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Abstract. Weather forecasts from ensemble prediction systems (EPS) are improved by statistical models trained
on past EPS forecasts and their atmospheric observations. Recently these corrections have moved from being
univariate to multivariate. The focus has been on (quasi-)horizontal atmospheric variables. This paper extends
the correction methods to EPS forecasts of vertical profiles in two steps. First univariate distributional regression
methods correct the probability distributions separately at each vertical level. In the second step copula coupling
re-installs the dependence among neighboring levels by using the rank order structure of the EPS forecasts. The
method is applied to EPS data from the European Centre for Medium-Range Weather Forecasts (ECMWF) at
model levels interpolated to four locations in Germany, from which radiosondes are released to measure profiles
of temperature and other variables four times a day. A winter case study and a summer case study, respectively,
exemplify that univariate postprocessing fails to preserve stable layers, which are crucial for many atmospheric
processes. Quantile resampling and a resampling that preserves the relative distance between individual EPS
members improve the calibration of the raw forecasts of the temperature profiles as shown by rank histograms.
They also improve the multivariate metrics of energy score and variogram score and retain the stable layers.
Improvements take place over all times of the day and all seasons. They are largest within the atmospheric
boundary layer and for shorter lead times.

1 Introduction

Ensemble prediction systems (EPS) are an important tool in
modern weather forecasting for providing estimates of the
range of possible forecast outcomes. The individual mem-
bers of an EPS are based on numerical weather prediction
(NWP) models, which simulate the fluid dynamic and ther-
modynamic behavior of the atmosphere and its lower bound-
ary. NWP models are not perfect because they only approx-
imately represent physical laws, cannot resolve processes at
all temporal and spatial scales, and have to start from an in-
exactly known initial state. Their imperfection was actually
the motivation behind EPS, which should provide a realistic
and comprehensive spectrum of the possible future weather.

Statistical postprocessing techniques, which learn from
past measurements and NWP EPS forecasts, can remove
systematic errors of the EPS forecasting distribution (e.g.,

Gneiting et al., 2005; Gneiting and Raftery, 2005). Efforts
in the development of these techniques have so far been con-
centrated on forecasts for individual locations or near-surface
fields, where these errors might arguably be largest, due to
the inability of numerical models to fully resolve boundary-
layer processes and interactions between the atmosphere and
the surface (e.g., Holtslag et al., 2013). Many univariate ap-
proaches for a single response variable build on the nonho-
mogenous Gaussian regression (NGR, Gneiting et al., 2005),
a distributional regression method. Methods have become
available that not only correct the forecasts at the locations
for which measurements exist, but also at any location in be-
tween. An example is the standardized anomalies model out-
put statistics (SAMOS, Dabernig et al., 2017). Multivariate
approaches attempt to preserve the correlation structure be-
tween variables or the same variable at different locations in
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the postprocessing step, e.g., with ensemble copula coupling
(ECC, Schefzik et al., 2013; Wilks, 2015).

Postprocessing the vertical structure of the atmosphere,
on the other hand, has so far been mostly neglected, with
the exception of Renkl (2013), who approximated the ver-
tical profiles by their leading normal modes and adjusted
the coefficients of these modes with kriging. However, ver-
tical profiles of air and dew-point temperatures are impor-
tant tools in weather forecasting. They show the stratification
and hence the static stability of the atmosphere and allow
one to draw conclusions about vertical mixing. Vertical tem-
perature profiles are used to diagnose and forecast precipita-
tion (e.g., Reeves et al., 2014), convection (e.g., Markowski
and Richardson, 2010; Simon et al., 2018), radiative trans-
fer (e.g., Rozanov et al., 2014), the diurnal temperature cycle
(e.g. Blandford et al., 2008), and air pollution (e.g., White-
man et al., 2014) – to just name a few.

Forecasts of temperature profiles also suffer from sys-
tematic errors of the underlying NWP models. Additionally,
the forecast uncertainty represented by the EPS has system-
atic errors and is typically underdispersive (Hagedorn et al.,
2012). This article uses forecasts from a global NWP EPS
model and radiosonde measurements (Sect. 2) and adapts
univariate and multivariate methods for the postprocessing
of vertical temperature profiles (Sect. 3). Since the vertical
stratification of the atmosphere drastically constrains the air
motion and exchange processes, the correlation structure be-
tween temperatures at model levels will have to be preserved
instead of correcting each level independently. The results of
these corrections are presented in Sect. 4 and discussed in
Sect. 5.

2 Data

To develop and demonstrate methods for the correction of
vertical temperature profiles forecast by NWP models, we
use the lower two-thirds of the troposphere from the sur-
face to 400 hPa. Many processes that affect its lowest part,
the planetary boundary layer, are parameterized in an NWP
model, and substantial systematic errors occur (cf. Holtslag
et al., 2013), which can then be alleviated with statistical
postprocessing. Three years of data from 15 September 2016
to 15 September 2019 were available.

2.1 Observations

Temperature profiles are from radiosondes where a sensor
package carried aloft by a balloon transmits data back to a
ground station. Vertical resolution of the data as available in
global databases is variable on the order of 100 m. We chose
four of the very few available radiosonde stations that mea-
sure four times a day instead of only twice in order to capture
the diurnal cycle. These four stations are spread throughout
Germany in flat to hilly terrain with launch times at 00:00,
06:00, 12:00, and 18:00 UTC: Bergen (52.82◦ N, 9.92◦ E),

Lindenberg (52.21◦ N, 14.12◦ E), Idar-Oberstein (49.69◦ N,
7.33◦ E) and Kuemmersbruck (49.43◦ N, 11.90◦ E). All the
stations are located at the mid-latitudes and none of the sites
is characterized by complex terrain. The average distance
between the stations is approx. 300 km. Quality-controlled
temperature and pressure data (see Durre et al., 2008, for
details) were accessed from the freely available Integrated
Global Radiosonde Archive of the National Oceanic and At-
mospheric Administration (NOAA, 2019).

