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Abstract. In ascertaining the performance of a high-resolution gridded forecast against an analysis, called the
verification set, on the same grid, care must be taken to account for the over-accumulation of small-scale errors
and double penalties. It is also useful to consider both location errors and intensity errors. In the last 2 decades,
many new methods have been proposed for analyzing these kinds of verification sets. Many of these new meth-
ods involve fairly complicated strategies that do not naturally summarize forecast performance succinctly. This
paper presents two new spatial-alignment performance measures, G and Gβ . The former is applied without any
requirement for user decisions, while the latter has a single user-chosen parameter, β, that takes on a value from
zero to one, where one corresponds to a perfect match and zero corresponds to the user’s notion of a worst case.
Unlike any previously proposed distance-based measure, both handle the often-encountered case in which all
values in one or both of the verification set are zero. Moreover, its value is consistent if only a few grid points
are nonzero.

1 Introduction

Gaging the performance of a forecast from a high-resolution
verification set (i.e., the pair of forecast and observation
fields) is challenging because of the potential for small-scale
errors to be over-accumulated in summary measures and the
well-known double penalty issue whereby a forecast is pe-
nalized for both a miss and a false alarm in the face of a sin-
gle displacement error (Mass et al., 2002). Many advances in
forecast verification techniques, known as spatial verification
methods, have occurred in the last few decades (e.g., Ebert,
2008; Rossa et al., 2008; Gilleland et al., 2009; Brown et al.,
2011; Weniger et al., 2016; Wikle et al., 2019, Sect. 6.3.5);
and independently in the hydrology literature (e.g. Wealands
et al., 2005; Koch et al., 2015, 2016, 2018). Many of the
methods provide a wealth of diagnostic information about
specific ways in which a forecast performs well or poorly;
a notable example is the Method for Object-based Diagnos-
tic Evaluation (MODE, Davis et al., 2006a, b, 2009). Nev-
ertheless, a single summary measure is often desired and is
often required within more complicated techniques such as
MODE.

This paper introduces new summary measures that rectify
several drawbacks of other summary measures.

1.1 Background on distance-based summary measures

Several summary measures are available for measuring er-
rors in the location, size, and sometimes shape of some type
of weather event area, usually defined as being wherever a
meteorological parameter exceeds (or meets and exceeds)
a specified threshold (e.g., Brunet et al., 2018; Gilleland,
2011, 2017; Gilleland et al., 2020). Most of these measures
were introduced long before spatial verification began and
are sometimes referred to as binary image measures as they
were generally applied to photographic images (e.g., Peli and
Malah, 1982; Baddeley, 1992a, b; Pratt, 2007). In practice, a
binary field is usually created from a meteorological field,
Z(s), where s= (x,y) ∈D is a grid point location within the
domain, D, of the field by setting values above a threshold,
u, to one and the rest to zero. In this case, the binary field
IZ>u(s)= 1, where Z(s)> u and IZ>u(s)= 0 otherwise. Of
course, other rules could be employed, and often summary
measures of this kind are applied for several different thresh-
old values.
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14 E. Gilleland: Spatial forecast verification measures

Figure 1. Illustration of two possible binary fields, namely (a) IA
and (b) IB . Labels A and B indicate the areas (sets) of one-valued
grid points, s, in each field, respectively. Set A contains two dis-
contiguous areas (i.e., connected components), where B has one
connected component. Panel (c) shows the same fields as in pan-
els (a) and (b) overlaid on top of each other, along with a black
dashed line indicating the Hausdorff distance and a gray dotted line
indicating the centroid distance (+ signs show the centroid for each
field). Here, AB indicates the area where A and B overlap (i.e.,
IA(s)= IB (s)= 1),ABc where IA(s)= 1 and IB (s)= 0 (the super-
script c stands for the set complement), and AcB where IA(s)= 0
and IB (s)= 1. White areas are correct negatives (i.e., where IA and
IB are both zero valued). Panel (d) is the same as panel (c) but
where the smaller connected component from A is removed.

When considering a single location, say s1, it is easy to de-
rive a sensible summary metric between s1 and another loca-
tion, say s2, or even a set of several locations, i.e., s ∈ A. For
example, the length of the shortest possible distance between
s1 and the set A, denoted by d(s1,A), could be used. How-
ever, summarizing the similarities or differences between two
sets of locations is a very challenging task.

To simplify the discussion, it is useful to introduce some
notation, which is depicted in Fig. 1. The figure displays two
binary fields, IA(s) and IB (s). The set of locations s, where
IA(s)= 1, is labeled as A and similarly for B. Define AB
to be the set of s ∈D, where IA(s)= IB (s)= 1, ABc is the
intersection of the sets A and the complement of set B, or
where IA(s)= 1 and IB (s)= 0, AcB where IA(s)= 0 and
IB (s)= 1, and, finally, AcBc where IA(s)= IB (s)= 0 (cor-
rect negatives). Let nA (nB ) denote the number of grid points,
where IA(s)= 1 (IB (s)= 1), and let nAB be the number of
grid points where both IA(s)= 1 and IB (s)= 1 (i.e., the area
of overlap betweenA and B). Finally, letN be the total num-
ber of grid points in D, i.e., the size of the domain.

Table 1 gives the equations for the distance-based mea-
sures described subsequently.

