadly consistent with the use of marine (ICOADS) observations of air and dew point temperature as an error-
free reference. A single-step calibration is considered that takes the mean and variance of ICOADS frequency
distributions as a reference. A two-step calibration is also performed in which ICOADS collocations are taken
as a reference for the ERA reanalysis, which in turn is taken as a large-scale reference for the 1979–2004
HadGEM2 and WRF simulations. Both linear calibrations are applied (locally in time and space to air and dew
point temperature) to the future climate scenarios of HadGEM2 and WRF. Although ICOADS observations are
not error-free and parameterized visibility estimates are unlikely to capture much more than half the variance
found in observations, attempts are made to present consistent regional changes in the frequency of high relative
humidity, as a proxy for warm fog occurrence. The large-scale decrease in visibility over the 21st century is in
the range of 8 %–12 % in the Arctic and 0 %–5 % in the North Atlantic.

1 Introduction

Available global records reveal regions of increasing fog oc-
currence over the ocean over long timescales and decreasing
occurrence over land. van Oldenborgh et al. (2010) connect
a reduction in dense fog to a decrease in European aerosol
loading during 1976–2006. Marine visual observations for
1950–2007 reveal a positive summertime trend in at least
two parts of the world where fog is most frequent: expan-
sive regions of the western North Pacific and North Atlantic,
centered on the Kuril Islands and the Grand Banks, respec-
tively (Dorman et al., 2017). A relative paucity of observa-
tions in the Arctic prohibits similar historical analyses, but

observed and expected increases in moisture availability and
temperature motivate an exploration of both warm and cold
fog occurrence (relative to 0 ◦C) in this region as well (Gul-
tepe et al., 2017).

This study seeks to identify baseline long-term changes in
warm fog and visibility that might be expected in the Arctic
and North Atlantic marine regions. We assert that a grow-
ing number of climate simulations (e.g., Collins et al., 2011;
Jones et al., 2011; Taylor et al., 2012; IPCC, 2013; Zhang
et al., 2019a, b) permit an initial multiyear prediction. Our
pragmatic assumption is that the processes resolved by dif-
ferent climate models, explicitly including sub-synoptic and
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larger scales, provide a basis for estimating the future trend
in fog occurrence. Contemporary studies, both observed and
modelled (Dorman et al., 2017; Zhang and Lewis, 2017;
Tardif, 2017; Koračin, 2017), highlight that fog formation
and dissipation are indeed sensitive to these resolved scales.
In an attempt to approach the fog-process scales, we apply a
regional model downscaling of Hadley Center Earth System
model (HadGEM2) global climate simulations (Zhang et al.,
2019a, b) to provide an enhanced representation of radiative
processes and moist energy transports. As in situ observa-
tions provide a complementary measure of such processes,
this study can be seen as an extension (by simple statistical
modelling) of physical model downscaling.

It is convenient to estimate visibility for various climate
scenarios, insomuch as parameterizations are available that
employ common climate model variables like surface tem-
perature or relative humidity (e.g., Gultepe and Milbrandt,
2010). With multiple combinations of models and parame-
terizations, however, there are at least two related challenges
to identifying a reasonably consistent baseline change. First,
it is well known that different models may seek to repre-
sent or support a variable like surface temperature in sub-
tly different ways. Bayesian data assimilation, for example,
acknowledges a separate target analysis for each model grid
(Lorenc, 1986; Dee, 2005; Janjić et al., 2018). Another fa-
miliar inconsistency relates to spatiotemporal representations
of a variable by models versus observations (e.g., Mahfouf,
1991; Simmons et al., 2004). Based on a prior averaging of
cloud observations, Gultepe et al. (2007) conclude that in-
put data representation is critical for tuned parameterizations
of fog and visibility. Of course, differences in representation
by separate models, for example, are prevalent even at a com-
mon resolution. That is, any aspect of a model may ultimately
determine its representation, from initialization and core nu-
merics to physical parameterizations and a final vertical ex-
trapolation to the surface. We may recognize a need to map
between two representations, but given sometimes subtle dif-
ferences in the target of distinct observations, models, and
analyses, as well as the challenges of mapping (e.g., Ehret
et al., 2012; Maraun, 2016), representation differences are to
be expected nonetheless.

