
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 61–77, 2020
https://doi.org/10.5194/ascmo-6-61-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Robust regional clustering and modeling of
nonstationary summer temperature

extremes across Germany

Meagan Carney and Holger Kantz
Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

Correspondence: Meagan Carney (meagan@pks.mpg.de)

Received: 28 November 2019 – Revised: 24 March 2020 – Accepted: 5 May 2020 – Published: 8 June 2020

Abstract. We use sophisticated machine-learning techniques on a network of summer temperature and precip-
itation time series taken from stations throughout Germany for the years from 1960 to 2018. In particular, we
consider (normalized) maximized mutual information as the measure of similarity and expand on recent clus-
tering methods for climate modeling by applying a weighted kernel-based k-means algorithm. We find robust
regional clusters that are both time invariant and shared by networks defined separately by precipitation and tem-
perature time series. Finally, we use the resulting clusters to create a nonstationary model of regional summer
temperature extremes throughout Germany and are thereby able to quantify the increase in the probability of
observing high extreme summer temperature values (> 35 ◦C) compared with the last 30 years.

1 Introduction

Extremes in temperature have lasting affects on human health
(Gasparrini et al., 2017), power consumption (Thornton et
al., 2016; Bartos et al., 2016; Burillo, 2019), biodiversity,
and ecosystem services (Bellard et al., 2012; Balvanera et
al., 2013). As extreme events occur in the tails of probability
distributions, studying them allows us to make predictions
of rare, and more catastrophic, weather events. For this rea-
son, recent climate literature has become more focused on
extreme event statistics (Brown et al., 2008; Cheng et al.,
2014; Christidis et al., 2011; Finkel and Katz, 2018).

Modeling extreme events typically involves fitting a gener-
alized extreme value (GEV) probability distribution to these
data under the assumption that the parameters of this dis-
tribution do not change in time or are “stationary” (Coles,
2001). Climate variability has resulted in challenges to these
assumptions. Steady increasing trends in the mean air tem-
perature have been observed worldwide (Hansen et al., 2010;
Wergen and Krug, 2010) and have been attributed to anthro-
pogenic green house gas emissions (Erkwurzel et al., 2017;
Hansen et al., 2012; Christidis et al., 2011). With the con-
tinued warming trend and recurring heat waves sweeping
across Europe (Kyselý, 2002; Schär et al., 2004), most re-

cently occurring in the summers of 2015, 2018, and 2019,
the need for nonstationary modeling for accurate extreme
temperature prediction has become more apparent (Christidis
et al., 2015; Hasan et al., 2013; Hamdi et al., 2018; Rahm-
storf and Coumou, 2011). We cite Caroni and Panagoulia
(2016), Gao and Zheng (2018), and Hamdi et al. (2018) for
examples of nonstationary extreme value modeling; however,
there are numerous other examples in the literature. Non-
stationary adaptations are particularly important for coun-
tries that are less equipped to handle these high temperature
events, such as Germany (Tomczyk and Sulikowska, 2018;
Kosanic et al., 2019).

Along with nonstationary modeling, there is the need to
create regional models of extremes as policy making and
governmental response are most influenced when extreme
weather events are predicted on a larger scale. With the intro-
duction of machine-learning techniques such as maximized
modularity algorithms (Newman, 2006; Duch and Arenas,
2005) and spectral clustering (Hastie et al., 2008; Luxburg,
2007) in many scientific areas including genetics, physics,
computer science, and neuroscience, among others (Guimera
and Amaral, 2005; Treviño et al., 2012; Zscheischler et al.,
2012; Azencott et al., 2018), we are better equipped to deal
with large data which provide a more accurate, global un-
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derstanding of networks. These techniques are particularly
useful for dense clusters, such as those observed in climate
data where meteorological towers are gridded; networks that
are affected by many external factors; and where obvious di-
visions are unknown.

Recently, spectral clustering methods have been shown to
provide reasonable clustering results for climate networks
defined by a set of time series (Carney et al., 2019); how-
ever, these methods may fail when networks with high intra-
cluster similarity are considered. We expand on the meth-
ods of Carney et al. (2019) by introducing a weighted kernel
approach based on a spectral view of the network that al-
lows for more reliable clustering of dense climate networks
where simple k-means methods cannot be reliably imple-
mented. This method provides a robust regional clustering
of summer temperature time series from meteorological sta-
tions throughout Germany. We show that these regions are
both time invariant and equivalent over summer temperature
and precipitation time series. We use these clusters to create
nonstationary regional models of temperature extremes. Our
results show a significant increase in the probability of re-
turns for high summer temperature values (> 35 ◦C) for each
region in Germany.

This paper is outlined as follows. Section 2 is broken into
three parts: Sect.2.1 contains details on the chosen subset of
data; Sect. 2.2 provides relevant background on clustering
methods and a detailed description of the clustering algo-
rithm; and Sect. 2.3 provides relevant background on extreme
value modeling and details on the methods used for regional
modeling of summer temperature extremes. Section 3 is bro-
ken into two parts: Sect. 3.1 contains results on the cluster-
ing algorithm applied to summer temperature and precipi-
tation time series taken from the stations across Germany;
and Sect. 3.2 outlines the extreme value results on the station
level and their incorporation into the regional models formed
from the clustering outcome. Section 4 is a brief summary of
the paper containing future work motivated by the results in
this paper.

2 Data and methods

2.1 Data

The data in this analysis were taken from the Deutscher Wet-
terdienst Climate Data Center (DWD CDC, 2018a), which
contains climate records from stations across Germany. We
use three data sets from the DWD in total: hourly tem-
perature values from 1960 to 2018 (measured in Celsius),
hourly precipitation values from 1995 to 2018 (measured in
millimeters), and daily precipitation amounts from 1960 to
2018 (measured in millimeters). All three data sets are used
in clustering analysis, although only the hourly temperature
data set is used for extremes analysis. We choose two precip-
itation data sets because hourly precipitation values are not
available across Germany before 1995 and daily precipita-

Table 1. DWD data sets used in clustering.

DWD data set Time interval No. of
stations

Hourly temperature 1960–2018 56
Hourly precipitation 1995–2018 115
Daily precipitation 1960–2018 65

Figure 1. Geographic locations of 68 stations used in regional clus-
tering and modeling of temperature extremes.

tion values do not provide as much resolution. A summary of
these data sets can be found in Table 1.

