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Abstract. Thunderstorms and associated hazards like lightning can pose a serious threat to people outside
and infrastructure. Thus, very short-term prediction capabilities (called nowcasting) have been developed to
capture this threat and aid in decision-making on when to bring people inside for safety reasons. The atmospheric
research and operational communities have been developing and using nowcasting methods for decades, but
most methods do not rely on formal statistical approaches. A novel and fast statistical approach to nowcasting
of lightning threats is presented here that builds upon an integro-difference modeling framework. Inspiration
from the heat equation is used to define a redistribution kernel, and a simple linear advection scheme is shown
to work well for the lightning prediction example. The model takes only seconds to estimate and nowcast and
is competitive with a more complex image deformation approach that is computationally infeasible for very
short-term nowcasts.

1 Introduction

Convective storms can pose a significant threat to people and
infrastructure as a result of hazardous lightning strikes, hail,
heavy precipitation, strong winds, and possible tornadoes.
Because of this threat, very short-term forecasting capabil-
ities (termed nowcasting) have been developed to monitor
a current situation and predict it up to a few hours into the
future (e.g., Wang et al., 2017). Most of these nowcasting
techniques rely on empirical methods that use observations
made by radar and satellite and short-term numerical model
output to capture the initiation, growth, and decay of thunder-
storms. The starting point is to identify existing storms (in all
of their phases) and then extrapolate their position and evo-
lution based on recent trends in storm evolution and motion.
The extrapolation of the position of storms is done with algo-
rithms such as TITAN (Dixon and Wiener, 1993; Han et al.,
2009) or the storm cell identification and tracking (SCIT)
algorithm (e.g., Johnson et al., 1998). Pierce et al. (2012)
provide an excellent review of the nowcasting history and
techniques, including both heuristic and numerical weather

prediction (NWP) approaches. Joe et al. (2012) elaborate on
radar as a key tool for nowcasting of severe weather and dis-
cuss state-of-the-art nowcasting systems around the world.
Nowcasting techniques are pretty mature and widely utilized
by weather services and private vendors to alert the public of
imminent threats. More tailored solutions may be offered by
vendors to support decision-making for specialized applica-
tions.

Monitoring of thunderstorms and lightning is essential for
personnel safety at airports where staff servicing the aircraft
are exposed to the weather and are possibly in harm’s way.
Therefore, major airports employ lightning safety procedures
to bring outdoor personnel inside to safety when lightning is
an imminent threat. These safety procedures, however, result
in a temporary halt of the serving of the aircraft and thus
may incur schedule delays, especially if these stoppages are
numerous or prolonged (Steiner et al., 2013, 2014, 2016).
These lightning alert systems range from direct lightning ob-
servations and simple heuristics to fully automated and so-
phisticated thunderstorm hazard warning systems, such as
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those deployed at the Hong Kong International Airport (Li
and Lau, 2008).

Lightning prediction some time into the future is rather
challenging, as it depends on how a thunderstorm evolves
in time and especially how its kinematics and microphysical
processes enable cloud electrification and charge separation
that ultimately may result in lightning. Heuristic techniques
have been developed to capture thunderstorm electrification
and the potential for lightning to occur. There are also fully
explicit numerical prediction models that attempt to repre-
sent what is going on inside a thunderstorm, including the
electrification processes; however, this requires substantial
computational resources. The lightning potential prediction
is further discussed in Sect. 1.1. Overall, lightning prediction
carries notable uncertainty and is thus often approached in
terms of probabilistic prediction.

Incorporating uncertainty into forecasts is important for
decision-making processes (Steiner et al., 2010; Kicinger
et al., 2016). Most nowcasting models are deterministic, al-
though some authors have begun considering modeling un-
certainty using combined NWP with remote sensing data
(Mecikalski et al., 2015). Only in the past decade or so have
statisticians taken an interest in developing model-based
nowcasts (Fox and Wikle, 2005; Xu et al., 2005; Metta et al.,
2009). However, these initial proposals were relatively com-
plex spatiotemporal Bayesian hierarchical models which are
not necessarily suitable for large datasets and real-time ap-
plications. For example, modern radar imagery from which
nowcasts can be derived is often high dimensional; in the ex-
ample below, nowcasting of 5 min lightning potential data at
160 000 spatial locations are considered, where simple statis-
tical approaches are required for computational feasibility.