2.2 Forecasts

We use forecasts from the EPS of the European Centre for
Medium Range Weather Forecasts (ECMWF) with 50 per-
turbed ensemble members and one unperturbed control run
(ECMWF, 2012). The model is discretized in a 0.25◦×0.25◦

horizontal grid on 91 vertical levels. Since data from individ-
ual ensemble members on model levels are not archived at
ECMWF, we saved real-time forecast data from 15 Septem-
ber 2016 to 15 September 2019 for 25 lead times at 6-hourly
time intervals out to +144 h (6 d). The forecasts are inter-
polated bi-linearly to the radiosonde locations in the hori-
zontal. Due to the use of a hybrid coordinate system in the
ECMWF forecasts, the pressures of the 51 ensemble mem-
bers at each model level differ somewhat. Therefore, obser-
vations and NWP forecasts are linearly interpolated to the
arithmetic mean of the 51 pressures at each model level.

In the remainder, the radiosonde measurements Tobs are
used as response variables. For univariate statistical postpro-
cessing only the sample mean T ens and sample standard devi-
ation SDens of the ensemble temperature forecasts are used as
the ensemble predictors, with the assumption that the ensem-
ble members can be adequately described by a Gaussian dis-
tribution. For multivariate postprocessing model-level tem-
peratures of all ensemble members are used.

3 Methods

The goal of postprocessing is to alleviate systematic errors
in the vertical temperature profile and produce a probabilis-
tic forecast that is calibrated and sharp. For the univariate
case, “calibrated” means that the verifying observations are
equally likely to fall into the bins into which the ordered
NWP ensemble members partition the real line. The sharper
a calibrated predictive distribution is, the smaller the uncer-
tainty of the forecast will be.

Postprocessing will proceed in two steps. First, to cor-
rect the marginal distributions of temperature at all vertical
height levels simultaneously, non-homogeneous Gaussian re-
gression (NGR, Gneiting et al., 2005) will be extended by
two different methods described in Sect. 3.1 and 3.2. In the
second step the vertical interdependence between the levels
discarded in step one will be retrofitted with the multivariate
method of ensemble copula coupling (ECC, Sect. 3.3). Mul-
tivariate here refers to temperature at multiple vertical height
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levels, not to multiple observational sites or lead times, which
are handled separately. Thus, the models described in the
following sections are fitted to each site and for each lead
time individually. For the whole data set with 4 sites and 25
lead times, 100 NGRVC models and 100 SAMOS models
have to be fitted. Each of these models covers all vertical
height levels. A key technique for fitting the nonlinear re-
gression models behind NGRVC and SAMOS is the class
of generalized additive models for location, scale and shape
(GAMLSS, Rigby and Stasinopoulos, 2005), which is intro-
duced generically in Appendix A.

3.1 Univariate correction: nonhomogeneous Gaussian
regression with varying coefficients (NGRVC)

Nonhomogeneous Gaussian regression (Gneiting et al.,
2005) is a postprocessing technique for ensemble forecasting
systems. The observed temperature y is assumed to follow a
Gaussian distribution,

y ∼N (µ,σ ), (1)

determined by two parameters, µ and σ . The expectation of a
Gaussian distributed random variable isE(y)= µ. Thus,µ is
often referred to as expectation or mean. σ is often denoted
as the standard deviation. However, in order to make these
parameters easier to distinguish from the sample mean and
sample standard deviation, we call µ and σ the location and
scale parameter, which is also common in the statistical lit-
erature. To condition the Gaussian distribution on covariates
derived from the NWP model, the location µ is expressed by
a linear model of the ensemble (sample) mean T ens and the
scale parameter σ by the sample standard deviation of the
NWP ensemble members SDens:

µ= β0+β1 · T ens (2)

and

log(σ )= γ0+ γ1 ·SDens.

Originally, Gneiting et al. (2005) estimated the coefficients
β? and γ? with a sliding training window in order to allow
for their seasonal variation. An NGR, which can exploit the
full data set and have coefficients that may vary not only sea-
sonally but also by arbitrary other factors (NGRVC), can be
constructed with GAMLSS models. Then a sum of several
nonlinear functions replaces the intercepts and linear coeffi-
cients in this very recent extension of NGR (cf. Simon et al.,
2017; Lang et al., 2020). Here, the location parameter µ is
chosen as

µ=
(
f1|hh(p)+ f2(doy)+ f3(p,doy)

)︸ ︷︷ ︸
varying intercept β0

+
(
f4|hh(p)+ f5(doy)+ f6(p,doy)

)︸ ︷︷ ︸
varying linear coefficient β1

· T ens. (3)

Both the intercept and the linear coefficient are allowed to
vary smoothly with functions of pressure p, season (day
of year doy) and their interaction. The |hh in the index of
the function for the pressure dependence indicates that this
function is conditional on the time of the radiosonde ascent
(00:00, 06:00, 12:00, and 18:00 UTC in the current case) in
order to account for diurnal variations. The terms f4|hh, f5
and f6 provide a varying linear coefficient for the ensemble
mean T ens and thus allow the coefficient β1 in Eq. (2) to vary
smoothly. The functional terms f1–f3 act on the scale of the
additive predictor (here temperature in degrees) and serve as
varying intercept.

A similar model is chosen for the logarithm of the scale
parameter,

log(σ )=
(
f1|hh(p)+ f2(doy)+ f3(p,doy)

)︸ ︷︷ ︸
varying intercept γ0

+
(
f4|hh(p)+ f5(doy)+ f6(p,doy)

)︸ ︷︷ ︸
varying linear coefficient γ1

·SDens, (4)

where the functions f1–f3 act on the logarithmic scale and
allow the coefficient γ0 in Eq. (3) to vary smoothly. Func-
tions f4–f6 provide a varying linear coefficient of the log-
arithm of the standard deviation and allow γ1 of Eq. (2) to
vary smoothly. Note that the smooth functions f? in Eqs. (3)
and (4), which are identically named for simplicity, might
vary in their form; e.g., the day of the year term in Eq. (3)
might have a different functional form than the day of the
year term in Eq. (4). For more details on the relation between
the classical sliding window approach and this smooth model
approach, the reader is directed to Lang et al. (2020).

3.2 Alternative univariate correction: standardized
anomalies model output statistics

This section provides an alternative method to remove the
constraint that NGR models have to be fitted to each location
separately. In the current case location refers to a particular
level of the vertical profiles and not to multiple sites as in pre-
vious applications (Dabernig et al., 2017). Thus, the SAMOS
models in the current study are fitted to the data of each site
individually.