A related challenge to identifying a baseline change in
relative humidity and visibility is that rudimentary and ad-
vanced estimates alike can be sensitive to a representation of
the variables used to calculate them. Observational support is
given by Gultepe et al. (2019, their Fig. 10), where visibility
varies during the course of a day between 50 km and a few
meters within a relative humidity range of 92 %–98 %. By
convention, fog is defined as visibility of less than 1 km and is
often identified with a relative humidity of greater than 95 %.
Gultepe and Milbrandt (2010) note that the lack of a consis-
tent representation of surface relative humidity has led to nu-
merous proposed visibility parameterizations, perhaps appli-
cable to one model each. In our search for a baseline change
among multiple models, because the calculation of relative

humidity and visibility are sensitive to a representation of
their input variables, it is instructive to explore whether sys-
tematic differences among models can be adjusted to yield
so-called homogeneous datasets. In other words, we seek a
baseline that nominally employs a common reference of vis-
ibility to which all our estimates can be calibrated.

We begin with a parameterization of visibility based on
in situ observations of relative humidity with respect to wa-
ter. Because marine observations (e.g., ships) generally in-
clude air and dew point temperature (and thus relative hu-
midity), they provide a proxy representation for the climate
models of interest. Following Gultepe et al. (2017), however,
a parameterization of warm fog can be more accurately ex-
pressed in terms of condensation nuclei, liquid water content,
and drop size distribution (among other variables). By com-
parison, rudimentary parameterizations are sometimes de-
scribed as yielding a form of “relative humidity mist”. We
also acknowledge that a model approximation of warm fog
can cover a domain (i.e., a grid box) that is larger than an
entire marine fog event. Our chosen parameterization is ex-
pected to capture neither the intensity of warm fog events
nor processes that govern cold fog below 0 ◦C nor ice fog
below about −20 ◦C (Gultepe et al., 2015, 2017). Finally, in
selecting an in situ based parameterization, we consider the
corresponding in situ representation (i.e., of the input vari-
ables air and dew point temperature) to be our target or true
representation. Although any estimate of visibility involves
a parameterization that is at least partly empirical, and al-
most as challenging to relate to prognostic model variables
as fog itself (Claxton, 2008; Wilkinson et al., 2013; Koračin,
2017), this in situ representation is not necessarily optimal.
However, it is a separate ongoing challenge that, even for
a precise instrument, measurement error ranging from 10 %
to 50 % (and more in Arctic winter conditions) is common
(Gultepe et al., 2017).

A somewhat broader accommodation of targets for truth
and error is explored in the context of more than one visibil-
ity parameterization by Danielson et al. (2019). This parallel
exercise points to relative humidity as a key source of infor-
mation and allows us to focus on an in situ based, midlati-
tude parameterization. To establish consistent baseline 21st
century trends for either the Arctic or North Atlantic, we fo-
cus on a homogeneous calibration of gridded historical esti-
mates of surface air and dew point temperature. Such a cali-
bration is called homogeneous because it seeks to make one
dataset as consistent as possible with another. In accordance
with our assumption of an error-free ICOADS reference, we
adopt ordinary linear regression as our statistical calibration
model (a justification is given in the Appendix). Ship and
fixed platform marine observations are then taken as a large-
scale reference for all model simulations, either directly or
indirectly via surface variables of the ERA-Interim reanal-
ysis (Simmons et al., 2004, 2010). Individual datasets that
nominally overlap with each other during the 1979–2004 his-
torical period are described in Sect. 2. A visibility parameter-
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ization and two exploratory methods of linearly reconciling
climate model simulations to observations are discussed in
Sect. 3. The resulting high relative humidity and low visibil-
ity estimates are then used in Sect. 4 to indicate possible 21st
century trends in fog. Conclusions are provided in Sect. 5.

2 Data

2.1 Regional WRF simulations

The HadGEM2 model family is a comprehensive global
Earth System model including terrestrial and ocean ecosys-
tems and their carbon cycling, aerosols, and selected chem-
ical constituents (Collins et al., 2011). The model employs
38 levels above the ocean surface and 40 levels below, with-
out the need for flux corrections in daily coupled simulations
of its atmospheric (discretized at 1.25◦ latitude by 1.875◦

longitude, i.e., with a resolution of O[100 km]) and oceanic
(discretized at 1◦ poleward of 30◦) components. Comments
on physical parameterizations of HadGEM2 in relation to
downscaled WRF simulations are provided by Zhang et al.
(2019a). This study focuses on two regional configurations of
the Weather Research and Forecasting (WRF) model, which
are driven at lateral and lower boundaries by a selected en-
semble member of the HadGEM2 Earth System CMIP5 sim-
ulations. Lateral boundaries can be seen in Fig. 1, at least
where in situ collocations exist poleward of 60◦ N in the Arc-
tic and 30◦ N in the Atlantic. A computation of dew point
temperature and essential mass, motion, and surface bound-
ary conditions for WRF are obtained from the HadGEM2
database of historical (6-hourly for 1979–2004) and repre-
sentative concentration pathway (RCP) 4.5 and 8.5 emissions
scenario (6-hourly for 2005–2100, but with surface variables
archived daily) simulations (Taylor et al., 2012; IPCC, 2013).