Here, we propose a statistical approach for nowcasting
of lightning potential fields. The basic model builds on an
integro-difference equation but two important adaptations to
that model are made; first, a simple advection function that
serves to spatially propagate the storm over the study region
and, second, a heat equation model for the redistribution ker-
nel that incorporates both diffusion and source terms. Other
authors have considered a continuity equation in the nowcast-
ing contexts (Ruzanski et al., 2011). Critically, the proposed
model is very fast to estimate the nowcast (less than 6 s for
the example data) and can instantaneously generate forecasts
that are validated up to 50 min ahead. The proposed model is
compared against a competing, more flexible, but computa-
tionally intensive image deformation approach (Aberg et al.,
2005). We only compare the proposed method to the image
deformation approach for three reasons: first, other nowcast-
ing schemes are not built specifically for lightning potential
(Mosier et al., 2011); second, they utilize auxiliary radar in-
formation, such as multiple reflectivity values (Han et al.,
2009), that is not present in our lightning potential data; and
finally, we believe the image deformation approach of Aberg
et al. (2005) to be a good representation of modern nowcast-
ing standards. It is found that the predictive ability of the pro-

posed model is generally favorable and substantially faster
to estimate the nowcast than the deformation approach. Both
models are illustrated on a high-resolution lightning potential
dataset and also compared against a persistence forecast.

1.1 Lightning potential and nowcasting

Lightning discharges are the result of storm electric fields
generated by kinematic and microphysical processes. The ex-
act details of the relevant processes remain to be fully un-
derstood, but substantial observational, laboratory, and mod-
eling evidence suggests that a strong updraft in the mixed-
phase region is needed for thunderstorm electrification to re-
sult in lightning (Workman and Reynolds, 1949; Williams
and Lhermitte, 1983; Zipser and Lutz, 1994; Mansell et al.,
2005; Deierling and Petersen, 2008; Deierling et al., 2008).
Lightning nowcasting systems often rely on proxy observa-
tions that relate to electrification processes to infer lightning.
Operational guidance of potential lightning threats makes
use of real-time lightning detection and lightning nowcast-
ing systems. A variety of approaches on nowcasting lightning
exist. These are either based on a single parameter or a com-
bination of several parameters. In the following, commonly
used approaches and parameters are briefly described.

Electric field mills measure the vertical component of elec-
tric fields overhead and provide direct measurements of in-
tegrated electric fields from nearby electrified clouds. They
monitor the buildup and decay of these fields in storms. As
such, electric field mill measurements are used to issue light-
ning warnings when the electric field measurements exceed
a chosen threshold (Murphy et al., 2008). However, such
thresholds may not necessarily represent a unique lightning
threat. This is because electric field mills measure the inte-
grated vertical component of the electric field from not nec-
essarily just one source but different sources, including all
nearby electrified clouds which may be at different stages
in their lifetime and have different electric field structures
and distances to the field mill. Another way to provide warn-
ings of cloud-to-ground lightning specifically is based on to-
tal (in-cloud and cloud-to-ground) measurements. Typically
(but not always) in-cloud (IC) lightning precedes cloud-to-
ground lightning in a developing storm by several minutes
(MacGorman et al., 2011). Thus, some techniques base their
warnings on IC lightning activity (Murphy et al., 2002; Holle
et al., 2016). Other warning techniques rely on relationships
between storm properties and lightning production. In addi-
tion they may track these storm properties by making use of
nowcasting techniques that predict the initiation, growth, de-
cay and movement of storms.

Many observational studies have shown the radar- or
satellite-derived ice content of a cloud to correlate well with
lightning production. For example, Buechler and Goodman
(1990) found 40 dBZ of radar reflectivity above the − 40 C
level to be a good indicator for lightning. More recent tech-
niques employ tracking algorithms to follow satellite- or
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radar-derived glaciation properties of a cloud to predict light-
ning (Saxen et al., 2008; Potts, 2009; Harris et al., 2010;
Mosier et al., 2011). Generally, key parameters that are con-
sidered in lightning nowcasting include the following:

– Various thermodynamic and kinematic indices
(e.g., CAPE and lifted index) indicative of the prob-
ability of deep convection obtained from soundings,
radiometers, or numerical models.