The motivation behind SAMOS is that with many loca-
tions and/or for operational use fitting many models might
become computationally expensive. However, one single
NGR-like regression model can be fitted to all locations at
once when in a first step all site-specific characteristics are
(nearly) eliminated from observations and ensemble data.
The model is fitted not to the direct values, but rather to
standardized anomalies formed by subtracting the respec-
tive climatological mean and dividing by the climatological
standard deviation. This SAMOS approach is described in
Dabernig et al. (2017).
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Here, we estimate the climatological properties of the ob-
servations with a GAM(LSS); for the expected value as

µ= f1|hh(p)+ f2(doy)+ f3(p,doy), (5)

with similar terms to Eq. (3). Only an intercept is estimated
for the logarithm of the scale parameter σ , which technically
reduces the GAMLSS to a GAM. One set of (µ, σ ) has to be
fitted for the radiosonde measurements, another one for the
EPS data.

The pressure levels of the observational radiosondes and
the EPS data are not the same. We linearly interpolated the
spatially better resolved observations to the pressure levels of
the EPS data (see Sect. 2.2). Then the standardized anomalies
of the observations and the ensemble are linked by a simple
linear regression of the original NGR Eq. (2).

3.3 Multivariate correction: ensemble copula coupling

Both NGRVC (Sect. 3.1) and SAMOS (Sect. 3.2) are univari-
ate postprocessing methods; i.e., only marginal distributions
are predicted. To account for dependence structure of the ver-
tical levels, ensemble copula coupling (ECC, Schefzik et al.,
2013) is employed, which uses the dependence structure con-
tained in the vertical profiles of the raw ensemble via its order
statistics.

The ECC procedure consists of three steps.

1. Sample quantiles from the predicted marginal distribu-
tions.

2. Access the rank structure of the raw ensemble.

3. Arrange the quantiles from step 1 with the ranks of
step 2.

In step 1 temperature quantiles have to be sampled
from the univariate distributions obtained by either NGRVC
(Sect. 3.1) or SAMOS (Sect. 3.2) for each level. The number
of sampled quantiles matches the number of ensemble mem-
bers m. Three different approaches are commonly employed
(Schefzik et al., 2013) for sampling these quantiles.

– ECC-Q transforms m equally spaced probabilities with
the quantile function (i.e., the inverse of the cumulative
distribution function) of the predictive distribution.

– ECC-R draws samples randomly from the predictive
distribution.

– ECC-T first fits a Gaussian distribution to the raw en-
semble and then evaluates this cumulative distribution
function (cdf) at the values of the raw ensemble leading
to m probabilities, which are finally transformed with
the inverse of the predictive cdf.

We discuss these three sampling approaches further in the
case studies (Sect. 4.2.1). After this first step in the ECC pro-
cedure we have sorted quantiles of temperatures for each ver-
tical level.

The second step is to access the ranks of the raw ensemble
temperatures for each level: the ensemble member with the
lowest temperature gets rank 1, the member with the second
lowest temperature gets rank 2, and so on up to the member
with the highest temperature, which gets rank m. In case of
ties, e.g., two members predicting the same temperature, the
ranks are drawn randomly. For instance, when the minimum
of the ensemble occurs twice, ranks 1 and 2 are assigned ran-
domly to these two members. At the end of this step we have
ensemble ranks for each level.

The final step of the ECC procedure takes the quantiles
from step one and arranges them using the ranks of step two.
For instance, the lowest temperature within the quantiles of
step one will be associated with the member that has rank
1, the second lowest quantile with the member of rank 2,
and so on. This is applied for each level individually. Despite
the fact that these steps are applied to each vertical level in-
dividually, ECC is nevertheless a multivariate method. The
rank orders for individual levels are all taken from a single
numerical ensemble prediction that conserves the correlation
structure across the levels. As a whole, the procedure results
in a prediction of vertical temperature profiles with margins
(at each level) calibrated in location and spread (by SAMOS
or NGRVC) and the rank order structure of the raw ensemble.

3.4 Verification measures

Several metrics are used to evaluate the performance of the
forecasting methods in achieving the goal of probabilistic
forecasts: to maximize the sharpness of the predictive distri-
bution subject to calibration. The metrics are applied out-of-
sample using 5-fold cross-validation to test on independent
data and avoid overfitting.

Calibration and sharpness of univariate predictions are
evaluated using the probability integral transform (PIT) his-
togram and the sharpness diagram, respectively (Gneiting
et al., 2007). Calibration refers to the statistical consistency
between predicted distributions and observations. A cali-
brated forecast leads to a uniform PIT histogram. When the
prediction is not available as a full probability distribution,
but as samples of a distribution as in the case of the raw en-
semble, one can assess calibration with the rank histogram.
The rank histogram displays the rank of the observation in
a vector merging observations and samples of the predictive
distribution. If the observation is indistinguishable from the
samples, the rank histogram is uniform; i.e., the forecast is
calibrated.

Sharpness is an attribute of the forecast alone and refers
to the concentration of the predictive distributions. This at-
tribute is revealed in the sharpness diagram which displays
the width of the central prediction interval of the predictive
distributions. The aim of forecasting schemes is to obtain cal-
ibrated distributions that are as sharp as possible (Gneiting
et al., 2007).
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The rank histogram and the PIT histogram are common
tools to verify the calibration of the forecasts in the univari-
ate case. Thorarinsdottir et al. (2016) introduce four different
types of their extensions to assess multivariate calibration.
Wilks (2017) further investigates these methods in a simula-
tion study and concludes that one should always use a combi-
nation of different multivariate rank histograms. In this study
we employ the average rank histogram (ARH) and the band-
depth histogram (BDH). The ARH provides a measure of as-
cending rank. In contrast, the BDH assesses the centrality of
the observation within the forecast ensemble. One can thus
not spot from the BDH whether a potential bias is positive or
negative, which one can identify from the ARH.

As numerical measures we apply the continuous ranked
probability score (CRPS) and the log score (LS) for univari-
ate predictions (Gneiting and Raftery, 2007). The LS is the
negative log-likelihood. The CRPS can be interpreted as in-
tegral over all possible Brier scores and is a generalization of
the mean absolute error for point forecasts (Hersbach, 2000).