One of the most well-known binary image measures is the
Hausdorff distance metric (Baddeley, 1992a, b). This met-

ric is very useful, generally, but has some drawbacks. For
example, it has a high sensitivity to small changes in one
or both fields. Figure 1 illustrates this metric for a compar-
ison between IA(s) and IB (s), when A has two connected
components (see Fig. 1 caption) and when the smaller con-
nected component is removed. Although the two versions of
A are very similar, H (A,B) is very different. On the other
hand, this metric can be particularly useful in the forecast
verification domain when the interest is in verifying small-
scale high-intensity events that can be isolated after applying
a high threshold specifically because of its high sensitivity to
noise.

Several modifications to the Hausdorff method have been
proposed, and perhaps the most well-known is the partial
Hausdorff distance (PHDk), which replaces the innermost
maxima with the kth largest order statistic, mean error dis-
tance (MED), and Baddeley’s 1 metric (Peli and Malah,
1982; Baddeley, 1992a, b). One summary measure, proposed
by Venugopal et al. (2005), which was specifically designed
for spatial forecast verification, utilizes the PHDk but also in-
corporates an intensity component, and is known as the fore-
cast quality index (FQI). Because it involves intensity and
location in its evaluation of forecast performance, it is omit-
ted from Table 1 and is instead given here by the following:

FQI(A,B)=
PHDk(A,B)

ψ̄

/
2µAµB
µ2
A+µ

2
B

·
2σAσB
σ 2
A+ σ

2
B

, (1)

where ψ̄ is the average of PHDk(A,Ci) over i = 1, . . .,m sur-
rogate fields, Ci (randomly generated fields with the same
probability density and spatial correlation structure asA) and
µA (µB ) are the mean intensities over nonzero grid points
from the original fields from which A and B are derived, and
σA (σB ) are the analogous standard deviations. As applied to
a verification set, the surrogate fields are made with reference
to the observation field so, using the notation from Eq. (1),
the observed/analysis field is always A. The range of values
FQI takes is [0,∞), with zero representing a perfect match
and increasing values implying decreasing forecast quality.

One alternative summary measure to compare two sets A
and B is known as Pratt’s figure of merit (FoM; Peli and
Malah, 1982; Baddeley, 1992a, b; Pratt, 2007, Eq. 15.5-1).
FoM has one user-chosen parameter, α, which is a scaling
constant that is typically set to one-ninth, corresponding to
when d(·, ·) is normalized so that the smallest nonzero dis-
tance between neighboring s is one, and 0< FoM(A,B)≤ 1
with FoM(A,B)= 1 only if A= B. Like MED, FoM is
not symmetric so that, generally, FoM(A,B) 6= FoM(B,A).
Figure 2 shows an example similar to one found by Peli
and Malah (1982, and also shown in Baddeley, 1992b)
that demonstrates how FoM is not sensitive to the pattern
of displacement errors. In the example, the set A over-
laps with B2 but not B1, although it is more similar in
shape to B1. Nevertheless, FoM(A,B1)≈ FoM(A,B2) and
FoM(B1,A)= FoM(B2,A).
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Table 1. Equations for distance-based measures discussed here. Let s= (x,y) ∈D represent a grid point (coordinate) in the domain D,
and let N be the size of the domain with A,B ⊂D representing sets of grid points for which the corresponding value is one (in the binary
field). Then let d(s,A) be the shortest distance from s to A and, similarly, for d(s,B). If a field is empty of one-valued grid points, define
d(s,A)=D for some large value D, such as N . Let nA and nB represent the number of grid points in the sets A and B, respectively.
Furthermore, let IA(s)= 1, if s ∈ A, or zero otherwise, which is similar for IB (s). ω is any continuous function on [0,∞] that is concave,
and p is a user-chosen parameter. Finally, α in figure of merit (FoM) is a user-selectable parameter (see text).

Measure name Measure’s equation

Hausdorff distance H (A,B)=max
{

max
s∈B
[d(s,A)],max

s∈A
[d(s,B)]

}
Partial Hausdorff distance PHDk(A,B)=max

{
kth largest

s∈B
[d(s,A)],kth largest

s∈A
[d(s,B)]

}

Baddeley’s 1 1(A,B)=

[
1
N

∑
s∈D
{ω(d(s,A))−ω(d(s,B))}p

]1/p

Mean error distance MED(A,B)= 1
nB

∑
s∈B

d(s,A)

Pratt’s FoM FoM(A,B)= 1
max{nA,nB }

∑
s∈B

1
1+αd2(s,A)

Figure 2. Similar to an example from Peli and Malah (1982). Sup-
pose A represents the truth, and B1 and B2 are competing predic-
tions for A. Gβ (A,B)=Gβ (B,A) and Hη(A,B)=Hη(B,A), but
FoM does not share this symmetry property. Note that, when us-
ing α = 1/9, FoM(B1,A)= FoM(B2,A)≈ 0.5 and FoM(A,B1)≈
FoM(A,B2)≈ 0.9, indicating an insensitivity to shape. Gβ , using
β = 648= 64/2=N2/2, yields different values when comparing
A with B1 as opposed to A with B2. Therefore, B2 is favored be-
cause of the amount of overlap withA, whereas B1 does not overlap
with A at all. Nevertheless, Gβ indicates a poor match for both B1
and B2 when compared with A at this level of β.

The same properties pointed out above also apply to
MED (Baddeley, 1992b), except that MED is not bounded
above by one. Additionally, MED is relatively sensitive to
background noise, which is usually not desired unless the
background noise is important (see an example in Gilleland,
2017, where the noise could be a severe storm).