– Temperature information from soundings, radiometers,
or numerical models to identify the ice phase.

– Ice microphysical parameters derived from radar or pas-
sive microwave data, which may include particle type,
volumetric ice type information, and their trends, etc.

– Convective storm intensity and organization derived
from radar, passive microwave, or lightning-tracked fea-
tures or maxima of certain parameters to indicate initia-
tion or growth trends, embedded convection, persistence
of features, etc.

– Storm updraft strength (e.g., updraft volume, maximum
updraft speed, or echo top height) from single or multi-
ple Doppler analyses to indicate storm intensity.

Prediction systems are either based on one or a combina-
tion of these parameters using a decision tree, fuzzy logic
approaches, or NWP models. Prediction systems may also
make use of recent numerical model output to predict light-
ning (Barthe et al., 2010) or use the model output of predicted
lightning from explicit electrification and lightning schemes
(Mansell et al., 2005; Fierro et al., 2013). Finally, lightning
climatologies are also sometimes used to give guidance for
lightning occurrence.

Here we use the current National Center for Atmospheric
Research (NCAR) lightning nowcasting approach which
makes use of observed lightning data such as data from a
regional high-precision, high-detection-efficiency Lightning
Mapping Array (LMA; Thomas et al., 2004). It also includes
relevant storm information derived from volumetric radar
and sounding data, such as intensity, organization, and mo-
tion, and builds on a fuzzy logic approach that relates radar
reflectivity characteristics observed by, for example, the Na-
tional Weather Service (NWS) Weather Surveillance Radar
– 1988 Doppler to lightning potential forecasts (Saxen et al.,
2008; Deierling et al., 2014). Based on a careful selection
process, a combination of lightning predictor fields was de-
veloped to capture lightning from all phases of thunderstorm
evolution (i.e., initiation, mature cores, and anvil). The light-
ning potential output field (e.g., Fig. 1) enables defining ar-
eas of higher lightning frequency and probability (pink ar-
eas; lightning produced within storm cores) and areas of less
likely but still possible lightning (yellow; e.g., lightning pro-
duced within anvil clouds). The output is scaled between 0
and 1.6 where areas of lower lightning potential thresholds

Figure 1. Example of a lightning potential nowcast from the en-
hanced lightning prediction capability that includes storm cores
(magenta shading) and anvil (yellow shading), with contempora-
neous Lightning Mapping Array (LMA) data overlaid. Two color
scales are shown to the right. The upper scale is for the lightning
potential, with warmer colors showing the higher potential for light-
ning to occur. The lower scale is for the lightning flash extent (i.e.,
horizontal footprint) as depicted by the LMA.

(∼ 0.1–0.8 lightning potential values) are associated with
storm anvils and storm initiation (yellow areas in Fig. 1).
Areas of higher lightning potential thresholds (> 0.8 light-
ning potential values) are related to lightning in thunderstorm
cores (pink areas in Fig. 1). Using tunable thresholds the
lightning potential nowcasts can be adapted to reflect spe-
cific user needs (e.g., lower thresholds yield longer lightning
alert lead time, longer operational downtimes, but increased
safety).

The nowcast lightning potential field is then cast within the
mathematical framework laid down by Xu et al. (2005). The
major differences in the present proposal are (a) the adoption
of a physical argument for a new redistribution kernel and
(b) a frequentist implementation that generates fast nowcasts
for very large datasets.

2 Methods

2.1 A statistical nowcasting framework

Consider a space–time field of lightning potentials in which
f (s, t) ∈ R over a spatial domain s ∈D ⊂ R2 at a set of
time points t = 1,2, . . .. The goal in a nowcasting situation
is, given observations f (·,1),f (·,2), . . .,f (·, t), to predict
f (·, t + k) for relatively small k ≥ 1, i.e., a few time steps
ahead. In general, throughout this section, an observed im-
age is denoted by f (·, t) and a forecast field valid at time
t + k on D is denoted by F (·, t + k).
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The one-step-ahead forecast field is assumed to follow an
integro-difference equation representation as follows:

F (s, t + 1)=
∫
k(S(s, t),u)f (u, t)du. (1)

Here, F (s, t + 1) is the forecast image at the new time t + 1,
given the most recent image f (·, t). The function k(s,u) is
a real valued redistribution kernel that serves to advect and
redistribute the image f (·, t) into the future. The function
S(·, t) :D→D is an advection kernel and serves to spatially
propagate the storm.

