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Abstract. Reliable estimates of historical effective radiative forcing (ERF) are important for understanding the
causes of past climate change and for constraining predictions of future warming.

This study proposes a new linear-filtering method for estimating historical radiative forcing from time series
of global mean surface temperature (GMST), using energy-balance models (EBMs) fitted to GMST from CO2-
quadrupling general circulation model (GCM) experiments. We show that the response of any k-box EBM can
be represented as an ARMA(k, k− 1) (autoregressive moving-average) filter. We show how, by inverting an
EBM’s ARMA filter representation, time series of surface temperature may be converted into radiative forcing.
The method is illustrated using three-box EBM fits to two recent Earth system models from CMIP5 and CMIP6
(Coupled Model Intercomparison Project). A comparison with published results obtained using the established
ERF_trans method, a purely GCM-based approach, shows that our new method gives an ERF time series that
closely matches the GCM-based series (correlation of 0.83).

Time series of estimated historical ERF are obtained by applying the method to a dataset of historical tempera-
ture observations. The results show that there is clear evidence of a significant increase over the historical period
with an estimated forcing in 2018 of 1.45±0.504 Wm−2 when derived using the two Earth system models. This
method could be used in the future to attribute past climate changes to anthropogenic and natural factors and to
help constrain estimates of climate sensitivity.

1 Introduction

The estimation of historical radiative forcing, a measure of
the net change in the energy balance of the climate system
in response to an external perturbation, is a matter of strong
scientific interest, as evidenced by the dedication of a whole
chapter to this topic in the most recent assessment report
from the Intergovernmental Panel on Climate Change (IPCC)
(Myhre et al., 2013). Historical radiative forcing; equilibrium
climate sensitivity (ECS), the long-term increase in global
mean surface temperature (GMST) caused by a doubling
of atmospheric CO2 concentration; and transient climate re-
sponse (TCR), the increase in GMST after 70 years of CO2
increasing at 1 % per year, are the three main quantities that
inform long-range forecasts of global warming. Estimation

of historical forcing is therefore of particular relevance to cli-
mate policy decision-makers. In this paper we develop a new
method for estimating radiative forcing by inverting simple
climate models, a method that can also be of benefit to the
detection and attribution of climate change.

The term radiative forcing refers to a change in Earth’s
energy balance relative to some predefined baseline value,
usually chosen to represent pre-industrial conditions. In this
study we use the effective radiative forcing (ERF), whose
definition is given in Myhre et al. (2013): “the change in net
[top-of-the-atmosphere] downward radiative flux after allow-
ing for atmospheric temperatures, water vapour and clouds
to adjust, but with surface temperature or a portion of sur-
face conditions unchanged.” The adjustments of atmospheric
temperatures and other variables, included in the definition
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of ERF, are commonly referred to as “rapid adjustments”
and take place over much shorter timescales than resultant
changes in surface temperature (Vial et al., 2013; Chung and
Soden, 2015; Smith et al., 2018).

It is infeasible to calculate historical radiative forcing from
observational data using the raw definition of ERF, as rel-
evant climate variables, in particular top-of-the-atmosphere
(TOA) net downward radiative flux, were unobserved for
most of the historical period. Techniques have therefore been
developed for diagnosing radiative forcing from general cir-
culation model (GCM) experiments. Forster et al. (2016) de-
scribe methods, such as ERF_trans, which use GCMs to sim-
ulate the historical period with and without emissions of var-
ious forcing agents and hence calculate associated changes
in Earth’s energy balance. Resulting series of estimated forc-
ings are strictly conditional on the climate model used. This
approach is computationally expensive, and there is also
some unavoidable noise contamination of results due to in-
ternal variability in model output. More recently, Andrews
and Forster (2020) have combined GCM simulations with in-
strumental observations of historical GMST and global heat
uptake to constrain historical ERF.