Distance maps are useful for both describing and comput-
ing most of the distance-based methods. A distance map,
d(·,A), gives d(s,A) for every s ∈D and can be calcu-
lated efficiently because of various distance transform algo-
rithms (see Meijster et al., 2000; Brunet and Sills, 2017).
Most, if not all, distance-based methods fail when one or both
of the fields is empty (Gilleland et al., 2020). Some invoke a
special rule so that they will be defined, but then their values
tend to differ considerably if IA(s0)= 1 at a single grid point
s0. For example, d(s,A)=∞ when A is empty, or in prac-
tice, d(s,A)=D, where D is some large number such as N .
If, instead, IA(s0)= 1 at a single point s0 and I (s)= 0 at all
other points s 6= s0, then d(·,A) will be much smaller than
D at many locations, typically resulting in drastically dif-
ferent summary measure values even though the two fields
are practically identical. Moreover, these measures may dif-
fer greatly, depending on where s0 is located within D.

Some of the measures, such as MED, are susceptible to
hedging because they are not very sensitive to frequency
bias (Gilleland, 2017). Finally, most of these summary mea-
sures have zero as the value for a perfect match (e.g., if a field
is compared against itself) but can be less straightforward to
interpret in terms of what constitutes a poor forecast.

This paper presents the following two new measures: one
that is free of any user-chosen parameters and another with a
single user-chosen parameter that falls on a scale from zero
to one, where one corresponds to a perfect match and zero
to the user’s idea of poor. The metrics incorporate not just
the spatial alignment errors but also the frequency bias. Two
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additional summary measures are proposed that are based on
the second location-only one but also incorporate a measure
of intensity error that allows for the forecast to not be a per-
fect match without resorting to any computationally intensive
or difficult-to-implement algorithms.

The new measures are computationally efficient, are not
affected if the domain size is increased, cannot be hedged by
increasing or decreasing the forecast frequency, and provide
a single, easy-to-interpret summary of forecast performance
that accounts for the amount of overlap between the fore-
cast and observation and a graduated measure of the severity
of any lack of overlap. Moreover, unlike all other distance-
based summary measures, both of the new proposed metrics
handle pathological cases naturally (see Sect. 4.1).

The equitable threat score (ETS) is also applied for some
of the cases as a baseline comparison. The ETS is a hit-heavy
traditional verification measure, so it does not account for the
issues associated with high-resolution forecasts. Using the
nomenclature of Fig. 1, ETS is defined by (nAB− r)/(nAB+
nABc+nAcB−r), where r = (nAB+nABc )(nAB+nAcB )/N ).
ETS can be thought of as a strict, or even automaton, measure
because it requires the overlap nAB to be very high in order
to pass muster.

1.2 The intensity conundrum

Because the main issue with traditional grid-point-to-
grid-point verification is largely centered on the over-
accumulation of errors in the face of spatial displacement
errors, the most natural approach is to deform one or both
of the forecast and observation fields so that they align better
in space. Examples of this approach in the literature include a
pyramidal matching algorithm (Keil and Craig, 2007, 2009),
based on an approach that had been developed for the detec-
tion and tracking of cloud features in satellite imagery (Zin-
ner et al., 2008), optical flow (Marzban and Sandgathe,
2010), and image warping (Gilleland et al., 2010; Gilleland,
2013). A feature-based method such as MODE can also be
considered as a deformation approach in that individual fea-
tures may be matched together and assumed to be aligned. In
the case of MODE, the distributional intensity information is
performed on these individual matched feature comparisons,
so if it accumulated over features, then the result would be
analogous to a deformation type of method. Beyond these
approaches, only distributional information about intensities
can be obtained.

Of the deformation methods proposed, the image-warping
procedure is the only one that has an elegant statistical model
that allows for a natural method to ascribe uncertainty in-
formation. Deformations that yield optimal, or near-optimal,
spatial alignments are not unique, however. Moreover, while
non-sensible and non-physical deformations can be penal-
ized in the optimization procedure, there is no guarantee that
they will not result; for example, it is possible for the en-
tire field to be compressed into a ball or pushed out of the

domain. The biggest challenge, however, may be simply in
determining how best to weight the amount of deformation
required versus the resulting error intensities.

The vast majority of spatial verification methods proposed
are applied on binary fields usually obtained by setting all
values below the threshold to zero and those above to one.
Examples include the intensity-scale approach (Casati et al.,
2004) and MODE, which also includes a distributional com-
ponent for the intensities and all of the distance-based ap-
proaches discussed in Sect. 1.1. In this work, a distributional
measure of intensity performance is proffered that is com-
bined with the new spatial alignment measure,Gβ , described
in Sect. 2. It is not a fully satisfactory measure, as will be
seen, but it can be useful in some situations. Moreover, it
represents a best-case deformation summary – if there were
no considerations about how much deformation should be al-
lowed.

2 The new measures

Having a summary measure that penalizes misses and false
alarms in a consistent and sensible manner is desired. It
should be sensitive to small changes in one or both fields
but not overly so. If the (binary) forecast contains a set, A,
of one-valued grid points and the observation set, B, then the
value of the measure should not change if A and B are found
in a different part of the domain, or are rotated, as long as
they are the same relative to each other (see the first few cir-
cle cases from Gilleland et al., 2020 that are also analyzed
subsequently here).

Therefore, the new measures involve a term, denoted by
y1, that measures the lack of overlap by way of the size of the
symmetric difference. Another term, y2, provides a measure
of the average distance of A to B and B to A, weighting each
by the size of the two sets in order to mitigate the impact of
this term in the event that a set is small.