The integro-difference equation (Eq. 1) produces one-step-
ahead forecasts; one approach to producing multiple-step-
ahead forecasts is to iteratively apply Eq. (1). For example, a
two-step-ahead forecast can be defined by the following:

F (s, t + 2)=
∫
k(S(s, t),u)F (u, t + 1)du.

The key decisions in this framework are in specifying the
redistribution kernel k and the advection function S, which
are taken up next.

2.1.1 The advection function

Xu et al. (2005) use a redistribution kernel that is a weighted
combination of orthonormal spectral basis functions. This
choice introduces a large number of coefficient parameters
that must be constrained somehow. The approach proposed
here is to separately parameterize the advection, diffusion,
and convection processes.

One of the basic assumptions is that, on very short
timescales, storms advect almost linearly, which is certainly
not true over longer periods of time (e.g., half hourly in-
tervals). However, the focus study of 5 min lightning poten-
tial snapshots operates under this assumption. Thus, the rigid
spatial deformation function is as follows:

S(s, t)=
(
sx +αx +βx t + εx(t)
sy +αy +βy t + εy(t)

)
, (2)

where s = (sx, sy)T and T denotes the transpose operation.
Here, αx,αy,βx , and βy are statistical parameters, and εx(t)
and εy(t) are Gaussian white noise processes. This struc-
ture assumes a time-constant advection at rate αx and αy ,
with possible linear acceleration βx and βy . Splitting these
functions across directions allows for distinct cardinal direc-
tion movements. Using such an advection function within an
integro-difference equation such as Eq. (1) allows for extrad-
iffusive propagation, which results from displacing the kernel
relative to a fixed spatial location (Xu et al., 2005).

2.1.2 The redistribution kernel

The proposal for the redistribution kernel is inspired by a
model from physics, namely the heat equation. The heat

equation is a partial differential equation that describes how
the distribution of heat (or, in this case, lightning potential)
changes in time with respect to the local spatial curvature
of heat. The heat equation is described briefly and a numer-
ical approximation to its solution is related to the integro-
difference equation Eq. (1).

The 2D heat equation is as follows:

∂f (s, t)
∂t

= α ·

(
∂2f (s, t)
∂s2
x

+
∂2f (s, t)
∂s2
y

)
+Q(s, t). (3)

In this version of the heat equation, Q(s, t) acts as a con-
vection term, which can increase the local rate of change of
lightning potential, while the first terms are spatial diffusions
whose strength is modulated by the diffusivity coefficient α.
Note that in the applied mathematics literature, convection
and advection are often used interchangeably. The source
term Q(s, t) is referred to as a convective source because of
a typical phenomenon of intense lightning generating thun-
derstorms occurring caused by convective vertical air move-
ments that enhance such activity.

Given boundary conditions and the source term Q(s, t),
Eq. (3) defines a function f at all spatial locations and time
points. The key assumption is that over very short timescales,
lightning potential fields approximately evolve according to
Eq. (3), but the solution updates according to new radar im-
agery. In particular, consider a finite difference approxima-
tion to the solution to Eq. (3), as follows:

f (s, t +1t)= f (s, t)+ r ·
(
f (s+he1, t)+ f (s−he1, t)

+ f (s+he2, t)+ f (s−he2, t)− 4f (s, t)
)

+Q(s, t)1t, (4)

where1t is a small time step, h is a northing or easting spac-
ing (which is assumed, here, to be equal), and r = α1t/h2

and e1 and e2 are the Euclidean basis vectors in R2. The
approximation in Eq. (4) can be calculated on the interior
of D; boundary solutions use appropriate forward or back-
ward approximations. For the example dataset, h= 1, 1t =
0.16, and α = 1; these choices are related to the Courant–
Friedrichs–Lewy condition of the heat equation, which es-
sentially states that a small enough time stepping is required
so that the numerically approximated solution is stable. The
parameter r could be estimated in a constrained estimation
framework, but it has been found that these choices work
very well for the application below.

Now it can be seen how Eq. (4) defines the kernel function
of Eq. (1). In particular, the finite sum version of Eq. (1) is
the following:

k(s,u)=


1− 4r +Q(s, t), u= s

r, u= s±he1
r, u= s±he2
0, else.