Alternative approaches, based on simple climate models,
have been used to estimate historical radiative forcing from
the observational record (e.g. Tanaka et al., 2009; Urban and
Keller, 2010; Padilla et al., 2011; Aldrin et al., 2012; Urban
et al., 2014; Johansson et al., 2015; Ljungqvist, 2015). These
studies used Bayesian inference (or non-linear Kalman filter-
ing in the case of Padilla et al., 2011) to jointly estimate some
or all of the parameters of a simple climate model together
with corresponding series of historical forcing. A common
aim of these studies is to constrain ECS, with uncertainty in
ECS being found dependent on corresponding uncertainty in
historical forcing (Tanaka et al., 2009). As well as being com-
putationally cheaper, methods based on simple climate mod-
els have the appeal of directly incorporating observational
data, as opposed to GCMs whose dependence on the histori-
cal record (through parameter tuning) can be more subtle.

The present study is motivated by the potential applica-
tion of simple climate models and forcing estimation tech-
niques to the detection and attribution problem. Simple cli-
mate models have previously been used for detection and at-
tribution of changes in GMST (e.g. Otto et al., 2015; Rypdal,
2015; Haustein et al., 2017). These studies regressed time se-
ries of historical temperature observations on predicted tem-
perature series from linear impulse-response models, thus
applying a simplified version of the widely used optimal fin-
gerprinting methodology (Hasselmann, 1997; Allen and Tett,
1999; Allen and Stott, 2003), which is more typically ap-
plied to high-dimensional gridded datasets of observations
and GCM output.

In the context of detection and attribution, surface tem-
perature is an observable proxy for radiative forcing, which
is itself not directly observable. The suitability of this proxy
for regression analysis is reduced by two artefacts of the cli-

mate system’s thermal inertia: (i) a delayed temperature re-
sponse to changes in radiative forcing and (ii) strong tempo-
ral autocorrelation in natural temperature variability. Within
the framework of linear impulse-response models, instanta-
neous surface temperature is simply a convolution of pre-
vious changes in radiative forcing (Good et al., 2011). We
therefore propose that detection and attribution of changes
in GMST using simple climate models could be improved
by first deconvolving temperature observations to obtain se-
ries of estimated radiative forcing and then by performing the
traditional regression step on radiative-forcing time series. In
this way we might reasonably expect to eliminate (or at least
reduce) both the time delay in the regressed series and also
the temporal autocorrelation in the regression residuals.

This paper is a proof-of-concept study in which we de-
velop a method for performing the proposed deconvolution
of temperature time series using k-box energy-balance mod-
els (EBMs). To do this, we exploit a known correspondence
between linear ordinary differential equations (ODEs) and
discrete-time autoregressive moving-average (ARMA) time
series models. Specifically, we use the fact that a system of k
first-order linear ODEs has a discrete-time representation as
an ARMA(k, k− 1) filter (Spolia and Chander, 1974; Chang
et al., 1982). This correspondence has been used before in
the context of three-box EBMs by Grieser and Schönwiese
(2001) as a convenient means of integrating the continuous-
time model over a time series of discrete forcing inputs and
by Stern (2005) as a way to enforce energy-balance con-
straints on estimated parameters of an ARMA model.

Here we propose a novel application of the three-box EBM
filter in its inverted form. Li and Jarvis (2009) showed that
the three-box model is simply a physically motivated pa-
rameterization of a causal, linear input–output system which
maps a time series of radiative forcings onto a corresponding
time series of surface temperatures. In this paper we show
how the k-box model’s equivalent ARMA filter representa-
tion may be derived, and we describe how, by inverting the
ARMA filter, radiative forcing may be obtained from a tem-
perature time series.

2 The k-box energy-balance model

An energy-balance model (EBM) is a simple climate model
where the time evolution of global temperatures is explained
by changes in Earth’s radiative imbalance. The simplest class
of EBM, known as the k-box (or k-layer) model, consists of
two components.