Let y = y1y2 where y1 = nA4B = nABc∪AcB = nA+nB−

2nAB and y2 =
∑

s∈Bd(s,A)+
∑

s∈Ad(s,B)=MED(A,B) ·
nB +MED(B,A) · nA, with MED as in Table 1. Both new
measures are functions of the product y1y2. This product
multiplies an area and a distance with units of grid points
squared and grid points, respectively. The first measure,
therefore, is a cubed root of this product so that the result-
ing value has the same units as most of the other distance-
based measures (i.e., grid points) described in Sect. 1.1. The
second is a unitless quantity that is rescaled so that it falls be-
tween zero and one, with zero being a bad score and one be-
ing a perfect score. The new performance measures applied
to compare two binary fields, IA(s) and IB (s) (as described
in Fig. 1), are given by the following:

G(A,B)= y1/3, (2)
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and

Gβ (A,B)=max
{

1−
y

β
,0
}
, (3)

where β > 0 is a user-chosen parameter. Equation (3) repre-
sents a fuzzy-logic scaling of y that falls between zero (ex-
ceptionally poor forecast) and one (perfect forecast) in the
same vein as an interest value in the MODE approach (Davis
et al., 2006a, b, 2009). Indeed, Gβ applied to individual fea-
tures would be a good alternative to the centroid distance that
is often used as part of MODE.

The term y1, which, again, is a penalty for lack of over-
lap between A and B, has a maximum possible value of N ,
which happens when nA+nB =N and nAB = 0. In the case
of a perfect match (i.e., A= B), y1 = 0. It is the size of the
symmetric difference, A4B, between the two sets, and its
units, therefore, are numbers of grid points squared.

MED(A,B) is a measure of average distance from B to A
in terms of the distance d(·, ·) described previously. In gen-
eral, MED(A,B) 6=MED(B,A). Because MED is not sensi-
tive to the occurrence rate, each MED in y2 is multiplied by
its respective size, nA or nB . This compensation ensures that
a large MED will not overly dominate the resulting measure
when sets A or B are small. The units, here, for y2 are grid
points so that the units for the product y1 · y2 are numbers of
grid points cubed. Therefore, G from Eq. (2) has numbers of
grid points as its units.

For a perfect match, MED(A,B)=MED(B,A)= 0 and,
subsequently, y2 = 0. The maximum value for MED is D
(where D is a large value as described in Sect. 1.1), which
would occur when nA =N and nB = 0 for MED(B,A)
or, similarly, when nA = 0 and nB =N for MED(A,B).
Because MED(A,B) is undefined if nB = 0, the term
MED(A,B) · nB is defined to be zero in this situation and,
similarly, for MED(B,A) · nA when nA = 0. Tempering the
MED in this way ensures that small amounts of noise will
not overly affect the results, unlike untempered MED. Gille-
land (2017) argued that MED’s sensitivity to noise could be
useful when smaller-scale spatial events are important (e.g.,
storm activity), and it should be noted that Gβ can be useful
in this capacity through careful choice of the β argument as
described below. The Hausdorff distance, as mentioned pre-
viously, is particularly well suited to such a verification.

The product y = y1y2 provides a measure of the size of the
area given by ABc and AcB magnified by a measure of the
distance between A and B. The function in Eq. (3) decreases
linearly in y from one (perfect match) to zero (very poor fore-
cast). The maximum possible value of y1y2 =N

2
·D, which

provides some motivation for choosing β and is to be cho-
sen with N and the base rate in mind. Experimentation has
found that β =N2/2 is a sensible choice when the base rate
is large but small relative to N (see Fig. 2 and the cases in
Gilleland et al., 2020), but if penalizing location errors more
greatly is desired, then smaller values for β can be used.
For example, Fig. 3a, c, and e demonstrate both Gβ , with

three different choices of β, and FoM, with three different
choices of α, applied to a comparison between two identi-
cal circles, where one circle is translated horizontally by in-
creasing amounts. If β is small (β =N

√
N ), then Gβ de-

creases rapidly with increasing translation errors and equals
zero once it is separated by 20 grid squares, or the point at
which there is no longer an overlap between the two circles.
When β = 2004/2 or 2004, Gβ decreases more slowly, giv-
ing more credit to forecasts with larger displacement errors.
When β = 2006,Gβ decreases but remains very close to one
for all circles. The FoM applied with three different values
of α demonstrates that this scaling constant does not affect
the result very much, and the measure decreases rapidly with
increasing translation errors.

Figure 3b, d, and f show a similar analysis forGβ and FoM
but for different types of bias. For the highest values of β ap-
plied, the smaller radii are not small enough for Gβ to drop
much below the perfect value, though they do drop. In this
case, the lowest choice of β perhaps supplies the optimal be-
havior. FoM behaves well, and in this case, the asymmetry of
the measure is apparent as the gray and black lines reflect a
similar pattern but do not give the same result for each com-
parison.

Because G and Gβ are designed, in part, to seamlessly
handle the pathological cases, they will typically yield good
scores at high thresholds because the areas that exceed those
thresholds are typically very small in both fields. If such
high intensities over such small areas are important (e.g.,
severe thunderstorms), then a lower choice of β can be
used. Figure 4, for example, shows a precipitation forecast
only for values exceeding 40 mmh−1. The observation is not
shown but, to the naked eye, appears identical (i.e., empty).
However, the observation has no precipitation exceeding
40 mmh−1 anywhere near the enlarged region of southern
Louisiana and Alabama displayed, where, clearly, the fore-
cast has rather intense false alarms. Over the entire domain,
the observation field has three connected components with
areas of 18, 132, and 11 grid points, whereas the forecast has
only two such areas of five and 37 grid points (both shown in
Fig. 4). That is, there are also areas with intense precipitation
that were missed by the forecast. Taking, as an exceptionally
large area for this activity, about 200 grid squares and sup-
posing that an average distance of 20 grid squares (≈ 80 km)
is too large of a translation error, then β = 200 ·20= 4000 is
an appropriate choice for β. Indeed, Gβ = 0 for this choice
with this verification set and a threshold of 40 mmh−1.