The presence of the convective term in k results in a nonsta-
tionary redistribution kernel, which gives substantially more
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flexibility in locally diffusing or concentrating the forecast
images.

2.2 Image deformation: nowcasting approach

In a realistic nowcasting scenario there is not time to fit
a large, complicated Bayesian hierarchical statistical model
such as those defined in Xu et al. (2005) or Fox and Wikle
(2005; e.g., the dataset here is more than 140 times larger
than those considered by these authors). Thus, a comparison
against a competing approach that comes from the image de-
formation literature is applied, namely an adaptation of the
model proposed by Aberg et al. (2005), which is expected to
exhibit greater flexibility but at the cost of increased compu-
tation.

The deformation-based forecast is as follows:

F (s, t + 1)= f (W (s, t), t),

where W (·, t) : R2
→ R2 is a temporally indexed spatial de-

formation function. One of the most common deformation
functions is a pair of thin plate splines (Bookstein, 1989;
Gilleland et al., 2010, 2011) is the following:

Wi(s, t)= ai0(t)+ ai1(t)sx + ai2(t)sy +
m∑
j=1

bij (t)U (‖uj − s‖)

for i = x,y, where U (r)= r2 logr for r > 0 is a radial basis
function and {uj } ⊂D form a set of knots on the nowcasting
domain. The parameters {bi,·} serve to allow for nonlinear
transformations in the spatial domain. This class of deforma-
tions can result in space folding over upon itself and requires
some regularization, which is typically enforced during the
estimation step.

The parameters {ai·,bi·} are estimated by minimizing a pe-
nalized mean squared error based on the bending energy of
a thin plate spline. For the lightning potential nowcasting ex-
ample the deformation parameters are estimated by minimiz-
ing the following:

{âi·(t), b̂i·(t)} = argmin
∑

s

(f (s, t)− f (W (s, t), t − 1))2

+ λP(W (·, t)),

where P is the bending energy of a thin plate spline (see
Gilleland et al. (2011) for details). The second term con-
trols the amount of allowed deformation, and λ≥ 0 is a
smoothing parameter. Then, the one-step-ahead forecast is
F (s, t+1)= f (W (s, t), t), and multiple-step-ahead forecasts
can be generated by recursively applying the deformation,
for example, F (s, t+2)= F (W (s, t), t+1). Given a new ob-
served potential field at t + 1, the deformation function is
reestimated by comparing time points t and t + 1.

3 Data description and model parameter estimation

The application, here, is in forecasting lightning potential.
Lightning potential is an indication of how likely it is to have

Figure 2. Mean squared errors and estimation time for training the
deformation model on a pair of images.

a lightning strike in an area. It is not a probability in that it is
not constrained to be in the interval [0,1] but serves as a sur-
rogate for a probability. Our data are over a 400 km× 400 km
area, which are descritized to a 400× 400 grid, available at
5 min snapshots for a period of a little over 6 h.

A complicated dynamic space–time dataset such as the
one considered in this study could beckon a complicated and
comprehensive estimation framework that accounts for vari-
ous sources of uncertainty. However, as the goal is to produce
nowcasted forecast fields almost instantaneously, simple es-
timation approaches must be used.

3.1 Estimation of the proposed statistical model

The statistical parameters of the model are those in the ad-
vection function and the convective source function Q(s, t).
Given Q(s, t), a simple mean squared error criterion is used
as the loss function to estimate an optimal advection function
for a given time step and the averages are taken over all spa-
tial locations. The estimation and forecasting algorithm is as
follows:

1. At time point t , given observed lightning potential
field f (·, t), estimate S(s, t) numerically by minimizing∑

s(f (s, t)−F (s, t))2, resulting in Ŝ(s, t).

2. Given estimates Ŝ(s,k) for k = 1, . . ., t , fit advection pa-
rameters of Eq. (2) by ordinary least squares.

3. Use the conditional mean of S(s, t + 1) from its predic-
tive distribution, given parameters estimated in the pre-
vious step.