Firstly, a linear relation between GMST anomaly T1 and
TOA net downward radiative flux change N determines the
equilibrium response to radiative forcing F (Gregory et al.,
2004). In its most basic form,

N (t)= F(t)− κ1T1(t), (1)

where κ1 denotes the “climate feedback” parameter, which
is conventionally denoted by λ. The notation used here is
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consistent with Fredriksen and Rypdal (2017) and Cummins
et al. (2020).

Secondly, a system of k vertically stacked boxes recreates
the thermal inertia of the ocean mixed layer and deep ocean,
determining the characteristic timescales over which the re-
sponse unfolds (e.g. Gregory, 2000; Held et al., 2010; Geof-
froy et al., 2013). For k = 3:

C1
dT1

dt
= F(t)− κ1T1− κ2(T1− T2) (2)

C2
dT2

dt
= κ2(T1− T2)− κ3(T2− T3) (3)

C3
dT3

dt
= κ3(T2− T3), (4)

where Ti and Ci denote the temperature and heat capacity
of each box and κi controls the rate of heat transfer between
boxes.

To account for temporal variation in the relationship be-
tween T1 and N , which is present in some climate model
experiments, Eqs. (1) and (3) may be modified to include a
so-called efficacy factor ε (Held et al., 2010). Equation (1)
then becomes

N (t)= F(t)− κ1T1+ (1− ε)κ3(T2− T3), (5)

while Eq. (3) becomes

C2
dT2

dt
= κ2(T1− T2)− εκ3(T2− T3). (6)

Internal variability in surface temperature, i.e. fluctuations in
T1 not attributable to changes in F , may be modelled by
adding a white-noise process ξ (t)∼ N(0,σ 2

ξ ) to the right-
hand side of Eq. (2) (Hasselmann, 1976). For a schematic
diagram of the EBM described in this section, see Fig. 1.

3 ARMA filter representation

For a time-invariant linear system (such as the k-box model),
the surface temperature response to a general forcing F(t)
can be written as

T1(t)=
∞∑
v=0

R(v)F(t − v), (7)

where R(v) is the discrete-time impulse-response function.
Since an impulse is the derivative of a step change, the
discrete-time impulse-response function is equal to the once-
differenced response to a step change in forcing (e.g. a CO2-
quadrupling experiment). Defining the “backshift” operator
B such that B x(t)= x(t − 1), we can write

∞∑
v=0

R(v)F(t − v)=
∞∑
v=0

R(v)BvF(t). (8)

Figure 1. Vertical layout of the boxes in the k-box energy-balance
model. The thickness of each box indicates its heat capacity, and
the arrows represent the flow of heat between adjacent boxes. The
top of the atmosphere has no heat capacity and so is represented
by a horizontal line. The dashed line in the middle is an abbrevia-
tion of the intervening boxes. See Cummins et al. (2020) for more
discussion.

Let

8(B)=
∞∑
v=0

R(v)Bv. (9)

It can be shown (see Appendix A) that for the k-box model

8(B)=
θ (B)
φ(B)

, (10)

with φ and θ being polynomials in B of degree k and k− 1
respectively. Thus we have

φ(B)T1(t)= θ (B)F(t), (11)

i.e. the linear map from F(t) onto T1(t) is an ARMA(k, k−1)
filter. The representation in Eq. (10) as a ratio of two polyno-
mials gives us the corresponding inverse filter

8−1(B)=
φ(B)
θ (B)

, (12)

which is ARMA(k−1, k). The AR (autoregressive) and MA
(moving-average) coefficients can be efficiently calculated
from the discrete-time impulse response using software for
computing Padé approximants such as the “Pade” package in
R (Adler, 2015).

Note that the above result for k-box EBMs is a special
case of a long-standing and more general result: a system
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of k first-order linear ODEs has a discrete-time representa-
tion as an ARMA(k, k−1) filter (Spolia and Chander, 1974).
EBM-derived ARMA filters have previously been used in
the climate literature in the “forward” direction, i.e. to con-
vert time series of annually averaged forcings into tempera-
tures (Grieser and Schönwiese, 2001) and for the purpose of
EBM parameter estimation (Stern, 2005). Here we apply the
ARMA filter in the reverse direction, to find the forcing input
required by an EBM to yield a given time series of tempera-
tures.