The time interval from 1960 to 2018 provides a general
representation of all climatology in Germany and a reason-
able quantity of extreme values for modeling. For informa-
tion on station locations used in this analysis, see Fig. 1; de-
tailed station location and identification information can be
found in Table A1.

Quality control was performed by the DWD CDC with de-
tails provided in Kaspar et al. (2013). We remark that all val-
ues used in this analysis passed this preprocessing procedure.
These data are not detrended to account for the urban heat is-
land; however, we do not expect this to affect the quality of
this analysis because most stations are located several kilo-
meters outside of major cities. With the transfer from manual
to automatic weather recording stations, additional consid-
erations are made while investigating the statistical parame-
ters in these data. Some stations in our subset contain miss-
ing values; while there are methods that allow us to replace
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Figure 2. Graphical form of the network defined by temperature
time series emphasizing the density of the network. Each node rep-
resents a station in the network. Each edge represents a positive
similarity between two stations. Note that this graph is not com-
plete because low values of similarity (< 0.1) are taken to be zero
in this analysis.

missing data in the time series, such as linear interpolation
and the like, these methods require an a priori assumption on
the trend in the time series. Stations containing missing val-
ues are removed from extremal analysis; however, they are
still used for regional clustering because missing data will
not notably affect the algorithm.

2.2 Regional clustering

This section discusses some machine-learning tools used to
perform regional clustering by viewing the set of time series,
corresponding to our subset of weather stations, as a network.
The set of time series can be viewed as a weighted network
(in graph form: a set of nodes and edges) where each station
is a node. The weighted edge between two nodes is calcu-
lated by a similarity measure that relies on the corresponding
time series (Fig. 2).

Given a network, the goal of clustering analysis is to find
a partition with high intra-cluster similarity and low inter-
cluster similarity; however, solving this system is an np-
hard (non-polynomial) problem. Relaxations of this problem
can be split into two approaches: (1) maximizing modular-
ity through partitioning algorithms and redefined modular-
ity metrics (Newman, 2006; Duch and Arenas, 2005; Sun et
al., 2009; Li et al., 2008; Chen et al., 2018) or (2) minimiz-
ing a distance function through spectral clustering, k-means,
and the like (Hastie et al., 2008; Luxburg, 2007; Dhillion
et al., 2004). Under standard measures of modularity, Li et
al. (2008) showed that these two approaches have an equiv-

alence relation: modularity is maximized if and only if the
kernel k-means distance is minimized.

The authors in Carney et al. (2019) approach regional clus-
tering of temperature time series using the spectral cluster-
ing method equipped with k-means (Luxburg, 2007). Given
n time series, each time series is represented by a point in
Rn where the coordinate is given by the corresponding value
of similarity to every time series in the network. The goal of
this algorithm is then to find hyperplane separations between
the clusters in Rn by minimizing the objective function de-
fined by the sum of the intra-cluster distances. The spectral
portion of this algorithm allows for a reduction in the dimen-
sion of the system which results in a set of more easily sep-
arable clusters in the lower-dimensional space. The advan-
tage of this approach is that it is computationally efficient
and reliable provided that the clusters can be linearly sepa-
rated. Linear separability is rarely the case with larger, dense
clusters (such as in this study) where all similarity measures
are close in value. Instead, we employ a weighted Gaussian
kernel k-means approach. This method provides a more re-
liable regional clustering of the time series by allowing the
separation of the clusters using a nonlinear function at some
computational expense. The weights wh are given by eigen-
values λh of a normalized symmetric, positive definite matrix
so that all λh ∈ [0,1]. These weights serve to compress the
clusters along coordinates of less importance, in terms of the
corresponding eigenvalue, wh = λh� 1 and maintain space
along coordinates of most importance wh = λh ≈ 1. We out-
line the main ideas of the algorithm here; for a more rigorous
explanation we refer the reader to the Appendix A1. We also
refer to Wang et al. (2019) for a nice introduction on kernel
k-means and Hastie et al. (2008, Sect. 14.5.3) and Luxburg
(2007) for more information on the spectral portion of this
algorithm.

– Step 1. Given any matrix of similarities Si,j ≥ 0, calcu-
late the normalized Laplacian

L= D−1/2 (D−S)D−1/2, (1)

where D is the diagonal matrix with entries Di,i =∑n
j=1Si,j .

– Step 2. Calculate the spectrum of L and choose a cutoff
` used to create a subspace of eigenvectors V h for h=
1, . . .,` of L corresponding to the first ` eigenvalues.

– Step 3. Calculate the weighted Gaussian kernel

K
(
Ŵ i,Ŵ j

)
= exp

(
[||Ŵ i ||

2
+ Ŵ T

i Ŵ j

−||Ŵ j ||
2
]/s2

)
, (2)

where Ŵ i and Ŵ j are the respective weighted ith and
j th row vectorsWi andWj of the matrix of eigenvectors
V h and s ∈ R. Ŵ i,h = wh×Wi,h where wh = 1− λh.
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– Step 4. Run kernel k-means.

– Step 4.1. Start with k random partitions Pk .

– Step 4.2. Compute the centers Ck =∑
m∈Pk

K(Ŵm, ·)/card(Pk), where K(Ŵm, ·)
is the mth row vector of the kernel matrix K and
card(·) is the cardinality function.

– Step 4.3. Assign Ŵh to the partition Pk with cen-
troid Ck such that∑
k

∑
Ŵh∈Pk

||K(Ŵh, ·)−Ck||2 (3)

is minimized.

– Step 4.4. Recalculate the centroids based on new
assignments of Ŵh.

– Step 4.5. Repeat assignment until a stable minimum
is reached.

It is possible that the stable minimum reached is not the
global minimum. We run the algorithm for 1000 different ini-
tial sets of partitions and choose the cluster associated with
the lowest minimized distance. In addition, the number of
partitions (clusters) in kernel k-means needs to be assumed a
priori. A standard practice is to run the algorithm for differ-
ent values of k and choose the optimal value as the smallest k
corresponding to the greatest decrease in variance. This tech-
nique is typically referred to as the “elbow” method Yuan and
Yang (2019).