Two slightly different configurations of the Weather Re-
search and Forecasting (WRF) model are employed for the
Arctic and North Atlantic domains. These are subject to 6-
hourly boundary forcing and a minor nudging on the inte-
rior toward the HadGEM2 upper tropospheric, large-scale
flow (Glisan et al., 2013). Both configurations employ the
polar-optimized version (3.6) of WRF (Hines et al., 2015)
and the same dynamical core (called ARW) with 38 ver-
tical sigma levels, but on 25 km polar stereographic and
30 km Lambert conformal grids, respectively. Parameteriza-
tions common to the two domains include those of longwave
radiation (Rapid Radiative Transfer Model), land surface
(Unified NOAH scheme), planetary boundary layer (Mellor–
Yamada–Janjic scheme), and cloud microphysics (Morrison
two-moment scheme). The Arctic and North Atlantic simula-
tions differ in terms of their parameterizations of shortwave
radiation (respectively, new Goddard scheme versus Rapid
Radiative Transfer Model) and cumulus parameterization
(Kain–Fritsch versus Grell–Devenyi ensemble scheme). For
both the Arctic and North Atlantic simulations, an evaluation
of cyclone statistics reveals good agreement with the ERA-

Interim reanalysis in comparison to the original HadGEM2
forcing fields (Zhang et al., 2019a, b). During the course of
each multidecadal WRF simulation, snapshots of 2 m (sur-
face) variables are obtained every 6 h by extrapolation from
the lowest model level (close to 30 m).

2.2 ERA-Interim reanalysis

A 12-hourly sequential data assimilation system is used in
the European Centre for Medium-Range Weather Forecast-
ing Reanalysis (ERA) Interim production of a global atmo-
sphere and ocean surface wave evolution from 1979 onward
(Dee et al., 2011). For the atmosphere above the surface, a
four-dimensional variational (4D-Var) analysis is performed
to obtain model initial conditions and adjustments for se-
lected satellite radiance observations. Within this system, an
accommodation of evolving systematic differences between
the model and observations is thus made (Dee, 2005). The
4D-Var cost function minimization includes a time-varying
specification of error covariance for the prognostic variables
and a fixed error covariance for a wide range of observations.
A spectral model with 60 vertical levels and an effective hor-
izontal resolution of about 80 km is employed. It is notable
that the ERA-Interim 2 m surface variables are not just ex-
trapolated from the lowest model level (like WRF snapshots),
but, following Mahfouf (1991), are also combined with in
situ observations using an optimal interpolation that is sepa-
rate from the 4D-Var analysis (Simmons et al., 2004, 2010).
Six-hourly surface analyses from 1979 to 2004 are obtained
from an archive (Berrisford et al., 2011) that is oversampled
at 0.25◦ in latitude and longitude and facilitates land–ocean
boundary matching on the WRF Arctic and North Atlantic
domains.

2.3 ICOADS observations

In situ surface marine observations of the International Com-
prehensive Ocean-Atmosphere Data Set (ICOADS Version
3; Freeman et al., 2017) are taken as a reference for diagnoses
of visibility between January 1979 and December 2004. To
ensure that observations are of high quality, we consider only
a full range of valid variables (wind speed and direction, sea
level pressure, air, dew point, and sea surface temperature,
present weather, and visibility) and the strictest ICOADS
trimming (i.e., values of air and sea surface temperature,
zonal and meridional wind component, sea-level pressure,
and relative humidity are within 2.8 standard deviations of
a smoothed monthly climatology). About 1 % of these obser-
vations are excluded if any duplication of all variables (in-
cluding latitude and longitude) is found within a few hours
of an existing observation. Also, observations are excluded
if any type of precipitation was falling at the time visibil-
ity was observed. This is done to emphasize hydrometeors
of less than about 30 µm (i.e., fog) in determining visibility
(Gultepe et al., 2017).
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Figure 1. Ship and fixed platform marine observations of (a, b) fog and (c, d) non-fog visibility taken between January 1979 and Decem-
ber 2004 to the north of (a, c) 60◦ N in the Arctic and (b, d) 30◦ N in the North Atlantic and within regional WRF model domains. Titles
show the total number of ICOADS positions and observations, given at 0.1◦ resolution with order-of-magnitude color labels in (a).