4 Three-box climate model fits

Cummins et al. (2020) developed a maximum-likelihood
method for estimating parameters of k-box EBMs from
abrupt CO2-quadrupling GCM experiments. Using their
method, three-box models have been fitted to the two most
recent Earth system models (ESMs) from the UK Met Of-
fice: HadGEM2-ES (Hadley Centre Global Environmen-
tal Model) from CMIP5 (Coupled Model Intercomparison
Project) and HadGEM3-GC3.1-LL from CMIP6 (see Fig. 2).

Table 1 contains maximum-likelihood estimates of model
parameters, as well as estimates of equilibrium climate sensi-
tivity (ECS); transient climate response (TCR); characteristic
timescales τ1, τ2, and τ3; and the coefficients of the ARMA
polynomials φ(B) and θ (B). The ARMA coefficients were
calculated from the discrete-time impulse responses of the
fitted models.

Note that ARMA models can alternatively be estimated
using Bayesian inference (e.g. Monahan, 1983).

5 ARMA filter validation

Numerical estimates of the ARMA coefficients enable, in
theory, conversion of time series of surface temperatures
into corresponding series of radiative forcings. The proper-
ties of this proposed temperature-forcing conversion were in-
vestigated using CMIP6 historical runs from the HadGEM3-
GC3.1-LL climate model.

Model surface temperatures from 1850 to 2014 were aver-
aged annually (January–December), globally and over four
ensemble members. Anomalies were calculated by subtract-
ing from the whole series the mean absolute temperature in
the first 50 years (1850–1899). The final temperature series
was fed into the fitted HadGEM3-GC3.1-LL ARMA filter
using the digital filter implementation in the “signal” pack-
age in R (signal developers, 2014).

The resulting filtered forcing series was compared (see
Fig. 3) with a time series of effective radiative forcing (ERF)
diagnosed by Andrews et al. (2019) from a HadGEM3-
GC3.1-LL RFMIP (Radiative Forcing Model Intercompari-
son Project) run1 using the ERF_trans method described in
Forster et al. (2016). Note that Andrews et al. (2019) applied

1Only one run was available at the time of submission.

Table 1. Maximum-likelihood parameter estimates. For descrip-
tions of all model parameters, see Table 1 of Cummins et al. (2020).
Note that parameters γ and ση are not used in this study. The val-
ues of ECS and TCR in this table are derived directly from the box
models’ physical parameters.

Model

Parameter (unit) HadGEM2-ES HadGEM3-GC3.1-LL

γ (dimensionless) 1.73 3.15
C1 (Wyrm−2 K−1) 3.62 3.97
C2 (Wyrm−2 K−1) 9.47 9.06
C3 (Wyrm−2 K−1) 98.7 65.9
Ctot (Wyrm−2 K−1) 112 79
κ1 (Wm−2 K−1) 0.536 0.607
κ2 (Wm−2 K−1) 2.39 2.99
κ3 (Wm−2 K−1) 0.634 0.65
ε (dimensionless) 1.59 1.18
ση (Wm−2) 0.434 0.458
σξ (Wm−2) 0.323 0.632
F4×CO2 (Wm−2) 6.35 7.19
τ1 (years) 0.953 0.822
τ2 (years) 8.21 9.04
τ3 (years) 532 270
ECS = F4×CO2/2κ1 (K) 5.92 5.92
TCR (K) 2.44 2.82
φ1 (dimensionless) 2.23 2.19
φ2 (dimensionless) −1.54 −1.45
φ3 (dimensionless) 0.31 0.264
θ0 (Km2 W−1) 0.194 0.172
θ1 (Km2 W−1) −0.33 −0.284
θ2 (Km2 W−1) 0.136 0.113

a time-mean historical volcanic forcing to the HadGEM3-
GC3.1-LL piControl (pre-industrial control), meaning that
they report an ERF of around 0.2 Wm−2 in 1850. To avoid
an offset due to our choice of temperature baseline, we add
0.2 Wm−2 to the forcing series computed from the ARMA
filter.