Mutual information has become a more common measure-
ment of similarity in recent literature because it is capable of
measuring nonlinear relationships between two time series.
For two random variables (or time series) X1 and X2 taking
discrete values, mutual information is defined as

I(X1,X2)=
q∑
i=1

q∑
j=1

p(x1,i,x2,j ) log
(

p(x1,i,x2,j )
p(x1,i) ·p(x2,j )

)
, (4)

where p(x1,i)= P(X1 = x1,i) and p(x1,i,x2,j )= P(X1 =

x1,i,X2 = x2,j ). Intuitively, mutual information compares
the probability distributions ofX1 andX2 by measuring their
dependence in terms of the joint distribution relative to an
assumption of independence. A positive value for Eq. (4) in-
dicates that X1 and X2 are dependent in some sense. On the
other hand, it is straightforward to see that Eq. (4) equals
zero if X1 and X2 are independent. We may rewrite mutual
information in terms of the entropy of X1 and X2 as

I(X1,X2)=H(X1)+H(X2)−H(X1,X2), (5)

with entropy H(X1) defined by

H(X1)=−
q∑
i=1

p(x1,i) logp(x1,i), (6)

and joint entropy H(X1,X2) given by

H(X1,X2)=−
q∑
i=1

q∑
j=1

p
(
x1,i,x2,j

)
logp

(
x1,i,x2,j

)
. (7)

This reconstruction provides a natural expression of mutual
information in terms of information and allows for the cal-
culation of error under the compression of the continuous
time series. As the true probability distributions of the data
are unknown, a standard approach to calculating the entropy
of the time series is to compress the data into discrete bins
which form an approximate uniform distribution. From here,
the error on the mutual information can be calculated by
comparing the resulting compressed distribution with pro-
portion probabilities p̂(x1,i,x1,j ) to the uniform distribution
with equal proportion p(x1,i,x1,j ) (Roulston, 1999).

Compressing the time series can result in an obvious loss
of information from the system. Following the work of Car-
ney et al. (2019) and Zhang et al. (2018), we perform gradient
ascent by varying the end points of the compression interval
to maximize the mutual information between each pair of
time series. We will refer to this measurement as the maxi-
mized mutual information (MMI). This approach should not
change the order of estimated error on the mutual informa-
tion as entropy is maximized on uniform distributions.

We use a normalized version of the maximized mutual in-
formation (NMMI),

U(X1,X2)= I(X1,X2)/min{H(X1),H(X2)}, (8)

for the network defined by the temperature time series. Nor-
malized versions of the mutual information can produce bet-
ter clustering results by allowing the mutual information to
be viewed relative to the entropy of the time series. In the
case of the precipitation network, we find that normalizing
the maximized mutual information causes a large error in the
spectral decomposition of the normalized Laplacian. This er-
ror is a product of naturally low entropy in all time series
causing a large value of NMMI and, hence, a large value of
D, so that the values of L become too low for optimal spec-
tral decomposition. For this reason, we use the unnormalized
version of the maximized mutual information for the precipi-
tation network. Higher values in the entropy for the tempera-
ture time series can be attributed to hourly and annual cycles,
resulting in a distribution with less dispersion than that of the
precipitation time series.

Mutual information may return a large positive value for
negatively correlated variables. In this analysis, we cross ref-
erence our clustering outcomes from mutual information and
correlation. Summer hourly temperature time series (with
the daily cycle removed) for all stations in the network are
positively correlated. This is expected because Germany is
smaller than the average warm air mass. If we attempt to
cluster the network by correlation, we find the minimized
Euclidean distance plot loses its structure and no longer pro-
vides an obvious value for the number of clusters k. We make
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two observations: first, the correlation network does not al-
low for reliable clustering of regional temperature values;
and, second, mutual information adds substance to the net-
work.

We remark that mutual information provides a reasonable
estimate of similarity in the context of clustering extremes
because it compares the probability distributions of the time
series to determine their shared information. Recent litera-
ture has also introduced measures of similarity defined by
the extremal index (EI; Bador et al., 2015). This measure in-
corporates a comparison of the location and scale parameters
from the time series’ corresponding GEVs in the sense that
two GEVs with equal shape parameters and differing EIs are
equivalent up to a shift of their location and scale parameters
(Coles, 2001, Theorem 5.2).

2.3 Local and regional extreme value modeling

The block maximum method is used in this analysis to model
the maximum values of the time series (Coles, 2001). In this
method, the time series is broken into blocks of a chosen
length l so that asymptotic results hold: whereM is the length
of the time series, the number of maximum values is M/l.
Provided the block maxima are independent and stationary,
classical extreme value results ensure that they will converge
to a generalized extreme value (GEV) distribution described
by a shape k, location µ, and scale σ parameter.

F (x)= exp
[
−
(
1+ k

(x−µ
σ

))−1/k] (9)

under the requirement 1+k
(
xi−µ
σ

)
> 0 ∀i. The shape param-

eter describes the tail behavior of the maximum values and
defines the exact probability distribution to which they will
converge, Frechét (Type II) for k > 0, Weibull (Type III) for
k < 0, or Gumbel (Type I) for k = 0.

When modeling real-world data, it is natural to use max-
imum likelihood estimation (MLE; Coles, 2001) or the L-
moments method (Hosking and Wallis, 1997) to estimate the
three parameters of the GEV model. L-moments is a com-
mon technique in climate modeling, and its advantage comes
from its stability for low quantities of data (Hosking, 1990);
however, the limiting distributions of the estimates are un-
known, and bootstrapping methods are required to obtain
confidence intervals. Moreover, adaptations to the nonsta-
tionary model are not well studied. As we have a relatively
large pool of data, maximum likelihood estimation is cho-
sen to estimate the parameters and confidence intervals of the
GEV distribution. This is done by maximizing the following
log-likelihood function for a set of m block maxima:

Lk,µ,σ =−m logσ − (1+ 1/k)
m∑
i=1

log
[

1+ k
(
xi −µ

σ

)]

−

m∑
i=1

[
1+ k

(
xi −µ

σ

)]1/k

, (10)

Figure 3. Clustering result for the hourly temperature network with
similarity defined by NMMI over the time interval from 1960 to
2018.

provided that

1+ k
(
xi −µ

σ

)
> 0 ∀i (11)

Strict independence is not always necessary for conver-
gence of the maxima to the GEV (Lucarini et al., 2016); how-
ever, in practice it is common to choose blocks that are “long
enough” for independence to be observed. As temperature
time series follow a daily cycle, this daily cycle is removed
during independence analysis by subtracting the average cy-
cle over all days in the data. Seasonal cycles are not con-
sidered as the data were taken only from summer months.
Compression is performed on the centralized data vector by
assigning +1 to values that increase in the next step, −1 for
values that decrease, and 0 for values that stay the same.
These quantities are tabulated, and the chi-square test of in-
dependence is performed.