The flip side of choosing β is that a particular user might
only be interested in egregious errors so that a higher choice
of β will be appropriate as the score will be more forgiving.
In general, when reporting results for Gβ , it is important to
specify the choice of β and the reasoning behind it. When
possible, physical reasoning should be employed.

A modification is presented for incorporating intensity in-
formation into Gβ , denoted Gβ,IL, where IL stands for in-
tensity and location. Gβ can be thought of as a type of sum-
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18 E. Gilleland: Spatial forecast verification measures

Figure 3.Gβ (c, d) and FoM (e, f) applied to pairs (a) consisting of the leftmost blue solid circle and identical, horizontally translated circles
(outlined for clarity) and (b) the blue solid circle with circles centered on the same location but with varying radii. Each set of comparisons
is on a 200× 200 domain. The blue solid circles have radii of 20 grid points. Gβ lines are β = 2003

=N
√
N (solid), β = 2004/2=N2/2

(dashed), β = 2004
=N2 (dotted), and β = 2006

=N3 (dot dashed). FoM lines are α = 1/100 (solid), α = 1/9 (dashed), and α = 1/2
(dotted). FoM(A,B) 6= FoM(B,A), generally, but is symmetric for the left column comparisons. Black lines for FoM in panel (f) indicate
FoM(A,B), and gray lines indicate FoM(B,A).

mary of the amount of deformation that would be required
if one could completely transmogrify the field so that all in-
tensity values were matched with the nearest such value in
the other field. Therefore, any type of distributional mea-
sure of the similarities in intensities completes the picture
for this paradigm. Of course, a calibrated forecast should al-
ready match the distribution of the observed field in this way
so that the additional measure may be less important than the
alignment errors. It is given by the following:

Gβ,IL(A,B)= ω ·Gβ (A,B)+ (1−ω) · θ (A,B), (4)

where θ (A,B) is max{ρ(A,B),0}, with ρ the linear cor-
relation coefficient between sorted values of the intensities
within the setA and those in the set B, and ω is a user-chosen
weight dictating the importance of spatial alignment errors
versus intensity errors, which are defined distributionally.

If the distribution of values in A is the same as that in B,
then the relationship between their sorted values should be a
straight line, and correlation measures the strength of this lin-
ear relationship. Because the sorted values are both monoton-
ically increasing, θ (A,B) will generally be high. Neverthe-
less, when the distributions are different, their value will de-
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Figure 4. An example of 24 h accumulated precipitation forecast displaying only those values that exceed 40 mmh−1. The forecast is the
Inter-Comparison Project (ICP) wrf4ncar case for 1 June 2005 (Ahijevych et al., 2009).

crease. In general, ω should be higher than one-half in order
to weigh the more important spatial alignment errors more
heavily.

Equation (4) assesses intensity performance distribution-
ally through the sorted intensity values within the sets A and
B. If nA < nB or nB < nA, then the larger set of sorted values
is linearly interpolated to have the same size as the smaller
set. A difficulty arises when nA = 0 or nB = 0. For θ (A,B),
it is unclear what do for such cases. If nA = nB = 0, then
θ (A,B) could be taken to be one, and if the non-empty set
is small, then it could be taken to be something near to one,
but the solution to this problem will be application dependent
and is not discussed further here.

The motivation for using the sorted values in θ is that y1
measures lack of overlap, and y2 provides a sense of the
closeness of the lack of overlap, so θ can be thought of as
the intensity error remaining if they could be realigned spa-
tially so that they match up in an optimal way. In this way,
it can be thought of as a quick and easy field deformation
type of summary. Another interpretation, already mentioned,
is that it is a distributional comparison of the nonzero-valued
intensities analogous to those from a quantile–quantile (q–q)
plot. In fact, a q–q plot of the values in the set A compared
with those in B is a scatter plot of exactly the same sorted,
and possibly interpolated to the same size, intensities.

3 Test cases

Several test cases are employed in order to demonstrate the
behavior of Gβ and Gβ,IL. Comparisons of Gβ are made
with FoM and Gβ,IL with FQI from Eq. (1) because these
existing measures appear to be the most similar. The first set
of test cases is applied to understand Gβ and comes from
the recently proposed set of comparisons by Gilleland et al.
(2020),1 namely the pathological, circle, ellipse, and noisy
comparisons.

For Gβ,IL, 3 h accumulated precipitation (in millime-
ters) from the core case of the Mesoscale Verifica-
tion Inter-Comparison over complex Terrain project is
used (MesoVICT; https://ral.ucar.edu/projects/icp/, last ac-
cess: 11 February 2021; Dorninger et al., 2013, 2018). The
precipitation case utilizes the Vienna Enhanced Resolution
Analysis (VERA, Steinacker et al., 2000) as observation and
the Canadian high-resolution model (CMH; Dorninger et al.,
2013, 2018). The case is a subset of the minimum core case
from the MesoVICT project and involves several valid times
between 20 and 22 June 2007. Here, only 3 h of accumulated
precipitation for the 12 h lead times is analyzed. Figures 5

1Gilleland et al. (2020) is open access to facilitate easy viewing
of the figures for these test cases. It is recommended that the reader
refer to these figures when reading the results section.
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to 7 show plots of these cases, along with diagnostic plots
described in Sect. 5.