4. Approximate the solution to Eq. (1) to generate a fore-
cast field F (s, t + 1).

5. Multiple-step-ahead forecasts are generated by recur-
sive applications of Eq. (1).

All that remains is the choice of, or estimate of, Q(s, t). The
following model is proposed: Q(s, t)= γ (f (s, t)−F0(s, t)),
where F0(s, t) is the forecast of time t with Q(s, t − 1)= 0.
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Figure 3. Percent improvement in mean squared error over the per-
sistence forecast. Box plots represent the 54 validation times in
the dataset for percent improvement using the proposed approach
(white) and the deformation approach (gray). Outliers have been
removed.

In particular, F0 accounts for the advection but not diffusion
term. Other models for Q(s, t) were entertained, most no-
tably Q(s, t)= γ (f (s, t)−f (s, t − 1)), but it was found that
the proposedQ(s, t) resulted in the lowest mean squared pre-
dictive error for the nowcasts. Heuristically, positive values
of Q(s, t) indicate locations that are locally experiencing in-
creasing potential, whereas locations withQ(s, t)< 0 are de-
creasing in lightning potential and projections into the next
time step are made accordingly.

To find r and γ we implement a small experiment. In
particular, we perform grid searches over r ∈ [0,0.25] and
γ−1
∈ (0,500], where values of γ−1 above 500 show negli-

gible differences. Using a subset of data, namely every fifth
image, we calculate mean squared error averaged over all
one-time-step-ahead nowcasts. Predictive results were opti-
mized at γ = 1/50 and r = 0.15, which we fix for the ensu-
ing discussion. We recognize that r and γ could be included
in the estimation process but, based on the time they took to
optimize offline, the computational cost was not worth it.

3.2 Estimation of the deformation function

The two crucial quantities in the deformation approach are
knot locations (sometimes called landmark or control points)
and the smoothing parameter λ. Heuristically, the more knots
used, the greater the flexibility of deformation. However, a
high number of knots introduces many statistical parameters
bij , and numerical optimization of the penalized log likeli-
hood becomes prohibitive, especially in a nowcasting con-
text.

The number of knots, therefore, is chosen to be 100
(placed on a 10×10 evenly spaced grid) determined through
experimentation. In particular, we consider the following ex-

periment: using image pairs at times t and t + 1, we deform
time point t’s image with evenly spaced grids of L2 knots
for L= 2n+ 1 with n= 1, . . .,12 and compare to t + 1 for
t = 17. We calculate the mean squared error (MSE) over all
possible deformations. The results are plotted in Fig. 2. Clear
improvements in MSE are apparent until approximately 100
knots are in the model. The further reduction beyond 400
points may be the result of overfitting. Note that other trial
time periods resulted in similar reductions in MSE. As a sec-
ond consideration, Fig. 2 also shows the computational time
required to estimate the deformation under these experimen-
tal conditions as a function of number of knots. When we
calculate the deformation going forward, we warm start the
optimization, described below, which significantly reduces
the computational time. Therefore, the timing in Fig. 2 is not
reflective of the actual time it takes to calculate a single de-
formation. Nonetheless, this experiment is valuable because
it informs our decision of the number of landmark points
to choose. Clearly there is a trade-off between complexity
and model fit; given the stabilization of MSE and increase in
computation time beyond, we opt for 100 knots going for-
ward.

The smoothing parameter λ is chosen to be fixed at 103

after experimentation. In particular, using the same pair of
training points as for the knot placements, deformations are
tested under penalties with λ varying from 10−10 to 105.
MSEs (not shown) are effectively unchanged based on dif-
ferent λs but with a slight improvement around 103 in the
third decimal. The lack of impact of λ is likely caused by ad-
jacent time points exhibiting small spatial changes, whereas
λ is known to be more important for scenarios when target
and training images exhibit substantial differences (Gilleland
et al., 2011).

Operationally, we see that adjacent time warps exhibit
substantial large-scale similarities, associated with dominant
weather patterns. Therefore, we warm started the optimiza-
tion using previous optimization results for all but the first
warp. This substantially decreases the computational time as-
sociated with estimating the warp. For the first warp a warm
start is not possible and, rather than fitting all deformation pa-
rameters simultaneously, we adopted an iterative approach.
In particular, with 100 knots there are more than 100 statisti-
cal parameters, which precludes feasible estimation. Thus,
the strategy, here, is as follows: for a given training pair
of fields the optimal deformation is first estimated with 22

knots. The estimated deformation is then used as initial con-
ditions for 32 evenly spaced knots, and this procedure is ap-
plied iteratively for L2 points with L ∈ {3,5,7,9,10}. The
final set of L= 102

= 100 points is then fixed and used in
the nowcasting step.
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Figure 4. Easting and northing estimates of advection function S with a linear fit. The linear increase suggests the study storm is accelerating
in the northeasterly direction.