The energy score (ES, Gneiting and Raftery, 2007) and the
variogram score (VS, Scheuerer and Hamill, 2015b) are ap-
plied as numerical measures for assessing the performance
of the multivariate predictions. The ES is the multivariate
generalization of the CRPS. Like the CRPS, the ES gives
absolute values only and is negatively orientated, meaning
lower values are better then higher values. It addresses cal-
ibration of multivariate forecasts in terms of location and
scale, i.e., mean and spread. However, some studies sug-
gest that the ES is not sufficiently sensitive to misspeci-
fications of the correlation structure (e.g., Pinson and Gi-
rard, 2012). Thus, Scheuerer and Hamill (2015b) introduced
the VS as an alternative multivariate score. We employ the
VS with an order of 0.5, which was found to discriminate
well between correct and incorrect correlations and between
calibrated and overdispersive/underdispersive forecasts (cf.
Eq. 3 in Scheuerer and Hamill, 2015b). The VS is an abso-
lute measure too, and its skill is negatively orientated.

All scores are computed out-of-sample by 5-fold cross-
validation using the scoringRules package (Jordan et al.,
2019) for the R environment for statistical computing (R
Core Team, 2019).

The validation of the numerical scores was done by boot-
strapping to estimate the uncertainty in the scores. This was
applied by drawing a random sample in the size of the orig-
inal data with replacement and averaging it. This procedure
was repeated 500 times, and the 500 values are presented
as box-and-whisker plots. In order to preserve the vertical
dependence structure while bootstrapping, we considered a
vertical profile to be the smallest indivisible unit: rather than
bootstrapping temperatures on vertical levels and merging
these samples to new profiles, we bootstrapped vertical tem-
perature profiles as a whole for different times, locations and
lead times.

Figure 1. Example of the effects of the location parameterµ (Eq. 2)
of the NGRVC model for station Bergen. (a) and (b) are the terms
of the varying intercept and (c) and (d) the terms of the vary-
ing coefficient in Eq. 2 multiplied by T ens. They are computed
for the average profiles of T ens by p only (a, c) and p, doy and
hh= 12:00 UTC (b, d), respectively, and the average of SDens:
1.08 K.

4 Results

The presentation of the results proceeds from the univariate
case using the two NGR extensions (NGRVC and SAMOS)
to the multivariate case, which is introduced with case stud-
ies of winter and summer profiles, respectively, and then ver-
ified for the whole data set. The response variable for all ap-
proaches is the temperature measured by the radiosondes.

4.1 Univariate postprocessing

4.1.1 NGR with varying coefficients (NGRVC)

Allowing varying coefficients of the NGR makes a diurnally,
seasonally and vertically varying correction of the expected
value of the Gaussian forecasting distribution of the EPS pos-
sible – as described by Eq. (3). Figure 1 illustrates these ef-
fects. Panels (a) and (c) show the diurnally varying vertical
contributions to the varying intercept and the varying linear
coefficient in the model of the location parameter µ. The
strongest correction from the intercept of the early morning
sounding at 06:00 UTC is in the layer close to the surface,
which would increase the strength of the surface-based in-
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version in the EPS. The intercept term warms the 12:00 UTC
sounding in the boundary layer and immediately above and
cools the EPS profile somewhat in the middle of the tropo-
sphere. However, the intercept term cannot be seen in iso-
lation. The vertical correction of the varying linear coeffi-
cient term (Fig. 1c) warms the original EPS profile on aver-
age over the whole year, with the strongest warming in the
18:00 UTC evening/early night sounding. Panels (b) and (d)
in Fig. 1 show the effects of the seasonally varying correc-
tions fi(doy) and the interaction of seasonal and vertical cor-
rections fj (doy,p) for the average (over the whole year)
12:00 UTC soundings. The intercept correction adds the sea-
sonal cycle, with the strongest variations in the boundary
layer. The seasonally changing correction of the linear term,
on the other hand, is less pronounced, especially above the
boundary layer, and thus only linearly depends on the en-
semble sample variance SDens.

4.1.2 Climatology for SAMOS

SAMOS, a further extension to NGR, makes it possible to
correct all vertical levels with one postprocessing model, but
requires climatologies of expected value and standard devia-
tion in order to compute the prerequisite standardized anoma-
lies (cf. Sect. 3.2). They were computed with 3 years of ob-
servational and NWP data within the mathematical frame-
work of GAMLSS (Sect. A) and the model specification in
Eq. (5).

The effects of the climatology for response Tobs are given
in Fig. 2. f1|hh(p) dominates the climatology by captur-
ing the diurnal cycle at the surface (Fig. 2a). Figure 2b
shows that the seasonality and the seasonality by pressure
f2(doy)+ f3(p,doy) have a positive effect in summer and a
negative effect in winter and that the amplitude is strongest
at the surface. The model thus adds the most temperature to
the expected value µ in Eq. (A1) in summer and subtracts
the most in the winter season. An n= 10 000 random sam-
ple of the standardized anomalies of Tobs (derived from the
climatology) is plotted in Fig. 2c. The sample mean and stan-
dard deviation (0.01; 1.00) are almost identical to the mean
and standard deviation (0; 1) of a standard Gaussian distribu-
tion. The line structure in Fig. 2c originates from the model
levels of the ECMWF-EPS onto which we interpolate ver-
tically. The quantile–quantile plot in Fig. 2d compares the
standardized anomalies in Fig. 2c with the standard Gaus-
sian distribution. The assumption of the Gaussian distributed
air temperature is valid but not perfect in the tails beyond 2
sigma.

A climatology is also computed for the ensemble fore-
casts. The climatology of the ensemble mean is modeled with
a single GAMLSS. The standardized anomalies of T ens are
similar to those of the observations in Fig. 2c. A simpler
approach is sufficient for SDens, which is standardized with
the standard deviation of the difference of T ens and the ex-
pected value of the climatology, instead of a GAMLSS model

Figure 2. Effects of the climatology of observations y for station
Bergen (a, b) for the terms f1|hh(p) (hh= 06:00 and 18:00 UTC,
respectively, with fixed doy= 180) and the combined effects of
f2(doy)+ f3(p,doy) (for hh= 06:00 UTC); (c) is the standard-
ized anomalies of Tobs used in the SAMOS approach and (d) the
quantile–quantile plot of (c) against an idealized Gaussian distribu-
tion with an idealized straight solid line.

for SDens, in agreement with the findings in Dabernig et al.
(2017).