Finally, in order to provide a more thorough test of Gβ,IL,
the 32 spatial forecast verification ICP real test cases are also
analyzed. These contain two models, namely the Advanced
Research Weather Research and Forecasting Model (ARW-
WRF; Skamarock et al., 2005) and the nonhydrostatic
mesoscale model (NMM). Stage II reanalysis is used as the
observations. These cases were previously analyzed by Davis
et al. (2009) for MODE, Gilleland et al. (2010) and Gilleland
(2013) with image-warping and hypothesis-testing proce-
dures, and Gilleland (2017) using MED. The forecasts were
initialized at 00:00 UTC (early evening), with a 24 h lead
time, and were part of the 2005 National Severe Storms Lab-
oratory and Storm Prediction Center Spring Program (Bald-
win and Elmore, 2005). See Kain et al. (2008) and Ahijevych
et al. (2009) for more information on these cases.

The development of spatial verification measures largely
grew out of the specific application of verifying quantitative
precipitation forecasts, which is the reason why the ICP and
MesoVICT cases are focused on these types of fields. Never-
theless, G and Gβ , and most of the spatial verification meth-
ods, can be applied to other types of variables such as wind
speed. In the case of the distance-based measures, including
G and Gβ , as long as the variable field can be sensibly con-
verted into a binary field, then the measures can be applied.

4 Application to the new geometric cases from
MesoVICT

Gilleland et al. (2020) applied the Hausdorff distance, Bad-
deley’s 1, and MED to the test cases developed therein, so
those results can be compared with the results for G and
Gβ in this section. Because FoM has not been considered on
these cases previously, and because it is the most similar to
Gβ , it will also be evaluated and compared here. For brevity,
G is only applied to the circle cases as results are generally
consistent with Gβ , which means essentially comparing the
functions f1(x)= x1/3 with f2(x)= 1− x/β for x/β ≥ 0.

4.1 Pathological cases

The pathological comparisons represent challenging, but of-
ten encountered, situations where fields are empty, full, or
contain only some small amounts of noise. Each individual
field is on a 200× 200 domain, as described in Table 2, and
is labeled P1 to P7. A total of two comparisons also involve
a circle of radius 20 centered at (100,100) and labeled C1.

All of the distance-based measures tested by Gilleland
et al. (2020) were either undefined or gave erratic results for
the pathological comparisons. Table 2 demonstrates thatGβ ,
using β =N2/2= (200 ·200)2/2, behaves naturally even for
the most difficult of these tests. The comparisons of P1
against P1 (henceforth denoted by P1P1 and similarly for
other comparison labeling) and P2P2 yieldGβ values that are

identically one, which is desired as they are perfect matches.
When one or a few one-valued grid points are added to the
empty field (i.e., cases P3, P4, P5, P6, and P7), the compar-
isons P1P3, P1P4, P1P5, and P6P7 in the figure yield Gβ
values that are very close to, but slightly less than, one. Be-
cause these fields are largely identical outside of this small
amount of noise, a Gβ near one is the result that is wanted.

On the other hand, the comparison between P1 and P2,
which represents a worst-case scenario of an empty field
(IP1(s)= 0 at every s ∈D) compared to the full field, P2
(IP2(s)= 1 at every s ∈D) yieldsGβ (P1,P2)= 0, as desired.
The comparisons P2P5 and P2P6 are comparisons that are
nearly identical to the comparison P1C1, except that, again,
P5 and P6 have four nonzero-valued grid points. Gβ = 0 for
these comparisons, agreeing with the subjective judgment. It
is also zero for the comparison P2C1, which compares the
full field against a field with a relatively small circle of one-
valued grid points.

Finally, Gβ (P1,C1) has a relatively higher value than for
Gβ (P2,C1), if β = (200 · 200)2 (right), and for β = (200 ·
200)2/2 (left), its value is zero (the same as for P2C1). For
the higher β, the large amount of correct negatives allows
for a better score for P1C1 than P2C1. The zero-value of Gβ
for P2C1 is, quite correctly, suggestive of a poor match as de-
sired, regardless of whether β = (200·200)2 or (200·200)2/2.

Pratt’s FoM is not defined whenever it is calculated from
the empty field P1 because there is no non-empty set of one-
valued grid points from which to calculate the distance map
(including FoM(P1,P1), FoM(P1,P2), etc.). If using the rule
that d(·,A)=D for largeD when A is empty, then FoM will
be near zero for any comparison from P1. FoM for each of the
remaining comparisons is very close to zero, indicating that
each pair of fields is a poor match, which is not consistent
with a subjective evaluation. That is, the empty field creates
a situation where FoM is either not defined, or it suggests a
bad match regardless of whether the match is very good or
very bad.

4.2 Circle comparisons

Figure 8 shows results for G from Eq. (2) applied to the cir-
cle comparisons, and Fig. 9 shows the results for Gβ and
FoM applied to the circle and ellipse comparisons proposed
by Gilleland et al. (2020, Figs. 5 and 6). Small dotted vertical
lines separate similar comparisons as a visual aid. The first
five circle comparisons demonstrate that neither G nor Gβ
is sensitive to the positioning of the one-valued grid points
within the domain. That is, they give the same value for
the first three comparisons, which are identical comparisons,
apart from their positions within D, which is similar for the
next two comparisons (C1C4 and C3C4). This property is
desirable but is not achieved by all summary measures, in-
cluding 1. The first three comparisons represent identical
circles that are translated so that they touch at one point but
do not overlap.Gβ penalizes them for the lack of overlap but
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Figure 5. MesoVICT case 1 verification set, ending on 20 June 2007, at 18:00 coordinated universal time (UTC), for 3 h accumulated
precipitation, given in millimeters (a, c). VERA analysis (a) and CMH with a 12 h lead time (b). Circle histogram (analogous to a wind
rose diagram) showing the sorted model values, minus the sorted analysis values, and binned by the bearing from the analysis to the model
(referenced from the north) of these sorted values (b). A q–q plot of VERA against CMH over all values (d). A histogram for the distances
between the sorted values of the analysis and the model (e). See Sect. 5 for a detailed explanation of this figure.