Visibility is recorded in the ICOADS dataset as one of 10
categories ranging from less than 50 m to over 50 km (5 cat-
egories of 1 km or less and 5 of 2 km or more). An observer
may judge the densest fog categories by the visibility of ship-
board objects on large ships, and otherwise by the appearance
of the horizon, whose distance is a function of height above
the sea (NOAA, 2010). All observations of a given category
are selected, but only to a maximum of 10 000 (randomly
selected) so as not to emphasize the more common non-fog
conditions. Total numbers of fog and non-fog observations,
taken from within WRF domains and north of 60◦ N in the
Arctic and 30◦ N in the North Atlantic, are shown in Fig. 1.
Non-fog observations (Fig. 1c, d) are more distributed geo-
graphically and the Arctic fog-only categories (Fig. 1a) are
fewer in number. The greatest frequency of observations are
at fixed oil platforms and along major shipping routes. High-
latitude observations are preferentially from the warm sea-
son (Dorman et al., 2017) and data voids occur where sea ice
cover is typical. The resulting collocation archive is given by
Danielson et al. (2020).

3 Methods

3.1 Visibility parameterization

Uncalibrated estimates of 21st century visibility (Fig. 2) are
diagnosed directly from the HadGEM2 and WRF models,
following historical emissions (1979–2004) and two future
(2005–2100) representative concentration pathway (RCP 4.5
and 8.5) emissions scenarios (Moss et al., 2010; Jones et al.,
2011; Taylor et al., 2012; Zhang et al., 2019a, b). Corre-
sponding ERA-Interim visibility estimates are included for
the historical period. All variables are averaged over marine
regions of the Arctic or North Atlantic model domains using
a centered 365 d window. Locally in time and space, surface
visibility (Fig. 2i, j) is first diagnosed from relative humid-
ity (Fig. 2g, h), which in turn is derived from temperature
(Fig. 2a, b) and dew point (Fig. 2c, d). We estimate visi-
bility using the median curve fit of Gultepe and Milbrandt
(2010, 40.1−5.19×10−10 [relative humidity]5.44) to be con-
sistent with Danielson et al. (2019), but by their definition
of performance, slightly reduced and improved performance
is available using the bracketing curve fits that Gultepe and
Milbrandt (2010) provide (i.e., their 5 % and 95 % curves,
respectively). All curve fits are based on instrument obser-
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Figure 2. Simulated HadGEM2 (blue), WRF (black), and analyzed
ERA (red) areal average trends in Arctic (left panels) and North
Atlantic (right panels) (a, b) air temperature (◦C), (c, d) dew point
temperature (◦C), (e, f) specific humidity (g kg−1), (g, h) relative
humidity (%), and (i, j) visibility (km) at 2 m above the surface.
The WRF and ERA averages are taken over fixed ocean domains
(regardless of sea ice) of 15 (Arctic) and 13 (North Atlantic) million
square kilometers. The HadGEM2 domains are about 25 % larger
and include coastal overlap as these data are at lower resolution.
Note that ordinate scales differ on the left and right, but their spans
are equal.

vations of relative humidity and visibility taken during the
summers of 2006 and 2007 in Lunenburg, Nova Scotia.

Positive 100-year trends in temperature, dew point, and
specific humidity are generally larger than the difference be-
tween simulations and the ERA-Interim reanalysis during the
historical period, both in the Arctic and North Atlantic. On
the other hand, the increase in relative humidity and decrease
in visibility (with greater 100-year changes in the Arctic) can
be smaller than historical differences among simulations and
the ERA analysis. Such a large discrepancy in historical di-
agnoses of visibility begs the question of how to interpret
corresponding future trends. For instance, the HadGEM2 air
and dew point temperature estimates are low in part because,
in lieu of an interpolation to higher resolution, we opt to av-
erage over a larger area that includes some overlap with land.
The WRF relative humidity and visibility estimates are dif-

ferent in part because, as snapshots of a long integration, they
represent localized supersaturation to a greater extent than
other estimates (and in situ observations in particular). Given
that our chosen parameterization of visibility itself targets a
particular in situ and warm fog representation, which is not
necessarily accommodating of such differences, a mapping
between each input dataset and an in situ representation is
explored.