4.1.3 SAMOS

Climatological values for mean and standard deviation from
Sect. 4.1.2 are then used to standardize the response vari-
ables by subtracting the mean and then dividing by the stan-
dard deviation, which yields the standardized anomalies T̃obs,
T̃ens and S̃Dens. This standardization removes most of the
pressure-level specific information so that the simplest ver-
sion of NGR (Eq. 2, with T̃ens instead of T ens and S̃Dens
for SDens) can be applied simultaneously to all pressure lev-
els, seasons and times of (radiosonde) ascent. Corrections for
the expected values are fairly small. Using station Bergen
as an example, the coefficients of the standard anomaly
Eq. (2) are β0 = 0.0016 (0.0007, 0.0025) and β1 = 0.9325
(0.9316, 0.9333). Since the intercept is almost zero, basi-
cally no offset correction has to be applied. A linear coef-
ficient of less than 1 means that larger values of the stan-
dardized anomalies are corrected less than values close to
the climatological mean. The respective coefficients for the
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Figure 3. PIT histograms of the probability distributions of the raw
ensemble (a) and the ensemble postprocessed with SAMOS (b) and
the NGRVC (c) for all stations combined. Solid horizontal lines
show perfect calibration and the dotted lines are the 95 % consis-
tency interval thereof.

standardized anomaly of the (log) of the standard devia-
tion are γ0 =−1.7922 (−1.7966,−1.7877) and γ1 = 2.0677
(2.0546, 2.0808), respectively. Consequently, a substantial
offset correction has to be applied and larger deviations from
the climatological mean of the ensemble variance are more
strongly corrected.

4.1.4 Comparison of calibration and sharpness

Several verification measures are used to compare calibra-
tion and sharpness of the distributions resulting from uni-
variate postprocessing with SAMOS and NGRVC, respec-
tively. Calibration is first evaluated with PIT histograms. Fig-
ure 3 shows a U shape for the raw ensemble, indicative of
a strong underdispersion with truth too frequently beyond
the extremes of the forecast. Both SAMOS and NGRVC are
better calibrated although slightly overdispersive. The shape
might indicate a misspecification of the underlying paramet-
ric distribution and possibly skewness (Gebetsberger et al.,
2018, 2019).

Figure 4 zooms into three vertical layers. The strongest
underdispersion of the raw ensemble and thus the largest im-
provement from postprocessing occurs in the lowest layer,
1020–850 hPa, occupied mostly by the planetary boundary
layer. The postprocessing of NGRVC and SAMOS cannot
completely eliminate the underdispersion in the PIT his-
togram, which is computed out-of-sample. Deviations of the
raw ensemble from the truth are rarer above the boundary
layer in the layers 850–700 hPa and 700–400 hPa, where
postprocessing effectively removes a cold bias. Overall, the
two different approaches of NGRVC and SAMOS have sim-
ilar PIT histograms at the respective vertical layers.

After calibration the predictive distributions slightly lose
sharpness: Fig. 5 shows this increase for widths of the cen-
tral prediction intervals of 50 % and 90 % (cf. Gneiting and
Raftery, 2007), respectively. SAMOS and NGRVC have ap-
proximately the same average widths. However, postprocess-
ing reduces the number of times that the prediction interval is
extremely (and most likely unnecessarily) wide, as the reduc-
tion in the width of the interquartile range and the whiskers

Figure 4. PIT histograms by pressure ranges for the probability dis-
tributions of the raw ensemble (left), the NGRVC-postprocessed en-
semble (middle) and the SAMOS-postprocessed ensemble (right).
Bottom row 1020–850 hPa, middle row 850–700 hPa and top row
700–400 hPa for all stations and all launch times combined. Solid
horizontal lines show perfect calibration and the dotted lines are the
95 % consistency interval thereof.

Table 1. Out-of-sample negative logarithm of the likelihood (LS)
and CRPS of the raw ensemble (RAW), SAMOS and NGRVC prob-
ability distributions for all stations combined. Numbers in brack-
ets give the 5th and 95th percentiles of the bootstrapped scores;
they represent the 90 % confidence intervals. Bold font indicates
the models that performed best.

Model LS CRPS

RAW 2 533 530 (2 529 990, 2 536 425) 0.768 (0.766, 0.771)
SAMOS 1 922 304 (1 924 083, 1 925 932) 0.752 (0.749, 0.754)
NGRVC 1 907 984 (1 906 013, 1 909 747) 0.744 (0.742, 0.747)

from bootstrapping indicate. Additionally, the widths are still
only about one-fourth of the width of the interval from the
SAMOS climatology (dashed line), which is fitted as a func-
tion of time of day, season, pressure level and seasonally
varying pressure levels. If one looks at overall verification
scores over all four stations, all vertical levels and all times
in Table 1, SAMOS considerably improves the log-likelihood
and the CRPS, upon which NGRVC improves further. Due to
this slight advantage, the NGRVC-postprocessed ensemble is
used in the following multivariate postprocessing.
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Figure 5. Boxplots of the widths of prediction intervals of 50 % (a)
and 90 % (b), respectively, from bootstrapping probability distribu-
tions of RAW, SAMOS and NGRVC for all stations combined with
the value of the median given. The dashed lines mark the respective
interval widths of the SAMOS climatology.

4.2 Multivariate postprocessing

Ensemble copula coupling (Sect. 3.3) is used to restore the
vertical correlation structure of the temperature profiles con-
tained in the raw ensemble to the univariately corrected tem-
peratures at each level. To better understand the three meth-
ods for sampling from the raw ensemble (ECC-Q, ECC-R,
ECC-T), they are first demonstrated with two case studies
before their forecast performance is evaluated for the whole
data set.