otherwise gives these cases a relatively high mark. G is less
readily interpreted, but its relative value for the comparisons
is consistent with the other distance-based measures applied
in Gilleland et al. (2020). C1C4 and C3C4 are also identical
circles but have been translated further apart, and this addi-
tional translation error is penalized more than with the first
three cases. FoM, while generally not symmetric, is symmet-
ric for the first 11 comparisons and for C1C10, C6C12, and
C13C14. FoM penalizes the first five comparisons consider-
ably, yielding values very near to zero.

C2C5 and C3C5 are similar comparisons as for C1C2, for
example, except that these circles overlap as they are not
translated as far. Their Gβ values are subsequently very near
to one, but their FoM values are relatively low at about 0.6.
G≈ 288.86 for both of these comparisons, which puts them
in a tie for second in terms of ranking the quality of the
matches across the comparisons (C13C14 is better, accord-
ing to G, with a value of about 263.99).

C2C11 is a comparison in which C11 is the union of
the three circles C1, C3, and C4 against C2 and was orig-
inally introduced in Gilleland (2017) in testing the MED.
It was found that MED(C2,C11) gave the same value as
it gave for the C1C2, C2C3, and C2C4 comparisons, but
MED(C11,C2) was much smaller. C1C6 is a similar com-
parison, but with only two additional circles, and results are
similar for this comparison. G and Gβ are symmetric, so
there is no difference between, for example, Gβ (C2,C11)
andGβ (C11,C2), and both penalize this comparison because
of the lack of overlap and the additional circles. FoM does
not distinguish this comparison at all from the C1C2, C2C3,
and C2C4 comparisons, again indicating its inability to dis-
tinguish shape errors.

C7 and C8 have the same upper circle as C6, but the
lower circle is offset, with C7 more so than C6.G(C6,C7)=
G(C1,C2) and Gβ (C6,C7)=Gβ (C1,C2) because, despite
having a perfect match with the upper circle, the error with
the lower circle in C6C7 is identical to the error between C1
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Figure 6. Same as Fig. 5 but ending on 21 June 2007.

and C2. FoM, on the other hand, is much higher for C6C7
than C1C2. Thus, FoM rewards more for having some more
parts correct than Gβ .

C9 is a circle with the same center as C1 (centroid dis-
tance is zero) but is much larger. Gβ (C1,C9)= 0, using
β = 2003/2, whereas FoM is very low but not identically
zero. G(C1,C9)≈ 1367.67 is a high value and shows this
case to be the worst of the circle comparisons. C1C10 is a
similar comparison, but the larger circle is replaced with a
ring so that C10 does not intersect with C1, and there is a
gap between them. Again, the centroid distance is zero (per-
fect score), but both Gβ and FoM are zero (worst score pos-
sible).G(C1,C10)≈ 1231.91 is also a high value, indicating
a poor match, but is lower than for C1C10, which contrasts
with 1, which was found to have approximately the same
value for these comparisons.

C6C12, similarly, has a centroid distance of zero this time
because the two circles in C12 are translated equally but in
opposite directions from the two circles in C6, and each cir-
cle in C12 overlaps with the two circles in C6. Gβ is rel-
atively high for this case, but lower than for the first three
comparisons, penalizing for the additional area that is not

overlapped. G(C6,C12)≈ 637.59 is again difficult to inter-
pret in terms of good versus bad but suggests that, relative to
the other comparisons, it is much better than the most egre-
gious error comparisons.

Finally,Gβ and FoM disagree completely about how good
of a match there is between C13 and C14. Both sets of cir-
cles include much smaller circles than before, so Gβ (with
β =N2/2) does not penalize the relatively small translation
errors as much. On the other hand, FoM greatly penalizes
them for this case, ignoring the circle sizes.

As discussed in Sect. 2, the FoM result for C13C14 (see
Fig. 10a) might be the more desired result for this case if
these relatively small circles represent an event such as se-
vere weather rather than unimportant noise. In such a case,
Gβ can still be effective if the value of β is chosen with
the physical interpretation in mind. For example, the base
rate for C1 (i.e., nC1/N ) is a little larger than 0.03, whereas
it is less than 0.01 for C13 and C14. The total size nC13 =

nC14 = 362, and assuming each grid square represents, say,
4 km, then one might consider an error of 10 grid squares
(≈ 40 km) to be too large. In fact, the largest circles in C13
and C14 have a radius of eight grid squares. Therefore, an
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Figure 7. Same as Fig. 5 but ending on 22 June 2007.