Results from the two methods agree strongly, and the fil-
tered forcing series explains a majority of the variance in the
ERF_trans series: the coefficient of determination is R2

=

0.69 (correlation of 0.83). Reassuringly the ARMA filter cor-
rectly infers the rate of forcing increase in recent decades.
However, there appears to be a systematic disagreement in
years with strong negative forcing. Negative forcing spikes
associated with volcanic eruptions are smaller when calcu-
lated using the ARMA filter. This is especially evident in the
case of Krakatoa (1883).

The observed discrepancy in inferred volcanic forcing is
not entirely unexpected. The ARMA filter is derived from a
three-box EBM which is known to be unable to resolve tem-
perature responses on timescales significantly shorter than
1 year. Because the data used here are annual averages, there
is also scope for error due to discretization, as a volcanic
eruption might occur earlier or later in a given year. Finally,
it may also be the case that the GCM’s temperature response
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Figure 2. Three-box model fitted values. Panel (a) shows the abrupt 4×CO2 surface temperature responses of the HadGEM2-ES (cooler)
and HadGEM3-GC3.1-LL (hotter) climate models. Anomalies are relative to the time average of surface temperature in the corresponding
pre-industrial control (piControl) simulations. Panels (b) and (c) show the TOA net downward radiative flux (TOANDRF) change in the
respective models as a function of surface temperature.

to volcanic forcing deviates from the linearity assumption of
the ARMA filter.

6 Filtering the historical temperature record

By applying the box-model ARMA filters to time series of
historical surface temperatures, we can obtain series of esti-

mated historical forcings. The Cowtan and Way 2.0 (CW2.0)
historical temperature series is an updated version of the
dataset described in Cowtan and Way (2014), which is a
modification of the HadCRUT4 (Hadley Centre Climatic Re-
search Unit Temperature) series (Morice et al., 2012), cor-
rected for coverage bias. Because CW2.0 is a blend of sur-
face air temperatures (SATs) and sea surface temperatures
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Figure 3. Comparison of forcing series estimated from HadGEM3-
GC3.1-LL simulations of the historical period. In panel (a) grey
triangles denote forcings estimated by Andrews et al. (2019), while
black dots denote forcings obtained using the three-box ARMA fil-
ter. Panel (b) shows how estimates from the two methods vary over
the range of forcing values using a non-parametric curve fit. The
diagonal line has equation y = x.

(SSTs), it is not directly comparable with the pure-SAT
4×CO2 datasets used to calibrate the EBMs. The CW2.0
temperatures series have therefore been scaled by 1.09 ac-
cording to Richardson et al. (2016) for use in this study.
The HadGEM2-ES and HadGEM3-GC3.1-LL ARMA filters
have been applied to the scaled CW2.0 temperatures2, yield-
ing estimated historical forcing series for the period 1850–
2018 (see Fig. 4).

It can be seen from panel (d) of Fig. 4 that the forcing se-
ries generated by the two ARMA filters are very similar. The
HadGEM3-GC3.1-LL ARMA filter reports slightly higher
forcing in the latter years of the historical period and slightly
more extreme negative forcing in years surrounding major
volcanic eruptions.

2The version used was the latest available at the time of submis-
sion.

The reconstructed forcing series are very noisy, since the
natural variability which contaminates historical surface tem-
peratures is amplified by the ARMA filter. However, unlike
noise in the temperature series, the filtered noise is essen-
tially uncorrelated in time. This follows from the fact that
the three-box EBM successfully accounts for the thermal in-
ertia (memory) of the system. The white-noise-like proper-
ties of natural variability in the filtered forcing series mean
that the long-term trend can be extracted using regression
techniques. A generalized additive model (GAM) was fit-
ted to the estimated forcing series using the “mgcv” package
in R (Wood, 2011). Approximate 95 % confidence intervals
(±1.96 standard errors) for the estimated trend indicate a dra-
matic acceleration in radiative forcing in the second half of
the twentieth century, with an estimated forcing increase of
1.45± 0.504 Wm−2 between 1850 and 2018.