4.2.1 Case studies

The two case studies show ensemble copula coupling at work
in typical winter and summer settings, respectively. The win-
ter morning case is characterized by a strong surface-based
temperature inversion, topped by a dry-adiabatically strati-
fied layer, which is capped by a second inversion, as shown
by the radiosonde measurements (bold black line) in Fig. 6.
All members of the +30 h raw ensemble forecast (magenta
solid lines) capture the surface-based inversion, albeit at dif-
ferent altitudes and with different strengths. The spread of
the ensemble members around the second inversion is much
larger – up to 7 K – and a substantial number of members
have only a stable layer but no inversion. Further aloft all
members stay within a few degrees of one another and of
the observed profile. Figure 7 shows the performance of
the postprocessing methods with a zoom into the lower part
of the atmosphere where the raw ensemble members have
larger deviations. The forecast performance of the raw en-
semble deteriorates considerably when the forecasting hori-
zon is extended by another 4 d from +30 to +126 h (second

Figure 6. Vertical temperature profiles as observed (black bold
solid line) and the members (magenta) of the +30 h raw ensemble
forecast at station Bergen for 6 December 2016, 06:00 Z. Two mem-
bers are highlighted with blue. The rectangle with a blue dashed
border indicates the zoomed pressure and temperature range plotted
in Fig. 7. Gray-thick-dashed-dotted area is the climatological mean
of the EPS for this specific date and time and the gray shaded area
indicates its ±1 standard deviation range. Green dashed lines are
the saturated adiabats, dotted lines the dry adiabats.

Figure 7. Zoom into the rectangle of Fig. 6 with additional postpro-
cessed temperature profiles. The columns show (from left to right)
raw ensemble; univariate postprocessing with NGRVC; and multi-
variate postprocessing with ensemble copula coupling (ECC) of the
NGRVC-postprocessed ensemble using quantile sampling (ECC-Q)
and distance-preserving sampling (ECC-T), respectively. All figures
additionally have observation (bold black), climatological observa-
tion (mean (dashed gray) and standard deviation (gray)), and two
particular forecast members. The first row contains the forecasts for
lead time +30 h, the second row for +126 h.
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Figure 8. Observation (black bold solid) and forecasts (magenta) of
the vertical temperature gradient for the 6 December 2016, 06:00 Z
winter case. Top row is for lead time +30 h and bottom row for
+126 h. Columns show (from left to right) raw ensemble, univariate
NGRVC-Q, multivariate ECC-Q and multivariate ECC-T. The same
two particular members are highlighted in blue in all the subfigures.
Note that a negative temperature gradient in pressure coordinates
means an increase in temperature with altitude.

row in Fig. 7). The larger overall spread among the ensem-
ble members indicates the typical increase in forecast uncer-
tainty with forecasting horizon. Especially the second inver-
sion is poorly forecast – either not at all or at different al-
titudes and/or of different strength – and the spread of the
ensemble members is as large as the 2-σ range of the obser-
vation climatology, which is indicated by the gray shading.

How well do the different methods correct the raw pro-
files? The univariate NGRVC method (second column of
Fig. 7) describes the ensemble members parametrically with
a Gaussian distribution and thus corrects only the ensemble
mean and standard deviation as a function of the date (here
fixed at 6 December 2016, 06:00 Z) and pressure level. Con-
sequently all profiles are parallel to each other. The profiles
of two exemplary ensemble members in the +126 h fore-
cast no longer cross as they do in the raw ensemble. Also,
the sharpness of the inversions in individual ensemble mem-
bers is lost when the ensemble mean is formed since they are
at different altitudes. However, the spread among individual
members might still vary considerably with altitude since it
is corrected separately (cf. Sect. 3.1), as is most obvious at
the second inversion for the +126 h forecast.

The multivariate ensemble copula coupling method with
sampling from the quantiles of the raw ensemble (ECC-Q)
restores the overall shape of the member profiles and thus al-
lows the cross-over near the surface of the blue lines in the
+126 h forecast. It does not preserve the altitude-dependent
spread. For example, the spread above the observed second
inversion is reduced considerably by ECC-Q, which effec-

tively eliminates the second inversion from some members.
The ensemble copula coupling with distance-preserving cor-
rection (ECC-T), on the other hand, keeps the large uncer-
tainty above the observed second inversion. Its corrections
are slight, on the order of 1 K over the whole profile.

The vertical temperature gradient determines how eas-
ily an air parcel can be displaced in the vertical, which
in turn determines exchange processes of, e.g., pollutants
and the formation of clouds. Figure 8 shows this gradient,
which is the first vertical derivative of the sounding profiles
in Fig. 7. Although it is not the response variable of the
postprocessing and fitting a model directly to the tempera-
ture gradients would likely yield better results, postprocess-
ing should ideally still preserve gradients. The observations
(bold lines) show an extremely large gradient in the approx-
imately 30 hPa (300 m) above the surface, which strongly
dampens vertical exchange processes. Another albeit weaker
such layer is at around 880 hPa. All members of the raw en-
semble show the surface-based extremum in a range between
a third to the whole observed value. All members also con-
tain the higher-level extremum with only small differences
among the members albeit at only half the observed value.
Most of the ensemble members of the NWP forecast com-
puted 126 h prior to the observations still capture the strong
gradient at the surface. Interestingly a substantial number of
members capture the magnitude and depth of the strong gra-
dient further aloft but with a wide range of its location, which
is between 900 and 760 hPa. The univariate NGRVC correc-
tion (second column in Fig. 8) shifts all members towards a
mean value and thus fails to show the larger variation of the
temperature gradient. NGRVC only corrects the expectation
and the scale of the ensemble, but not members individually.
Most of the correction is to the mean. The scale correction is
small and varies little over the whole profile, so that the gra-
dient remains nearly the same. Both ensemble copula cou-
pling methods, ECC-Q and ECC-T, on the other hand, bring
back the uncertainty of the raw ensemble. For the shorter-
term forecast of+30 h, the ECC postprocessing enhances the
uncertainty at the lower and upper ends of the extrema of the
gradients, while it reduces it (by less) for the longer +126 h
forecast – more so for ECC-Q than for ECC-T, which can
easily be seen in the two exemplary members (blue lines) of
the +126 h forecast.

The second case study of a summer noon profile exem-
plifies the performance for a deep convective boundary layer
capped by a thick stable layer and a nearly moist-adiabatic
stratification aloft where the profile parallels the green satu-
rated adiabat in Fig. 9. In contrast to the winter case, forecast
uncertainty is much lower; the spread of the ensemble mem-
bers within the boundary layer in the +36 h forecast is only
a fraction of the 2-σ range of the climatological profile (gray
shading) and still less than that range for the +108 h forecast
as seen in Fig. 10. Similarly to the winter case, the spread
above the top of the boundary layer is only about 1 K, and
the observation lies within the range of the forecast. Since
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Figure 9. As in Fig. 6 but for a summer case of 2 June 2017, 12:00 Z
and a lead time of +36 h.