Table 1. Average percentage improvement in mean squared prediction error over the persistence forecast for the nowcasting model with and
without Q(s, t).

Forecast horizon (min) 5 10 15 20 25 30 35 40 45 50

With Q 2.07 28.77 31.74 32.12 31.35 29.83 29.07 27.14 26.36 24.30
Without Q −31.33 4.99 15.61 21.34 24.65 26.25 28.21 28.68 29.75 29.15

4 Results

The proposed statistical model is compared against competi-
tors including a persistence forecast, i.e., which uses the most
recently available observed image as the future forecast for
all lead times, and the deformation approach of Sect. 2.2.
Deformation-based nowcasts rely on optimizing the single-
step deformation with recursive applications of the warp to
generate future lead time forecasts.

Before illustrating the predictive ability of both models,
we note differences in computational costs. Nowcasting un-
der any of the three approaches is essentially instantaneous,
but the primary computational bottleneck is in estimating the
appropriate statistical parameters based on historical images.
For example, on the same laptop computer, the average time
required to estimate a deformation field with a warm start is
about 2 m 22 s, while the proposed statistical model averages
less than 6 s to estimate the nowcast. Crucially, this result im-
plies that computation is prohibitive for the deformation ap-
proach to work for very short-term nowcasts, while the new
model is easy to implement and estimate.

For the deformation and proposed nowcasts, the de-
formed/shifted images will propagate outside of the domain
of interest. Observed pixels that are shifted outside of the do-
main are ignored and unavailable field values that are brought
into the domain are set to be zero, reflecting the assumption
that the majority of active potentials are in the interior of the
forecast domain. No field buffer is used in calculating the
validation statistics below.

4.1 Comparison to deformation and persistence

To test the feasibility of the proposed method, a compari-
son against both deformation and persistence is made. Fig-
ure 3 shows box plots of percentage improvements in mean
squared error (MSE) of the nowcasts over the persistence
forecast for horizons 5 min to 50 min ahead. MSEs are calcu-
lated as pointwise squared differences averaged throughout
the model domain. The box plots represent 54 forecast com-
parisons in which we begin forecasting the fourth time point,
using the first three images for training only. White box plots
represent the proposed approach, while gray box plots repre-
sent deformation.

Noticeable patterns are apparent; there is substantially
more variability in the deformation-based approach than the
proposed statistical model. This result is likely caused by
the increased degrees of freedom allowed with the deforma-
tion model, which sometimes results in better forecasts than
proposed model but can also often result in forecasts worse
than persistence. Both methods improve on persistence out
to about a 25 min lead time. Deformation then experiences a
slight decay in predictive improvement but, on average, still
improves over persistence even at the longest lead times. The
proposed method’s improvement seems more stable both in
terms of having less variability but also in maintaining con-
sistent improvement over persistence out to the longest hori-
zon at more than 25 % improvement. Overall, the proposed
method outperforms deformation in 86 % of validation times.
Note that outliers have been removed from this plot for read-
ability.
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Figure 5. Observed and nowcasted fields of lightning potential using the proposed approach that includes Q(s, t) and without Q(s, t) for
forecast horizons 5 min to 25 min, validating at time steps 51–55. The far right column depicts the difference of the nowcasted field that
includes Q(s, t) subtracted from the nowcasted field without Q(s, t). The left legend corresponds to the lightning potential, and the right
legend corresponds to the difference in lightning potential from the projection with Q and the projection without Q.