3.2 Historical linear calibration

The large-scale differences in Fig. 2 seem relatively constant
in time, which suggests that representation bias in each grid-
ded dataset is also relatively constant. A reconciliation of
gridded data to a highly resolved representation (historical
ICOADS observations) is often sought by some combination
of physical (e.g., Zhang et al., 2019a, b) and statistical cal-
ibration (Ehret et al., 2012; Maraun, 2016), both of which
can be considered nonlinear in general. A notable advance
in statistical calibration by Freilich and Challenor (1994) es-
tablished a mapping between two measures of marine wind
speed by matching their cumulative distribution functions
(CDFs). Mapping between satellite and ERA-Interim soil
moisture is examined by Hasenauer (2010), who finds that
a linear mapping (by matching the distribution mean and
variance) is similar in performance to a nonlinear mapping
(including higher moments). Ehret et al. (2012) and Maraun
(2016) discuss the benefits and limitations of a range of ap-
proaches, such as quantile mapping, which Bennett et al.
(2014) employ in a separate calibration of each variable in
a multivariate regional climate dataset. More recent studies
highlight the importance of simultaneous multivariate cali-
bration (Cannon, 2016, 2018).

Although nonlinear calibration may be appropriate, we ex-
plore two linear adjustments because their physical interpre-
tation is direct and the ICOADS reference is assumed to be
error-free (comments on calibration to an error-free reference
are given in the Appendix). Perhaps the simplest strategy
is a two-step calibration, in which we calibrate ERA using
the ICOADS collocations in Fig. 1 (step one) and then cali-
brate HadGEM2 and WRF to ERA (after adjustment) using
the values in Fig. 2 (i.e., using large-scale annual and areal
averages; step two). Although relative humidity estimates in
Fig. 2 could be adjusted to ICOADS directly, instead univari-
ate linear calibrations are applied (locally in space and time)
to air and dew point temperature and the remaining variables
are calculated from these. We note that an alternate estimate
of HadGEM2 visibility is also possible, in which archived
daily averages of specific humidity are first calibrated before
a dew point estimate is obtained (cf. dew point archival for
WRF, ERA, and ICOADS). Unless the HadGEM2 dew point
is calculated before it is calibrated, however, differences in
Fig. 2 seem to persist (not shown).

By construction, the ERA reanalysis has a synoptic cor-
relation with ICOADS observations. The HadGEM2 and
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Table 1. Homogeneous single- and two-step calibrations of Arctic and North Atlantic 2 m air temperature (AT) and dew point temperature
(DPT) for 1979–2004. Shown are additive and multiplicative adjustments (left/right numbers) of the ERA reanalysis with reference to all
ICOADS collocations in Fig. 1. Similarly, adjustments in WRF and HadGEM2 are with reference to ICOADS in the single-step calibration
and with reference to the ERA time series in Fig. 2 (after adjustment) in the two-step calibration. The additive adjustment unit is ◦C.

Single-step Two-step

Arctic AT DPT AT DPT

ERA 0.18/1.01 0.34/1.00 0.36/0.98 0.53/0.96
WRF 0.98/0.92 2.04/0.82 −0.67/1.00 −0.02/1.00
HadGEM2 −0.43/1.08 −0.64/1.02 −1.73/1.00 −1.78/1.00

North Atlantic

ERA 0.41/0.97 0.83/0.95 0.65/0.95 0.97/0.94
WRF −1.93/1.06 −1.97/1.11 −0.38/1.00 0.48/1.00
HadGEM2 −3.72/1.14 −4.07/1.16 −2.10/1.00 −2.05/1.00

nested WRF models follow a distinct synoptic evolution
and thus match observations of the 1979–2004 historical
period only by coincidence (Taylor et al., 2012; Maraun,
2016). However, a single-step calibration is also feasible
that matches the distributions of HadGEM2 and WRF air
and dew point temperature to those of ICOADS. Our or-
dinary linear regression implementation of CDF matching
(Freilich and Challenor, 1994; Hasenauer, 2010) adjusts the
mean and variance of the gridded in situ collocations over
the historical period, after separately ranking both by magni-
tude. For consistency, ranking is also applied to the ERA and
ICOADS collocations, although in a shared synoptic sense,
ERA-ICOADS pairings are largely ranked to begin with. In
summary, both the single-step and two-step linear calibra-
tions can be considered large-scale adjustments based on the
historical collocations of Fig. 1 and the historical areal and
annual averages of Fig. 2, respectively.

4 Future trends in relative humidity and visibility

A linear calibration of collocated air or dew point tem-
perature is capable of matching the mean and variance
of HadGEM2, WRF, and ERA distributions to those of
ICOADS. In spite of a preexisting conformity of ERA sur-
face variables to in situ observations (Mahfouf, 1991; Sim-
mons et al., 2004, 2010), the assumption of no ICOADS error
yields, unsurprisingly, a slight adjustment of ERA tempera-
ture and dew point (Table 1). Also as expected, adjustment is
smaller (i.e., the additive component is closer to zero and the
multiplicative component is closer to one) when the ICOADS
and ERA collocation data are separately ranked (single-step)
than when they are unranked (two-step, where the first step
preserves synoptic pairing). The single-step adjustment of
HadGEM2 and WRF generally involves non-negligible ad-
ditive and multiplicative components, whereas in two-step
adjustment (to ERA), the multiplicative component is neg-
ligible (equal to one) and the additive component is similar

in the Arctic and North Atlantic (cf. Fig. 2). For brevity in the
remainder of this section, single-step calibration is discussed
in the context of our two-step results.