The filtered forcing series and its subsequent decomposi-
tion into signal and noise are subject to multiple sources of
uncertainty which must be taken into consideration. As well
as the (substantial) internal climate variability, there is obser-
vational uncertainty in the historical temperature series and
parameter uncertainty in the fitted impulse responses. Given
a standard assumption of zero-mean errors, the aggregate
noise from observational error and internal climate variabil-
ity should be well accounted for by GAM regression smooth-
ing. Uncertainty in the fitted impulse responses is also of
limited concern: since the EBMs were fitted to abrupt CO2-
quadrupling experiments, which have a good signal-to-noise
ratio, uncertainty in the fitted impulse responses is in fact
quite small (see Fig. 2). It should however be noted that, un-
der forcing scenarios less drastic than 4×CO2, fitting of ex-
ponential response functions can suffer from ill-conditioning
(De Groen and De Moor, 1987; Kaufmann, 2003). Of ar-
guably greater concern is uncertainty due to inter-model vari-
ation between GCMs, which can be seen as a measure of con-
fidence in a particular GCM’s ability to represent the true cli-
mate. Inter-model variation in GCM output can arise through
the use of different parameter values and/or model structures
in GCMs (Flato et al., 2013). A full multi-model ensemble,
perhaps across all the GCMs in CMIP6, would be required to
quantify this satisfactorily, as HadGEM2-ES and HadGEM3-
GC3.1-LL are clearly not independent samples. Our numer-
ical results should therefore be seen as conditional on those
two climate models.

While we argue that the use of a post hoc GAM regres-
sion is reasonable for the reasons given above, a more inte-
grated approach to uncertainty quantification in future anal-
yses might be achieved using Bayesian methods. A Bayesian
alternative to GAM smoothing of the filtered forcing series
is the “latent-force model” approach (Álvarez et al., 2009;
Särkkä et al., 2018). In a latent-force model, uncertainty in
the unobserved historical forcing input to a system of ODEs
is represented in continuous time using a Gaussian process.
Another alternative is the use of sequential methods based on
the Kalman filter (Kalman, 1960). ARMA models have natu-
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Figure 4. HadGEM3-GC3.1-LL three-box ARMA filter reconstruction of historical radiative forcing. Panel (a) is the Cowtan and Way 2.0
temperature series; (b) is the corresponding filtered forcing series, with an estimated trend and 95 % confidence intervals from a generalized
additive model (GAM) fit; (c) is the sample autocorrelation function (ACF) of the GAM residuals; (d) shows how estimates from the two
models vary over the range of forcing values.

ral representations as linear Kalman filters (De Jong and Pen-
zer, 2004), and sequential filtering methods can account for
uncertainty in both model parameters and unknown inputs
simultaneously, by augmenting the system state vector with
estimates of the uncertain parameters (Lourens et al., 2012;
Yu and Chakravorty, 2015). Similar techniques have previ-
ously been used in the climate literature: for example, by An-

nan et al. (2005) and Padilla et al. (2011), who used Kalman
filtering to sequentially tune parameters of an Earth model
of intermediate complexity (EMIC) and a two-box EBM re-
spectively, and by Cohen and Wang (2014), who estimated
historical time series of global black carbon emissions.
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7 Summary

A framework has been developed for estimating radiative
forcing from time series of surface temperatures using GCM-
calibrated k-box EBMs. There is a known correspondence
between k-box EBMs and ARMA models. We have shown
how, by inverting a k-box EBM’s equivalent ARMA fil-
ter representation, a convenient mapping from temperatures
onto forcings may be obtained. The method has been val-
idated using historical simulations from the HadGEM3-
GC3.1-LL climate model and found to generally perform
well, with the notable exception being negative forcing due
to volcanic eruptions, which was underestimated. Three-box
EBMs fitted to the HadGEM2-ES and HadGEM3-GC3.1-LL
climate models have been combined with the Cowtan and
Way 2.0 temperature dataset to produce estimates of radia-
tive forcing for the historical period (1850–2018). Forcing
estimates calculated using the two models’ ARMA filters are
very similar. A significant increase in radiative forcing over
the historical period has been detected at the 95 % level.