4.2 Importance of S(s, t)

In the next two subsections, we take a closer look at two
components of the proposed model, namely the advection
function and the convection or generation function. First, the
importance of the advection function, S(s, t), is considered.
This function serves to spatially propagate the current image
into the future. Figure 4 shows the estimated advection com-
ponents of S at each time point with a fitted linear trend in

both the easting and northing directions. There is an apparent
approximate linear increase over the course of the storm in
both components, suggesting a northeasterly acceleration of
the storm. The linear statistical model for S in Eq. (2) is tai-
lored to this particular storm but, for a short time frame, now-
casting seems a reasonable model unless there is evidence of
acceleration. Both Figs. 3 and 4 suggest that the advection
function is an important component of the nowcasting model.
An autoregressive model, i.e., AR(1), specification for the er-
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Figure 6. Observed and nowcasted fields of lightning potential. The first column shows observed potential fields at five time points. Each
ensuing column is a projection of the observed starting at time points 50, 51, 52, and 53, respectively. The legend corresponds to the lightning
potential.

rors from the fitted linear model to predict future movement
was also investigated, but no statistically significant improve-
ment in predictive ability was found. We also examined the
potential correlation between the easting and northing com-
ponent linear model errors, and while there is evidence of
correlation with ρ̂ = 0.42, we do not currently use this infor-
mation as we do not simulate from the predictive distribution
of S but rather use its predictive mean. To generate an en-
semble of forecasts, it would be natural to model the errors
as a bivariate white noise Gaussian process.

4.3 Importance of Q(s, t)

The convection or generation matrix Q(s, t) is a crucial el-
ement of the model which allows for focused areas of in-
creasing lightning potential but also areas of diminishment.
The model used here forQ is a scaled difference between the
current time step image and the forecast of the current time
step’s image, which in principle represents areas of instan-
taneous lightning potential generation and decay. Areas that
grew over the previous time step are projected to continue
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growth into the future and areas that abate will continue to
do so.

To motivate the importance ofQ in the model, we compare
relative improvements in the mean squared error of the now-
casted fields over the persistence forecast using the proposed
model with, and without,Q. Table 1 shows average improve-
ment for forecast horizons of 5 min to 50 min. Improvements
are calculated as an average percent improvement over per-
sistence in forecast mean squared error (MSE) over the 54
validation times. The importance of Q is clear, with a 15 %–
30 % reduction in relative MSE over the model without Q
at shorter lead times, which turns negligible at longer lead
times.

Figure 5 visually assesses the importance of including
Q(s, t) in the nowcasting setup. It contains forecast hori-
zons for lead times of 5 min to 25 min using the proposed
nowcasting approach with, and without, Q to validate time
points 51–55. Throughout we use the fitted regression line
for S(s,51+h). At the shortest lead time there is not much
apparent difference between both models, but the difference
becomes notable at longer lead times. For instance, in the fi-
nal row of Fig. 5, the forecast usingQ exhibits much stronger
concentrations of lightning potential in the north central re-
gion, while the forecast without Q has allowed the field
strength in these areas to incorrectly wane.

This verification section is closed with a final example of
nowcasted fields under the currently proposed model. Fig-
ure 6 shows observed potential fields for time points 51–
55. The next columns show nowcasted fields that initialize
from time point 50 (second column) to 53 (final column).
The northeastward propagation of the storm is apparent in
both the observed imagery and also the nowcasted fields be-
cause of the advection function. As in the previous Figure,
theQ function serves to ensure the forecasts maintain higher
potential values in areas of intense lightning activity.

5 Discussion

In this paper, a simple but fast method is proposed for now-
casting of lightning potential fields. Nowcasts are defined
through the solution to an integro-difference equation that
includes a nonstationary redistribution kernel. The redistri-
bution kernel allows for advection, diffusion, and concentra-
tion or convection of lightning potentials and is thus a flex-
ible model for short-term propagation of lightning potential
imagery into the future.

However, sensitive parameterizations are necessary to
make both estimation and forecasting feasible for operational
applications. We propose simple parameterizations of the ad-
vection and convection functions and allow the redistribution
kernel to be approximated by a numerical solution of the
heat equation. Results from test cases suggest that the pro-
posed formulation provides substantially better short-term
forecasts over the persistence forecast. Also, over such short

timescales, linear advection performs as well as more com-
plicated nonlinear deformation-based forecasts and is orders
of magnitude faster in computation time.

A number of future research routes seem clear. Compre-
hensive quantification of uncertainty is an important but del-
icate problem; sources of uncertainty include those param-
eters in the advection function, and choice of the convec-
tion function Q. However, for very large datasets, care must
be taken in a parameterization that allows for flexibility but
also ensures very fast estimation or approximation. More-
over, how to communicate uncertainty in a nowcasting con-
text seems of particular concern.
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