Figure 3a–d reveal good similarity in ERA (red) and
ICOADS (green) distributions of air and dew point temper-
ature, both before (dashed) and after (solid) calibration. As
in Fig. 2, WRF is a nested model whose representation of
temperature differs from the HadGEM2 driving model, and
both differ somewhat from the ERA and ICOADS distribu-
tions. The calibration of HadGEM2 is more apparent than for
WRF, with a shift of about 2 ◦C in all temperature distribu-
tions (Table 1). Essentially by design, however, differences
in the shape of each distribution are unchanged after both
the single-step and two-step calibrations. Figure 3e, f reveal
greater variation in the representations of relative humidity
and less similarity with ICOADS. The contrast with WRF
is most apparent, but in general, ICOADS observations sam-
ple more evenly a range in relative humidity from 45 % to
50 % to a limit of just over 95 %. In turn, a linear calibration
of temperature has the desired impact of shifting all grid-
ded relative humidity distributions towards drier conditions,
but because uncalibrated WRF relative humidity is quite fre-
quently high, linear calibration shifts the peak of its distri-
bution by as much as 5 % to 10 %. This occurs following
both the single-step and two-step calibrations and highlights
the challenge of conserving relationships between variables
in univariate (marginal) adjustments (Ehret et al., 2012; Ma-
raun, 2016; Cannon, 2018).

Comparison of the single-step and two-step calibrations
suggests that, in this study, it is more appropriate to employ
an additive calibration. As noted above, if ERA-ICOADS
differences are ignored, then the single-step calibration is
multiplicative, whereas the two-step calibration is additive
(Table 1). Both are applied locally in time and space, but
unfortunately, the annual and areal averages of a single-step
calibration (not shown) do not yield the degree of similar-
ity shown in Fig. 4. Both before (Fig. 2) and after (Fig. 4)
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Figure 3. Distribution shifts under a homogeneous two-step cal-
ibration. Shown are the fraction of 59 966 Arctic (left panels) and
94 703 North Atlantic (right panels) collocations of Fig. 1, as a func-
tion of calibrated (solid lines) and uncalibrated (dashed lines) (a,
b) air temperature, (c, d) dew point temperature, and (e, f) relative
humidity with respect to water (at 0.5 ◦C and 1 % intervals, respec-
tively, with a three-point smoothing) for the 26-year historical pe-
riod. Fractions are shown on a logarithmic scale for the ICOADS
observations (green lines), ERA reanalysis (red lines), and WRF
(black lines) and HadGEM2 (blue lines) models. Note that WRF
boundaries are constrained to the HadGEM2 freely evolving synop-
tic evolution, whereas the ICOADS and ERA collocations sample
the observed 1979–2004 synoptic evolution.

two-step calibration, we find that divergence of the RCP4.5
and RCP8.5 trends occurs more so in the Arctic than in the
North Atlantic, after 2050, and for temperature, dew point,
and specific humidity. The RCP4.5 and RCP8.5 relative hu-
midity and visibility trends are quite similar throughout these
simulations. To the extent that relative humidity increases
and visibility decreases, this is predominantly found in the
Arctic. We estimate the 21st century visibility decrease (in
kilometers) to be in the range of 8 %–12 % in the Arctic and
0 %–5 % in the North Atlantic.

Marine environments of the Arctic and North Atlantic can
be characterized by an observed peak in relative humidity
that is near saturation, followed by an abrupt limit beyond
this value that represents the physical process of condensa-
tion, which often includes the fog formation process of in-
terest (Fig. 1a, b). Thus, although our large-scale calibra-
tion aligns each distribution with an ICOADS distribution
in some mean sense (e.g., with a slight shift in ERA and
HadGEM2 relative humidity), accompanying our linear cali-

Figure 4. As in Fig. 2 but after a homogeneous two-step calibration
of the WRF and HadGEM2 simulations to the analyzed ERA time
series, which in turn is calibrated to the ICOADS collocations of the
historical period (1979–2004).

bration of WRF is the following interpretive burden: there is
a notable impact on the frequency of relative humidity near
100 % (i.e., a decrease of about an order of magnitude) and
on peak relative humidity (a drying of 5 %–10 %) in the Arc-
tic and North Atlantic. The occurrence of fog is often asso-
ciated with relative humidity above 95 % (Gultepe and Mil-
brandt, 2010), and while this is somewhat unchanged in the
HadGEM2 calibrated distributions (Fig. 3), its frequency is
considerably reduced for WRF.