Stationary assumptions require the location and scale pa-
rameters of the maxima to not change in time. We test this as-
sumption using the Mann–Kendall trend test and a mean dif-
ference comparison of the time intervals from 1960 to 1990
and from 1991 to 2018 for the temperature maximum at each
station where we find evidence of a linear trended location
parameter.

Finally, we perform a likelihood-ratio test on the station-
ary and nonstationary model equipped with a linear time-
dependent location parameter µ(t)= β0+β1× t . Estimates
of the parameters of the nonstationary GEV model were ob-
tained by maximum likelihood estimation of the following
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Figure 4. Clustering result for the (a) daily precipitation amounts network taken from the hourly DWD data set with similarity defined by
MMI, and (b) the hourly temperature network with similarity defined by NMMI over the time interval from 1995 to 2018.

Figure 5. Clustering result for the daily precipitation amounts network taken from the daily DWD data set over (a) the time interval from
1960 to 2018 and (b) the time interval from 1995 to 2018 with similarity defined by MMI.

log-likelihood function:

Lk,β0,β1,σ =−m logσ

− (1+ 1/k)
m∑
i=1

log
[

1+ k
(
xi −µ(ti)

σ

)]

−

m∑
i=1

[
1+ k

(
xi −µ(ti)

σ

)]1/k

, (12)

where ti is the index of a block over which the maxima is
taken.

The likelihood-ratio test compares the final log-likelihood
values L1 and L0 of the nonstationary model M1 and the
stationary model M0 via the “deviance statistic”:

D = 2{L1(M1)−L0(M0)}, (13)

where D ∼ χ2(1). To test whether the resulting nonstationary
model fits the data, we transform the original time series of
maximum values, Zt by

Z̃t =
1
k

log
{

1+ k
(
Zt −µ(t)

σ

)}
. (14)
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Figure 6. Example time plots for the 2-year maximum likelihood estimate of the location parameter with standard error bars for weekly
maximum temperature values taken from (a) Freiburg with fitted regression y = 25.89+ 0.10× t and (b) Augsburg with fitted regression
y = 24.94+ 0.06× t (where t is 2-years). Time plots from other stations are similar and can be attributed to the previously mentioned
correlations between stations throughout Germany.

Figure 7. (a) Scatter plot of the yearly change in the temperature mean according to the likelihood GEV model for all stations. (b) Likelihood
values comparing the linear fit of the summer temperature mean to that of a stationary mean. All likelihood values surpass the chi-square
value of χ2(1,0.05)= 3.841.

It is known that Z̃t follows a stationary Gumbel distribu-
tion with µ= 0 and σ = 1 (Coles, 2001). We perform the
Anderson–Darling goodness of fit test on Z̃t under these as-
sumptions for every station in this analysis.

Regional models are created by formulating a mixed GEV
distribution from all of the stations in a regional cluster. The
mixed GEV distribution is given by

F (z1, . . .,zN )=

1/N
N∑
i=1

exp

[
−

(
1+ ki

(
zi −µi(t)

σi

))−1/ki
]
, (15)

whereN is the number of stations in the regional cluster. This
distribution describes the probability of an observed temper-
ature extreme occurring in the regional population defined by
the cluster of subpopulations (stations) given an equal prob-
ability of sampling from any subpopulation in the regional
population. We refer to Yoon et al. (2013) for an example of
mixed GEV distributions; however, we remark that fitting re-
sults are not required in our context because subpopulations
are known.
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3 Results and conclusions

3.1 Regional clustering results

As discussed in Sect. 2.2, we compute the maximized mu-
tual information between each pair of stations represented
by their corresponding hourly temperature time series from
1960 to 2018. Throughout this analysis, all error for maxi-
mized mutual information is on the order of 10−5. Outcomes
of our clustering algorithm applied to the maximized mutual
information matrix suggest that Germany has three (k = 3)
distinct climate regions located in (roughly) the northwest,
the northeast, and the south (Fig. 3).

To test for time invariance of the clusters, we apply the
algorithm to the intervals from 1960 to 2000, from 1970 to
2010, and from 1980 to 2018. Resulting clusters are equiva-
lent for all three time intervals.

For further investigation, we consider clusters obtained by
maximizing the mutual information between pairs of sta-
tions represented by their corresponding daily precipitation
amounts. Daily precipitation amounts for this analysis are
taken from the same hourly recording data set as the tem-
perature data. Precipitation data in this set are only available
for the time period from 1995 to 2018. All available data
over the period from 1995 to 2018 are used to show the ro-
bustness of the regional clusters; however, these data are not
used in the final regional cluster analysis of temperature ex-
tremes. Hourly precipitation values are summed over each
24 h period and the resulting time series is used to compute
the MMI matrix. Clustering results suggest the network of
daily precipitation amounts is regionally equivalent to that of
hourly temperature (Fig. 4).

For added measure, we consider the daily precipitation
amounts taken from the daily DWD CDC set which have
values over the same time period (1960–2018) as our tem-
perature data set.

Results from our clustering algorithm show preference
for four (k = 4) regional clusters over Germany. This fourth
cluster is created from a splitting of the southern cluster
(Fig. 5). The period from 1995 to 2018 is checked for this
data set with similar results. An investigation into the raw
data shows slight discrepancies when compared with that of
the summed hourly precipitation data which may be the re-
sult of differences in the time of recording.