This study has developed a method which has the potential
to improve the detection and attribution of past temperature
changes by comparing patterns of forcings rather than tem-
peratures. Future work will examine how performance of the
method generalizes to the other GCMs in CMIP6 and will
address in more detail the question of uncertainty quantifica-
tion. By combining ARMA filter estimates of historical ra-
diative forcing with known observational constraints, it may
be possible to further constrain climate sensitivity metrics,
such as ECS and TCR, and hence constrain projections of
future warming.
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Appendix A: ARMA filter derivation

The step response of the k-box EBM is a linear combina-
tion of saturating exponentials (Geoffroy et al., 2013; Tsut-
sui, 2020; Cummins et al., 2020). The discrete-time impulse
response R(v) is a linear function of the step response and is
a sum of decaying exponentials:

R(v)=
k∑
i=1

aie−v/τi (A1)

=

k∑
i=1

ai(ri)v, (A2)

where ai,τi > 0 and ri = e−1/τi . Then

8(B)=
∞∑
v=0

R(v)Bv (A3)

=

∞∑
v=0

k∑
i=1

ai(ri)vBv (A4)

=

k∑
i=1

∞∑
v=0

ai(ri)vBv (A5)

=

k∑
i=1

ai

1− riB
(A6)

=

∑k
i=1

(
ai
∏
j 6=i(1− rjB)

)
∏k
i=1(1− riB)

. (A7)

It follows that the operator 8(B) is a ratio of polynomials
θ (B) and φ(B) of degree k−1 and k respectively. Cases k =
1, 2, and 3 are shown below.

Case k = 1

8(B)=
a

1− rB
(A8)

so φ(B) and θ (B) have respective degrees one and zero;
i.e. the system is an ARMA(1, 0) or simply AR(1) filter.

Case k = 2

8(B)=
a1

1− r1B
+

a2

1− r2B
(A9)

=
a1(1− r2B)+ a2(1− r1B)

(1− r1B)(1− r2B)
(A10)

so φ(B) and θ (B) have respective degrees two and one;
i.e. the system is an ARMA(2, 1) filter.

Case k = 3

8(B)=
a1

1− r1B
+

a2

1− r2B
+

a3

1− r3B
(A11)

=

a1(1−r2B)(1−r3B)+a2(1−r1B)(1−r3B)
+a3(1−r1B)(1−r2B)

(1− r1B)(1− r2B)(1− r3B)
(A12)

so φ(B) and θ (B) have respective degrees three and two;
i.e. the system is an ARMA(3, 2) filter.

Note that, in the statistics literature, the term “ARMA pro-
cess” generally refers to an ARMA filter driven by a Gaus-
sian white-noise input. For more information about ARMA
models and the backshift operator, see Brockwell and Davis
(2002).
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able for download from Earth System Grid Federation (ESGF)
portals, e.g. https://esgf-data.dkrz.de/ (last access: 6 Decem-
ber 2019). The time series of historical ERF for HadGEM3-
GC3.1-LL estimated by Andrews et al. (2019) is avail-
able at https://doi.org/10.1029/2019MS001866 (https://github.com/
timothyandrews/HadGEM3-ERF-Timeseries, last access: 10 De-
cember 2019). The Cowtan and Way 2.0 historical surface
temperature series is available at https://www-users.york.ac.uk/
~kdc3/papers/coverage2013/had4_krig_annual_v2_0_0.txt (last ac-
cess: 29 November 2019) (Cowtan and Way, 2014).
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