Figure 10. As in Fig. 7 but for a summer case of 2 June 2017,
12:00 Z and lead times of +36 h (first row) and +108 h (second
row), respectively.

the univariate NGRVC method only corrects ensemble mean
and standard deviation thin stable layers in individual ensem-
ble members at the top of their respective surface-based con-
vective boundary layers are not kept and smoothed out. Con-
trarily, both multivariate ensemble copula coupling methods
are naturally able to keep them. As in the winter case, cor-
rections from ECC-T are smaller than from ECC-Q. Without
being able to fully explain this behavior, we speculate that
this is related to the fact that ECC-Q assumes equally spaced
probabilities for the transformation from probability space to
temperature space. ECC-T borrows these probabilities from
the raw ensemble. Thus, ECC-T could potentially represent
outliers better than ECC-Q, as points in probability space can
be distinct from the majority of the points.

Figure 11. Multivariate rank histograms of the samples of the raw
ensemble (RAW), quantile sample of the NGRVC-postprocessed
ensemble (NGRVC-Q), quantile sample of ECC (ECC-Q), random
sample of ECC (ECC-R) and the transformed RAW sample (ECC-
T). Top row: average rank histograms; bottom: band-depth his-
tograms. Data include all available stations, all lead times and the
31 pressure levels between 1020 and 400 hPa.

4.3 Evaluation of forecast performance over the whole
period

The performance of the different correction methods is eval-
uated both graphically with rank histograms and numerically
with the energy score and variogram score (cf. Sect. 3.4) for
the whole period 15 September 2016–15 September 2019.

Figure 11 assesses the calibration of forecasts over all lo-
cations, lead times and pressure levels graphically through
average (ARH) and band-depth (BDH) multivariate rank his-
tograms. The strong excess at low ranks in both histograms
suggests that the raw ensemble profiles are systematically
too warm. The pronounced ∩ shape of the average rank his-
togram for the quantile samples of univariate NGRVC cor-
rection (second column in Fig. 11) indicates overdispersion.
This is due to the construction of the NGRVC-Q ensemble,
which assumes a correlation of unity between the temper-
atures at different levels (Wilks, 2017). All three versions
of the multivariate ensemble copula coupling reduce this
overdispersion, but fail to eliminate it.

Figure 12 shows the univariate performance as evaluated
with the CRPS (first column) and compares it to the multi-
variate performance evaluated with the energy score, which
is the multivariate generalization of the CRPS (second col-
umn), and with the variogram score, which weights the rep-
resentation of the correlation structure more strongly (third
column). Lower values of all three scores are better. When
evaluated over all lead times and vertical levels (first row)
the univariate metric of the CRPS score in Fig. 12 obviously
shows the largest improvement for the univariate postpro-
cessing method (NGR-Q). However, the CRPS score for the
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Figure 12. Bootstrapped continuous ranked probability score (CRPS, first column), energy score (ES, second column) and variogram score
(VS, third column) for the raw ensemble (RAW), the quantile sample of the NGR-postprocessed (NGRVC-Q), the quantile sample of ECC
(ECC-Q), the random sample of ECC (ECC-R) and the transformed sample of ECC (ECC-T). The first row shows results for all pressure
ranges and lead times combined, the second row stratified by three pressure ranges but over all lead times, and the third row by three lead
times. Note that the range of the scores changes between rows. The bottom row shows the scores for the temperature gradient dT/dp. Lower
values are better for all three scores.

multivariate ensemble copula coupling methods is on par or
only slightly worse. When the multivariate metrics of energy
score (Fig. 12a) and variogram score (Fig. 12c) are used, the
univariate one falls decisively behind even the raw ensem-

ble, as already seen in the rank histograms (Fig. 11) and the
winter case study (Fig. 8).

When the scores are stratified into three pressure ranges
(second row of Fig. 12) it can be seen in all three metrics
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that the lowest layer next to the surface is the most diffi-
cult one for the raw ensemble. However, this is also the layer
where the postprocessing achieves the largest improvements
in all three scores. Unsurprisingly, the univariate postpro-
cessing has poorer multivariate metrics of energy and vari-
ogram scores than the raw ensemble (with the exception of
the energy score of the lowest layer). Improvements from
the copula coupling methods in the lowest layer are much
larger than in the two layers higher up. One result for which
we have no explanation is why the energy score of the raw
ensemble is better for the layer between 850 and 700 hPa,
which is still partly in the boundary layer for at least part of
the times, than for the layer above the altitude of the 700 hPa
level. The variogram score, which more strongly weights the
structure of the profile, does not show such a behavior.

A stratification by lead time (third row of Fig. 12) shows
first the expected worsening of the raw ensemble scores for
longer lead times. Again, the multivariate scores of the uni-
variately postprocessed (NGR-Q) ensemble are worse than
for the raw ensemble. While the copula coupling methods
still improve the raw ensemble for a +72 h forecast, 144 h
are too far into the future to still achieve an improvement
over the raw ensemble data.

The last row of Fig. 12 shows the vertical temperature gra-
dient, which is only a derived quantity but not the response
variable of the postprocessing itself. Therefore it should not
come as a surprise that the univariate postprocessing with
NGR-Q performs worse than the raw ensemble for the uni-
variate CRPS metric. The copula coupling methods manage
to improve the energy score over the raw ensemble. How-
ever, they cannot beat the raw ensemble in the variogram
score. Since the variogram score weights the correlation as-
pect of the multivariate performance more strongly, this in-
dicates that if one is interested in accurate temperature gra-
dient forecasts it might be advisable to directly postprocess
the gradients themselves instead of deriving them from the
postprocessed temperatures.

5 Discussion and conclusions

Postprocessing ensembles of numerical weather prediction
model forecasts with statistical models trained on past en-
semble forecasts and “truth”, i.e., observations, improves
these forecasts further and has thus been a burgeoning field
of research, of which Vannitsem et al. (2018) give a compre-
hensive review. A recent push has been towards multivariate
postprocessing, which honors the correlation structure – be it
between different variables or the same variable along time or
in space. One popular method is copula coupling. When ap-
plied in space, the method has so far been limited to (quasi)-
horizontal data, e.g., air temperature at three sites (three di-
mensions) (Schefzik, 2017) or (quasi)-horizontal fields of
temperature, precipitation and wind (Schefzik et al., 2013).