3.2 Local and regional extreme value modeling results

For the remaining analysis, we define an extreme (or maxi-
mum) value of the temperature time series as the maximum
taken over data blocks of 7 d (168 data points). We find inde-
pendence over almost all blocks at the α = 0.05 significance
level. The quantity of blocks that do not return independence
are less than 5 % and can be attributed to the type I error of
the test.

Figure 8. Scatter plot illustrating the difference in mean summer
temperature taken over the period from 1960 to 1990 (x axis) and
from 1991 to 2018 (y axis) with standard error bars. All values and
standard error bars are located above the identity.

Recall from Sect. 2.3 that fitting a GEV model to the max-
imum values in a time series requires stationarity of the max-
imum values, e.g., their location and scale parameters do not
change in time. We first test this assumption using the Mann–
Kendall trend test on the 2-year (m= 24 block maxima)
maximum likelihood estimate of the location and scale pa-
rameters for weekly summer temperature extremes with the
p values indicating that a significant trend (α = 0.05) exists
for the location parameter and no trend exists for the scale pa-
rameter for all stations. We choose 2 years (m= 24) of max-
imum values because this exceeds the minimum sample size
requirement for estimating the mean while providing enough
data to investigate the trend. Low quantities of block max-
ima produce larger standard errors on the location parameter.
As a way of obtaining additional information to make con-
clusions regarding the trend, we perform a mean-difference
test on the maximum likelihood estimate of the location pa-
rameter over the time intervals from 1960 to 1990 and from
1991 to 2018 (m≈ 373 block maxima per interval) with the
alternative hypothesis µ1991–2018 > µ1960–1990. As the MLE
location parameter is asymptotically normal, we use the 95 %
confidence intervals to calculate the standard error used in the
mean-difference test. We find that this difference is signifi-
cant (at the α = 0.05 significance level) for every station; see
Fig. 7 for these results. We also refer the reader to Table A2
for more detailed information. We note that, due to the vari-
ability in the location parameter described earlier, low p val-
ues from the Mann–Kendall test imply low p values for the
mean-difference test, whereas the converse is not true. Time
plots are also evaluated as a superficial method of determin-
ing whether this trend is the result of a single change-point
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Table 2. Confidence intervals for transformed regional models.

Regional cluster k 95 %CI µ 95 %CI σ 95 %CI

Northwest −0.0157 [−0.0240,−0.0075] 0.0087 [−0.0061,0.0234] 1.0045 [0.9940,1.0152]
Northeast 0.0154 [0,0.0308] −0.0083 [−0.0303,0.0138] 0.9946 [0.9785,1.0109]
South 0.0009 [−0.0135,0.0154] −0.0006 [−0.0233,0.0222] 0.9997 [0.9833,1.0164]

Figure 9. Return level plots comparing the parametric mixed GEV distribution with confidence intervals and actual mixed temperature
maxima for the (a) northwest, (b) northeast, and (c) south clusters. These plots emphasize the regional model’s fit to the pooled data.

in the 1990s (Fig. 6). These plots show a continued upward
trend, suggesting that this phenomenon is not the result of
manual/automatic instrumental change.

Results from these tests provide justification for consid-
ering nonstationary modeling of the weekly summer tem-
perature extremes. We use maximum likelihood estimation
of the log-likelihood function equipped with a linear trended
location parameter to generate the nonstationary GEV model
for every station in the data set. We compare these results
with the stationary model using the likelihood ratio test, and

we find that the nonstationary model provides a significant
(α = 0.05) improvement over the stationary model for every
station; see Fig. 8 for these results. We also refer the reader
to Table A3 for more detailed information.

We form regional GEV models using the mixed GEV dis-
tribution described by Eq. (14). Stations located at high al-
titude, including Zugspitze and (the mountains near) Gör-
litz, were removed from the regional model. These stations
have location parameter values that are further than 2 stan-
dard deviations away from the regional location parameter.
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Figure 10. Nonstationary generalized extreme value model overlay of 1960 and 2018 weekly temperature extremes for the (a) northwest
(b) northeast, and (c) south regional clusters. The shaded region indicates the probability of observing a weekly extreme higher than 35 ◦C.

This deviation causes issues with the modality and accu-
racy of regional temperature extreme probability estimation.
When creating regional models of extremes, care needs to
be taken regarding the homogeneity of the region in terms
of the shape parameter. This is especially important for re-
gional models of extremes where local phenomena are ob-
served. We remark that the mixed GEV distribution has been
used to describe regional dynamics with unknown local phe-
nomena through likelihood estimation (Yoon et al., 2013);
however, this method is not relevant for our purposes because
the subpopulation GEVs (station GEVs) are known and the
shape parameters for temperature maxima from each station
are nearly equivalent.

To determine how well the regional models represent the
pooled time series, we first transform the time series of max-
ima for each station into a stationary Gumbel distribution us-

ing Eq. (13) and perform the Anderson–Darling goodness of
fit test on the transformed maxima under the null hypothesis
that these data follow a stationary Gumbel distribution with
µ= 0 and σ = 1. We find that all stations follow the null hy-
pothesis at the α = 0.05 significance level. Using Eq. (14),
we create a transformed (stationary) regional model from
the transformed time series that is also expected to follow a
Gumbel distribution of µ= 0 and σ = 1. We perform maxi-
mum likelihood estimation on the transformed regional mod-
els to test this expectation. All 95 % confidence intervals con-
tain the values µ= 0, σ = 1, and k = 0 (see Table 2). This
transformation allows us to create return level plots for the re-
gional model (Fig. 9). Our results suggest that the return lev-
els obtained for the transformed regional model fit the trans-
formed time series. We remark that these return level plots
can only be used in model diagnostics to ensure that the re-
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Table 3. Regional tail probability estimates (in units of occurrences
per year) for weekly temperature extremes above 35 ◦C.

Regional cluster 1960 2018 2018/1960

Northeast 1.90× 10−3 1.13× 10−2 5.95
Northwest 3.10× 10−3 1.58× 10−2 5.10
South 3.40× 10−3 0.02 6.21

gional model is a good representation of the pooled data. Re-
turn times for probabilities of temperature maxima exceed-
ing the threshold must be derived from the mixed GEV with
a fixed time value.