Figure 5 depicts the impact of linear calibration on the
WRF and HadGEM2 RCP4.5 distributions and their 21st
century trends in relative humidity (i.e., as a fraction of ma-
rine coverage in early and late 30-year periods). The RCP8.5
distributions are nearly the same (not shown). The number of
gridded marine samples is 2 to 4 orders of magnitude larger
than the number of ICOADS collocations, but as expected,
two-step calibration has the same impact as on the histor-
ical distributions (Fig. 3). In other words, if we allow that
condensational processes are shifted from near 100 % to just
greater than 90 % relative humidity in the calibrated WRF
RCP distributions, then differences in the early and late 30-
year distributions are otherwise the same before and after our
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Figure 5. Predicted (RCP4.5) distribution shifts in relative humid-
ity with and without a homogeneous two-step calibration. Shown
are the fraction of marine coverage as a function of calibrated (solid
lines) and uncalibrated (dashed lines) relative humidity with re-
spect to water (at 1 % intervals) for the years 2006–2035 (red lines)
and 2069–2098 (blue lines). Fractions are shown on a logarithmic
scale for the WRF (a, c) and HadGEM2 (b, d) simulations in the
Arctic (a, b) and North Atlantic (c, d). Calibrated positive differ-
ences for 2006–2035 minus 2069–2098 (red) and 2069–2098 minus
2006–2035 (blue) are shaded. Note that HadGEM2 relative humid-
ity is obtained from daily averages of air and dew point temperature.

simple linear calibration. By accommodating this shift, we
find the same signal in Fig. 5 that we find at large scales in
Fig. 4. That is, both WRF and HadGEM2 reveal an increase
in the frequency of fog-producing (high) relative humidity.
The Arctic enhancement in each model (blue shading) is over
10 % of the peak frequency and is roughly double that of the
North Atlantic.

5 Conclusions

The basic premise of this study is that models, observations,
and analyses target distinct representations of the marine sur-
face, with similarly distinct forms of bias relative to an un-
known, fully supported representation (i.e., the “broad” def-
inition of truth in Ehret et al., 2012). Because we recog-
nize different target representations, there is not necessarily
a need to calibrate them.1 We identified a large-scale visibil-

1Homogeneous linear calibration to a singular in situ reference
is prompted by our choice of visibility parameterization, but the
symmetry recognized by Haraway (1988), Parker (2016), Beven
(2019), and others invites us to consider the reverse calibration of

ity decrease of about 8 %–12 % in the Arctic and 0 %–5 % in
the North Atlantic using HadGEM2 global and WRF nested
regional 21st century RCP4.5 climate model simulations. We
also identified trends in the frequency of high values of rela-
tive humidity, with increases of over 10 % in the Arctic and
5 % in the North Atlantic. Although these represent baseline
(calibrated) trends, they are also given directly by the two un-
calibrated models. This is desirable because if a calibration is
employed, it should not change such trends arbitrarily (Ehret
et al., 2012; Maraun, 2016).

The ERA-Interim reanalysis and ICOADS in situ obser-
vations provided estimates of marine surface variables com-
plementary to the HadGEM2 global climate model and WRF
nested regional model, with its enhanced resolution (Zhang
et al., 2019a, b). Temporally constant large-scale differences
(Fig. 2) suggested that representation bias in each gridded
dataset is also relatively constant.2 We proposed two meth-
ods of calibrating linearly (and locally in time and space) air
and dew point temperature, from which all other calibrated
variables were derived. Estimates of relative humidity and
visibility were found to be sensitive to the representation of
these two variables. Since our chosen visibility parameter-
ization was formulated based on in situ observations (Gul-
tepe and Milbrandt, 2010), we were motivated to take in situ
marine observations as an error-free reference. Although this
assumption is unrealistic, it is consistent with our focus on
linear calibration (cf. Appendix), and in turn enabled a sim-
ple physical interpretation. Of the two methods, a single-step
calibration was considered that takes the mean and variance
of ICOADS frequency distributions as a reference (Hase-
nauer, 2010). A two-step calibration was also performed in
which ICOADS collocations were taken as a reference for
the ERA reanalysis, which in turn was taken as a large-scale
reference for the 1979–2004 HadGEM2 and WRF simula-
tions. Although the single-step calibration offered more free-
dom in distribution matching, the two-step calibration pro-
vided a greater degree of consistency in the large-scale trends
(Fig. 4).