Postprocessing the vertical structure of (ensemble) NWP
forecasts, however, has remained largely unexplored. Since
the vertical structure strongly influences exchange processes,
onset and cessation of convection, formation of clouds and
precipitation, improvement over the raw ensemble forecasts
is arguably as important as for horizontal fields. Renkl (2013)
started to explore the potential by postprocessing vertical
temperature profiles from EPS forecasts by combining a
reduction of the dimensionality with kriging. He reduced
the dimensions of the vertical profiles by reconstructing
them with their leading normal modes, which retained about
80 % of their variance. Subsequently the coefficients of these
modes were adjusted with kriging for groups of ensemble
members.

We take a different approach modeled on results for quasi-
horizontal postprocessing and postprocess the vertical pro-
files using a combination of univariate calibration and copula
coupling. ECC needs probability distributions, also known
as margins, at each pressure level. The margins are obtained
by two univariate techniques, which are enhanced variants of
the classical nonhomogeneous Gaussian regression (NGR).
When the coefficients of NGR vary diurnally, seasonally and
in the vertical (NGRVC, Simon et al. (2017); Lang et al.
(2020)) the performance is slightly better than when using
standardized anomalies with precomputed diurnally, season-
ally and vertically varying climatologies of the SAMOS ap-
proach (Dabernig et al., 2017; Stauffer et al., 2017). While
NGRVC was used here for preprocessing the data for ECC,
SAMOS is equally suitable. NGRVC only corrects the ex-
pectation and the scale of the whole ensemble, but not of
members individually. If the scale correction varies little over
the whole profile, as is the case here, the vertical gradient re-
mains nearly the same, which might be a disadvantage when
achieving strongly varying gradients is important for the fur-
ther application of the postprocessed profiles.

Stable layers, for example, are crucial for the impediment
of vertical motions and exchange: they determine the top of
the boundary layer and the mixing volume for pollutants.
While their scale might be too small to have predictability to
+6 d, the processes forming them such as surface heating and
large-scale subsidence might still be predictable. For a fore-
caster it is important to know about the possible existence of
(very) stable layers despite an uncertainty in altitude, thick-
ness and strength instead of having to infer their existence
from a slight increase in stability in a smoothed-out profile
that a univariate postprocessing such as NGRVC delivers.

Using the univariately corrected margins for further and
multivariate postprocessing with copula coupling better re-
produces such (potentially very thin) stable layers. With
ECC the rank order structure of the ensemble of NWP fore-
casts from the ECMWF-EPS is conserved. Several sampling
strategies might be used with copula coupling. We used three.
To sample randomly (ECC-R) is unadvisable as it may de-
liver worse results than the raw ensemble forecasts. On the
other hand, quantile resampling (ECC-Q) and sampling with
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rescaling of the raw ensemble by conserving the relative dis-
tances between ensemble members (ECC-T) and thus also
accounting for extreme ensemble members are successful. Of
the two, ECC-T is overall better than ECC-Q in all three ver-
ification measures used: rank histograms, energy score and
variogram score.

The largest improvements are obtained for the profiles
in the atmospheric boundary layer over all lead times and
all seasons and also in the two case studies shown. Conse-
quently, this is also the layer where the largest potential for
improvements of the NWP model is, which is a well-known
fact (e.g., Holtslag et al., 2013) since many processes shaping
the boundary layer have to be parameterized in such models.
The current postprocessing approach has potential for fur-
ther improvement by adding more covariates, as has been
shown in other postprocessing scenarios (e.g., Scheuerer,
2014; Scheuerer and Hamill, 2015a; Messner et al., 2017).
For some practical forecasting purposes, the humidity fore-
casts have to be additionally postprocessed with the con-
straint that the dew-point temperature must not exceed the
(dry-bulb) temperature.
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Appendix A: Generalized additive models for
location, scale and shape

The main motivation for using GAMLSS models is to be able
to set up additive predictors of nonlinear smooth functions
for each parameter of a distribution (Rigby and Stasinopou-
los, 2005).

We assume that the response variable y follows a para-
metric probability distribution D, which is determined by k
parameters θ1, θ2, . . . , θk:

y ∼D(θ1,θ2, . . .,θk). (A1)

The parameters θ1, θ2, . . . , θk determine the location, scale
and shape of the probability distribution. The parameters are
conditioned on covariates in a nonlinear way by additive pre-
dictors such as

g(θ1)= β0+ f1(x1)+ f2(x2,x3)+ f3(x4) · x5+ . . ., (A2)

which can be set up for each parameter and where g(·) is a
link function that maps the parameter to the real line. For
instance, for a Gaussian distribution µ and σ are linked to
their predictors using the identity and the log function, re-
spectively, for g(·). The latter ensures that the parameter σ is
strictly positive, while its predictor can take any value on the
real line.

The functional terms f? in Eq. A2 are modeled by spline
bases such as thin plate or cyclic cubic splines (Wood, 2017).
They are employed within the additive predictor in various
forms.

– f1(x1) is a one-dimensional smooth, potentially nonlin-
ear function depending on the covariate x1.

– f2(x2,x3) is a two-dimensional smooth function based
on the tensor product of two univariate spline bases that
depends on the covariates x2 and x3.

– f3(x4) · x5 expresses a linear relationship of x5 with a
varying coefficient expressed by the smooth function
f3(x4) depending on x4.

In the present study GAMLSS models are estimated by
maximizing a penalized log-likelihood. The models were
fitted with R package gamlss (Stasinopoulos and Rigby,
2007).
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Code and data availability. ECMWF-EPS data of ensemble
mean and standard deviation used for univariate postprocessing are
available from ECMWF upon request. Charges may apply. Data
at model levels of individual ensemble members, which ECMWF
does not store, are available from the authors after receiving permis-
sion from ECMWF (ECMWF, 2012). Radiosonde data are freely
available from the Integrated Global Radiosonde Archive (IGRA,
NOAA, 2019).

Data were processed in R using the following packages: mgcv,
gamlss, crch and scoringRules.
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