We use the MLE parameters k, µ(t), and σ of the nonsta-
tionary GEV models for the mixed GEV regional distribution
with fixed t related to the beginning of 1960 and the begin-
ning of 2018. Comparing these models shows an increase in
the probability of observing maximum weekly summer tem-
peratures greater than 35 ◦C of up to 6 times for 2018 com-
pared with 1960 (Fig. 10, Table 3). We remark that the largest
difference in the probability of observing an extreme temper-
ature event occurs in the southern cluster, which is likely the
result of ocean regulation on the warming trend in the north-
ern clusters (Pörtner et al., 2020).

4 Summary

In this analysis, we expand on the work of Carney et al.
(2019) by considering a more dense set of networks and
adding a weighted kernel k-means approach to the algorithm.
This addition allows for more reliable clustering where the
k-means method was shown to fail. We find regional clusters
for weather stations throughout Germany by defining a net-
work based on their corresponding summer, hourly tempera-
ture values. The resulting clusters are not only time invariant
but are shared by the network defined by the corresponding
daily precipitation amounts. The addition of more stations
to the network does not radically change the clustering out-
come.

Shared clusters could reflect an underlying relationship be-
tween temperature and precipitation dynamics. This result is
nontrivial because similarity at the station level does not gen-
eralize in an obvious way due to the numerous external fac-
tors that affect regional weather. We remark that the cluster-
ing equivalence does not (necessarily) indicate that tempera-
ture and precipitation move together, rather that their individ-
ual networks contain relationships between stations within
equivalent spacial regions.

We use the clusters we obtain from our algorithm to cre-
ate regional models of the weekly summer temperature ex-
tremes. We find significant increasing linear trends in the lo-
cation parameter of these models and a preference for non-
stationary modeling for all stations in the network. Regional
nonstationary models are created by defining a mixed non-
stationary GEV distribution from likelihood results. Return
time plots are used to validate the results. Regional distribu-
tion models reveal an increase in the probability of observing
a weekly summer temperature maximum above 35 ◦C of up
to 6 times for 2018 compared with 1960.

In future work, we will consider more complicated net-
works defined by both temperature and precipitation val-
ues, simultaneously. We plan to use these results to form
joint probability densities of temperature and precipitation
extremes. Viewing the data in this way will allow us to make
conclusions about the conditional extreme probabilities. We
are also interested in determining whether these clusters are
seasonally dependent or consistent throughout the year.
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Appendix A: Complementary material

A1 A spectral weighted kernel k-means algorithm

The similarity matrix Si,j in this study is transformed into
the normalized Laplacian given by

L= D−1/2(D−S)D−1/2. (A1)

Spectral decomposition is performed on L, and a matrix
is formed with columns given by the first h eigenvectors
[V 1, · · ·,V h] of L. As the Laplacian is normalized, the first h
eigenvalues represent the eigenvectors carrying the most in-
formation from the network (represented by the Laplacian
matrix). The corresponding subspace made of the span of
[V 1, · · ·,V h] is the reduced dimensional network that ap-
proximates the true network well. The rows of this matrix
correspond to the h-dimensional projections of the input
vectors (e.g., the h-dimensional projections of the rows of
the similarity matrix). Each row gives a point representation
x ∈ Rh to the stations in the network. The goal of the next
step in the algorithm is to find divisions that create clusters
of these points in Rh.

Kernel k-means allows for separation of clusters by a non-
linear function. This is done by taking a nonlinear mapping
φ(x) : Rh→ F of each input vector x ∈ Rh into a higher-
dimensional (possibly infinite) feature space. Once in the fea-
ture space, the goal of clustering is to find partitions that min-
imize the objective function now given by

min
1
N

∑̀
k=1

∑
j∈Pk

||φ(xj )−
1

card(Pk)

∑
i∈Pk

φ(xi)||2F , (A2)

where Pk is the kth partition, and i ∈ Pk indicates the index
assigned to Pk . Schölkopf et al. (1998) defined the “kernel
trick” by recognizing that φ can be viewed as a function on
the Hilbert space F equipped with the inner product norm
〈·, ·〉. This allows us to redefine the objective function

min
1
N

∑̀
k=1

∑
j∈Pk

||K(xj , ·)−
1

card(Pk)

∑
i∈Pk

K(xi, ·)||22 (A3)

in terms of a kernelK(xi,xj )= 〈φ(xi),φ(xj )〉. Now, we may
minimize the objective function without having to explicitly
compute the feature vectors φ(x). Choosing K(xi,xj ) as the
Gaussian kernel used in this analysis, given by

K(xi,xj )= exp
(
−||xi − xj ||

2/s2
)
, (A4)

ensures some universality in the sense that any function re-
quired to separate the cluster can be approximated arbitrarily
well by a function of the kernel form. The weighted Gaussian
kernel is calculated by

K(x̂i, x̂j )= exp
(
[||x̂i ||

2
+ x̂Ti x̂j − ||x̂j ||

2
]/s2

)
, (A5)

where w = 1− λ̄; here, λ̄ is the vector of h first eigenval-
ues of L and x̂i,h = wh× xi,h. The values of w represent the
amount of information (given by the associated eigenvalue of
L) carried by a component of x ∈ Rh. By using w to weight
the input vectors of the kernel, we are able to tighten clusters
along coordinates with the least amount of information, or
wh = λh� 1, while maintaining distance along coordinates
with the most amount of information, or wh = λh ≈ 1.
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Table A1. DWD station IDs and locations.