Our rudimentary parameterization of warm fog is applied
on relatively large scales and questions remain concerning
trends in cold fog occurrence and warm fog intensity. The
Appendix also addresses nonlinear calibration and our as-
sumption of an error-free in situ reference, which we have

in situ air and dew point temperature using a numerical model or
gridded analysis as a reference. Moreover, this accommodation of
symmetry may facilitate a less restrictive form of linear calibration.

2Linear calibration is useful to address dataset differences that
invariably remain, but in a more effective way, some physical dif-
ferences have already been addressed. Our WRF downscaling of
HadGEM2, for instance, reduces differences with the scale of in situ
observations. The treatment of other gridded and in situ data (reso-
lution) limits, and their impact on visibility estimation, can also be
attempted. Although calibration is not a prescription for how this
treatment might be done, it can aid in identifying more direct meth-
ods.
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good reason to explore (Freilich and Challenor, 1994; Ben-
nett et al., 2014; Cannon, 2016), along with the need (or lack
thereof) for an ERA calibration. A related caveat of this study
that is developed separately (Danielson et al., 2019) is that
about half of the variance in observed visibility might be as-
sociated with physical processes that are not captured by ei-
ther climate models or reanalyses. Moreover, there may be
a more informed division of collocations by which to refine
an ERA calibration or a physical justification for calibrating
HadGEM2 or WRF more locally than on the entire Arctic
or North Atlantic domains (cf. Ehret et al., 2012; Maraun,
2016). This includes consideration of fog formation in re-
lation to changes in sea ice coverage and possibly distinct
trends for the Grand Banks during summer and winter. An-
other question that remains to be explored, following van
Oldenborgh et al. (2010), is possible trends in aerosol load-
ing.
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Appendix A

Two measurement models are identified here to highlight that
ordinary linear regression, as used in this study, is consistent
with linear calibration, whereas an experimental but other-
wise quite similar model is consistent with nonlinear calibra-
tion (Danielson et al., 2019). We write the familiar ordinary
linear regression model as

C = t,

U = αU +βU t + εU , (A1)

where C (calibrated ICOADS or ERA) is an error-free ref-
erence for U (uncalibrated HadGEM2, WRF, or ERA) and
both are either ranked or unranked. Error (εU ) exists only in
the uncalibrated dataU and the scalars αU and βU represent a
linear adjustment by additive and multiplicative components,
respectively. Homogeneous calibration by ordinary linear re-
gression seeks to make U as consistent as possible with C,
but insofar as C may have errors, this calibration also uses
those errors as a reference. To address this, we include an
error (ε) that is shared between C and U and an error (εC)
for C that is unshared with U to write a similar measurement
model as

C = t + ε+ εC,

U = αU +βU t + ε+ εU . (A2)

This model differs from the standard errors-in-variables
model (Fuller, 2006) in its explicit accommodation of a
so-called nonlinear shared error (ε). Regardless of whether
shared error is written as part of the unshared errors (εC
and εU ), however, Eq. (A2) avoids the common assumptions
of linear measurements with independent errors (cf. Hall,
2010).

Although calibration may involve confirmation of im-
proved association3 (Oreskes et al., 1994), under a strictly
linear calibration that follows from a solution of either
Eqs. (A1) or (A2), no change in association is expected (Ben-
tamy et al., 2017). However, we suggest that improved asso-
ciation would be expected under a nonlinear calibration. But
if the association between C and U is presumed to be non-
linear, then we propose that improvements be confirmed by a
measurement model that accommodates nonlinearity. Of the
two models (A1) and (A2), the latter explicitly accommo-
dates a broad interpretive scope for truth and error, nonlin-
earity in both C and U , as well as a genuine nonlinear as-
sociation (ε) between them (cf. Pearson, 1902). Demonstra-
tion of improved association using a simple neural network
is given by Danielson et al. (2019). The present study (e.g.,
Fig. 3 distribution differences) supports the notion that for
common measures of relative humidity and visibility (if not
for other processes of interest), perhaps only rarely is associ-
ation expected to be strictly linear.

3Whereas Oreskes et al. (1994) use the word “agreement”, we
use the word “association” here, with both concepts appearing as
terms in Eqs. (A1) and (A2). Specifically, measurement in medicine
often concerns agreement (Altman and Bland, 1983; Bland and Alt-
man, 1986), where calibration coefficients αU and βU are taken as
the linear agreement betweenC andU . Measurement in philosophy
often concerns meaningful association (Oreskes et al., 1994), where
shared truth t can be taken as the linear association between C and
U . While αU , βU , and t are distinct and identifiable, terminology
and meaning may vary across fields.
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