ID Latitude Longitude Location

3987 52.3813 13.0622 Potsdam
5100 49.7479 6.6582 Trier – Petrisberg
1580 49.9859 7.9549 Geisenheim
867 50.3066 10.9679 Lautertal – Oberlauter
2290 47.8009 11.0108 Hohenpeißenberg
4271 54.1803 12.0808 Rostock – Warnemünde
656 51.7234 10.6021 Braunlage
1197 48.9895 10.1312 Ellwangen – Rindelbach
1550 47.4830 11.0621 Garmisch-Partenkirchen
1691 51.5002 9.9507 Göttingen
2261 50.3122 11.8761 Hof
2597 50.2241 10.0792 Bad Kissingen
2601 50.2218 8.4469 Kleiner Feldberg
3730 47.3986 10.2760 Oberstdorf
4104 49.0425 12.1019 Regensburg
4887 48.6657 9.8646 Stötten
5371 50.4973 9.9428 Wasserkuppe
5705 49.7703 9.9577 Würzburg
5906 49.5062 8.5585 Mannheim
691 53.0450 8.7979 Bremen
701 53.5332 8.5761 Bremerhaven
1975 53.6332 9.9881 Hamburg – Fuhlsbüttel
2014 52.4644 9.6779 Hannover
3032 55.0110 8.4125 List on Sylt
3631 53.7123 7.1519 Norderney
1639 50.6017 8.6439 Gießen – Wettenberg
4371 52.1042 8.7521 Bad Salzuflen
4625 53.6425 11.3872 Schwerin
5792 47.4209 10.9847 Zugspitze
433 52.4675 13.4021 Berlin – Tempelhof
662 52.2915 10.4464 Braunschweig
722 51.7986 10.6183 Brocken
853 50.7913 12.8720 Chemnitz
891 53.8713 8.7058 Cuxhaven
1270 50.9829 10.9608 Erfurt–Weimar
1303 51.4041 6.9677 Essen – Bredeney
1358 50.4283 12.9535 Fichtelberg
1443 48.0233 7.8344 Freiburg
1468 48.4537 8.4091 Freudenstadt
1544 52.5129 11.3941 Gardelegen
1684 51.1622 14.9506 Görlitz
2171 50.8519 9.7378 Bad Hersfeld
2483 51.1803 8.4891 Kahler Asten
2928 51.3151 12.4462 Leipzig – Holzhausen
3015 52.2085 14.1180 Lindenberg
3023 52.5181 7.3081 Lingen
3668 49.5030 11.0549 Nürnberg
3946 50.4819 12.1300 Plauen
4466 54.5275 9.5487 Schleswig
5142 53.7444 14.0697 Ueckermünde
5397 49.6663 12.1845 Weiden
5490 51.8454 10.7686 Wernigerode
5629 51.8892 12.6445 Wittenberg
1346 47.8749 8.0038 Feldberg – Schwarzwald
2115 54.1750 7.8920 Helgoland

Table A1. Continued.

ID Latitude Longitude Location

5426 49.3758 8.1213 Weinbiet
3093 52.9724 11.1374 Lüchow
232 48.4254 10.9420 Augsburg
953 49.7619 7.0541 Deuselbach
2559 47.7233 10.3348 Kempten
3126 52.1029 11.5827 Magdeburg
3366 48.2791 12.5024 Mühldorf
3761 49.2070 9.5175 Öhringen
5440 49.0116 10.9308 Weißenburg – Emetzheim
164 53.0316 13.9908 Angermünde
880 51.7760 14.3168 Cottbus
2925 51.3933 10.3123 Leinefelde
2667 50.8646 7.1575 Köln-Bonn

https://doi.org/10.5194/ascmo-6-61-2020 Adv. Stat. Clim. Meteorol. Oceanogr., 6, 61–77, 2020



74 M. Carney and H. Kantz: Nonstationary summer temperature extremes across Germany

Table A2. Location trend results for the hourly temperature time series. pMEAN DIFF HA: µ1960–1990 < µ1991–2018 and pMK HA: trend.

Station µ1960–1990 STE µ1991–2018 STE pMEAN DIFF pMK

3987 25.67 0.23 26.71 0.21 3.43× 10−6 7.50× 10−3

5100 24.93 0.23 26.90 0.23 0 1.73× 10−5

1580 25.88 0.21 27.37 0.21 8.29× 10−13 7.89× 10−4

867 24.99 0.22 26.32 0.19 1.46× 10−9 1.7× 10−3

2290 21.53 0.19 23.04 0.22 8.88× 10−16 3.08× 10−5

4271 21.76 0.23 23.61 0.21 1.11× 10−16 3.25× 10−7

656 20.72 0.22 22.01 0.19 2.64× 10−9 4.08× 10−5

1550 24.13 0.19 25.83 0.21 0 2.00× 10−5

1691 24.90 0.22 25.95 0.22 7.72× 10−7 7.01× 10−4

2261 22.72 0.22 24.44 0.21 1.11× 10−15 3.55× 10−5

2597 25.42 0.22 26.76 0.21 4.89× 10−10 2.7× 10−3

2601 19.84 0.22 21.38 0.19 7.30× 10−13 1.73× 10−5

3730 23.98 0.19 25.44 0.20 1.22× 10−15 2.00× 10−5

4104 25.54 0.19 27.76 0.21 0 3.55× 10−5

4887 21.83 0.19 23.78 0.22 0 3.25× 10−7

5371 18.98 0.22 21.48 0.21 0 1.46× 10−6

5705 25.61 0.21 27.20 0.21 4.04× 10−14 2.64× 10−4

5906 26.78 0.21 28.37 0.22 3.78× 10−15 0.01
691 23.90 0.23 24.87 0.22 8.30× 10−6 2.20× 10−3

701 22.30 0.23 23.64 0.22 3.35× 10−9 2.67× 10−5

1975 23.31 0.23 24.40 0.20 9.96× 10−7 9.30× 10−5

2014 24.34 0.22 25.52 0.21 3.20× 10−8 4.70× 10−5

3631 20.20 0.20 21.37 0.21 2.97× 10−9 6.06× 10−6

1639 25.10 0.22 26.63 0.22 1.64× 10−12 2.64× 10−4

4371 24.31 0.22 25.10 0.19 1.93× 10−4 2.64× 10−4

4625 23.29 0.22 24.52 0.21 1.42× 10−8 9.30× 10−5

5792 6.72 0.20 8.18 0.22 1.81× 10−13 2.31× 10−5

662 24.27 0.22 25.55 0.20 1.90× 10−9 1.58× 10−4

722 15.37 0.23 16.96 0.21 1.54× 10−12 1.11× 10−5

853 23.92 0.23 25.05 0.22 2.34× 10−7 5.00× 10−3

891 21.44 0.21 22.69 0.20 2.11× 10−9 4.08× 10−5

1303 23.55 0.23 24.95 0.20 2.88× 10−10 2.31× 10−5

1358 17.52 0.22 18.45 0.22 7.37× 10−6 0.02
1443 26.50 0.20 28.30 0.20 0 0.02
1468 21.91 0.21 23.69 0.22 0 5.19× 10−6

1684 24.71 0.21 25.95 0.22 1.15× 10−9 1.10× 10−3

2171 25.35 0.22 26.20 0.21 6.07× 10−5 0.02
2483 19.29 0.23 20.45 0.22 1.99× 10−7 1.80× 10−4

3015 25.45 0.23 26.54 0.22 1.27× 10−6 0.03
3023 23.99 0.23 25.19 0.22 6.21× 10−8 5.93× 10−5

3668 25.89 0.21 27.22 0.19 4.49× 10−11 3.30× 10−3

3946 24.02 0.23 26.03 0.21 0 1.49× 10−5

4466 21.97 0.20 22.64 0.21 4.20× 10−4 9.95× 10−4

5397 24.37 0.21 25.88 0.22 9.09× 10−14 9.30× 10−5

1346 15.43 0.20 17.14 0.20 0 4.45× 10−6

2115 18.38 0.14 19.46 0.21 3.89× 10−15 2.00× 10−5

3093 24.57 0.22 25.78 0.20 1.02× 10−8 2.64× 10−4

232 25.24 0.20 26.39 0.21 2.18× 10−9 4.89× 10−4

953 22.66 0.21 24.07 0.19 1.78× 10−11 2.31× 10−5

2559 23.85 0.19 25.65 0.22 0 2.74× 10−7

3126 25.33 0.22 26.68 0.21 3.27× 10−10 8.86× 10−4

3366 25.34 0.18 27.05 0.20 0 8.13× 10−5

3761 25.66 0.20 27.39 0.22 0 3.83× 10−4

5440 24.97 0.20 27.04 0.20 0 1.06× 10−4

164 25.01 0.22 25.70 0.21 7.75× 10−4 0.02
2667 25.15 0.23 26.56 0.22 1.73× 10−10 9.30× 10−5
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Table A3. MLE nonstationary models for temperature maxima. scale σ , shape k, location µ(t)= β0+β1× t , and likelihood D parameters.
Here, t is 1 week.

Station σ k β0 β1 D

3987 4.01 −0.30 25.07 2.88× 10−3 20.50
5100 4.08 −0.31 24.18 4.60× 10−3 51.26
1580 3.76 −0.33 25.23 3.67× 10−3 39.48
867 3.98 −0.35 24.58 2.83× 10−3 22.39
2290 3.48 −0.31 21.05 3.22× 10−3 34.39
4271 3.88 −0.21 21.29 3.52× 10−3 32.38
656 3.89 −0.33 20.01 3.71× 10−3 33.66
1550 3.49 −0.29 23.60 3.63× 10−3 42.84
1691 3.86 −0.30 24.29 2.84× 10−3 20.83
2261 3.92 −0.34 22.08 4.0× 10−3 44.08
2597 3.95 −0.33 24.87 3.25× 10−3 28.22
2601 3.85 −0.33 19.19 3.73× 10−3 38.37
3730 3.43 −0.32 23.53 3.03× 10−3 32.29
4104 3.53 −0.27 24.78 4.90× 10−3 71.25
4887 3.62 −0.31 21.13 4.37× 10−3 58.74
5371 3.98 −0.32 18.22 5.29× 10−3 73.61
5705 3.86 −0.31 24.87 4.08× 10−3 45.83
5906 3.74 −0.33 26.06 4.08× 10−3 47.58
691 3.92 −0.28 23.46 2.42× 10−3 14.81
701 3.94 −0.26 21.75 3.22× 10−3 25.06
1975 3.97 −0.26 22.73 2.90× 10−3 19.94
2014 3.84 −0.29 23.72 3.10× 10−3 25.33
3631 3.53 −0.14 19.92 2.32× 10−3 15.24
1639 3.86 −0.33 24.48 3.64× 10−3 36.06
4371 3.85 −0.29 23.80 2.34× 10−3 14.36
4625 3.92 −0.26 22.74 2.99× 10−3 21.96
5792 3.61 −0.36 6.62 2.14× 10−3 17.54
662 3.82 −0.28 23.66 3.22× 10−3 27.30
722 3.98 −0.32 14.46 4.45× 10−3 49.22
853 3.89 −0.33 23.39 2.88× 10−3 23.40
891 3.70 −0.22 20.91 2.90× 10−3 21.74
1303 3.92 −0.29 22.92 3.51× 10−3 31.13
1358 3.85 −0.30 17.13 2.28× 10−3 14.43
1443 3.65 −0.30 25.89 3.95× 10−3 45.18
1468 3.85 −0.33 21.33 3.78× 10−3 39.97
1684 3.69 −0.32 24.13 3.19× 10−3 30.79
2171 3.94 −0.33 24.96 2.14× 10−3 13.08
2483 3.99 −0.35 18.70 3.04× 10−3 24.80
3015 3.98 −0.31 25.03 2.51× 10−3 16.22
3023 3.90 −0.29 23.25 3.56× 10−3 31.53
3668 3.85 −0.31 25.44 2.90× 10−3 23.66
3946 4.04 −0.35 23.36 4.48× 10−3 55.51
4466 3.48 −0.24 21.38 2.41× 10−3 17.58
5397 3.77 −0.23 23.65 3.81× 10−3 35.75
1346 3.74 −0.33 14.84 3.70× 10−3 41.42
2115 2.58 −0.23 17.99 2.46× 10−3 32.70
3093 3.89 −0.28 23.98 3.12× 10−3 24.72
232 3.61 −0.30 24.94 2.22× 10−3 15.29
953 3.84 −0.31 22.07 3.4× 10−3 32.02
2559 3.56 −0.33 23.17 4.07× 10−3 53.63
3126 3.87 −0.31 24.62 3.58× 10−3 34.25
3366 3.39 −0.29 24.83 3.48× 10−3 40.97
3761 3.83 −0.34 24.92 4.31× 10−3 53.83
5440 3.72 −0.29 24.39 4.20× 10−3 48.65
164 3.82 −0.29 24.54 2.11× 10−3 11.69
2667 3.94 −0.29 24.55 3.42× 10−3 29.72
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