Figure 8. Results for G from Eq. (2) applied to the circle compar-
isons from Gilleland et al. (2020). Smaller values are better, and
zero signifies a perfect match. Dotted vertical lines separate similar
comparisons as a visual aid.

upper bound for a very poor match for y from Eq. (3) might
be considered to be about 350 ·10= 3500. Figure 10b shows
Gβ (C13,C14) for varying values of β. The left vertical line
is through β = 3500, and the right vertical line is through
β =N2/2= 20000 that is used for the above results. In other
words, if the small circles in the figure are important, then
a smaller value of β should be used, and if they represent
noise, then a higher value is in order. Gβ=3500 correctly in-
forms that these two cases are not close enough, whereas
Gβ=N2/2 indicates a fairly good match.2 G gives the lowest
value for this comparison out of any of the other compar-
isons, indicating it is the best match. If the application needs

2An alternative strategy to employ when applyingGβ for severe
storm types of situations is to use it within a feature-based approach.
In this setting, a bounding box can be placed around the union of the
spatial sets to be compared (i.e., individual features rather than all
sets over the entire domain) so that the size of the domain is the
size of the bounding box, say B, and β = B2/2. Such an approach
introduces an additional complexity in that the individual features
need to be identified within each field and matched across fields.
Both procedures require the user to make choices about parameters
and methods, and the results may be quite sensitive to these choices.
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Table 2. Description (top) of the pathological fields from Gilleland et al. (2020). Each field is on a 200× 200 domain, D, with s= (x,y)
giving the x and y coordinates such that (1,1) is the lower left corner. Results (bottom) for Gβ for comparisons of the pathological cases.
The value ≈ 1 indicates that Gβ < 1 but Gβ = 1.00 after rounding to two (or even more) decimal places.

Case identifier Description

P1 Empty field (IP1(s)= 0 at every s ∈D)
P2 No zero-valued grid points (IP2(s)= 1 at every s ∈D)
P3 One nonzero-valued grid point in the lower left corner (IP3(s)= 1 at s= (1,1) and IP3(s)= 0 everywhere else)
P4 One nonzero-valued grid point in the upper right corner (IP4(s)= 1 at s= (200,200) and IP4(s)= 0

everywhere else)
P5 One nonzero-valued grid point in approximately the center of the field (IP5(s)= 1 at s= (100,100) and

IP5(s)= 0 everywhere else)
P6 Four nonzero-valued grid points in the corners (IP6(s)= 1 at s ∈ {(1,1), (200,1), (1,200), (200,200)}

and IP6(s)= 0 everywhere else)
P7 Four nonzero-valued grid points in the middle of each boundary (IP7(s)= 1 at

s= {(1,100), (100,1), (100,200), (200,100)} and zero everywhere else)

Gβ (P1,P1) (P1,P2) (P2,P2) (P1,P3) (P1,P4) (P1,P5) (P2,P5) (P2,P6) (P6,P7)

β =N2/2 1 0 1 ≈ 1 ≈ 1 ≈ 1 0 0 ≈ 1
β =N2 1 0 1 ≈ 1 ≈ 1 ≈ 1 0 0 ≈ 1

Gβ (P1,C1)a Gβ (P2,C1)a

β =N2/2 0 0
β =N2 0.36 0

a C1 is a circle of radius 20 centered at the point (100,100).

Figure 9. Gβ and FoM results for the geometric comparisons
from Gilleland et al. (2020), which are on a 200× 200 gridded do-
main. At the top are the circle comparisons, and at the bottom are
the ellipse comparisons. Black solid circles indicate Gβ values (us-
ing β = 2004/2=N2/2), gray circles are FoM(A,B), and gray +
signs are FoM(B,A), where A represents the first case in the la-
bel, e.g., C1 from C1C2 and B the second; α = 1/9. Dotted vertical
lines separate similar comparisons as a visual aid.

these cases to be more heavily penalized, then G is not the
ideal choice of measure, and the Hausdorff distance would
be recommended.

4.3 Ellipse comparisons

The ellipse comparisons (Gilleland et al., 2020, Figs. 7 and
8) are shown in the lower panel of Fig. 9, and abstract the
types of situations common over complex terrain. The verti-
cal dotted lines again provide a visual aid to separate different
types of errors represented in the comparisons, namely, (i)
translation-only errors, followed by (ii) size-only errors, (iii)
size and translation errors, (iv) rotation only errors, (v) rota-
tion and translation errors, and (vi) rotation, translation, and
size errors, and (vii) the final three comparisons involve a sin-
gle ellipse compared against several small ellipses within a
larger elliptical envelope and three ellipses compared against
a larger blob that roughly follows the shape of these ellipses.
Gβ and FoM disagree considerably on the quality of the

match for the translation-only errors, where, in this case, Gβ
perhaps gives a value (around 0.8) that is more consistent
with a subjective evaluation because the ellipses are identi-
cal – apart from a relatively small translation (no overlap).
FoM, on the other hand, gives a value very close to zero.
They also disagree on E7E11, which is a similar comparison,
except that one of the ellipses is much smaller than the other.
Gβ again gives a high value (higher than for the first several
comparisons), and FoM is again very low and even closer to
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Figure 10. (a) The C13C14 comparison shown as the difference
C14−C13. The size of the one-valued set is small relative to the
size of the domain. The base rate is less than 0.01 for both fields.
The total size of these sets is 362. For comparison in terms of the
spatial areas of the circles, the gray dashed circle in the center shows
C1. (b) Gβ (C13,C14) applied with a range of different β values.
The left vertical line is through β = 3500, and the right vertical line
is through β =N2/2= 20000.

zero in this particular comparison. Finally, they also disagree
on E2E18 in the same way. This case again involves a transla-
tion error and essentially a size error. One might agree more
with FoM that this match quality is poor, but if the small-
scale detail is less important than the overall size and shape
of the extent of, say, the type of convective activity in com-
plex terrain for which this comparison was designed, then
Gβ provides a sensible result.

Otherwise, the two measures generally agree with
each other in relative terms; that is, they rank the re-
maining comparisons similarly. Gβ generally results in
fairly high values for all of these comparisons, whereas
FoM is below 0.6 for every one, giving its high-
est values slightly above 0.5 for the size-only errors
when calculated as FoM(larger ellipse,smaller ellipse) as
shown by the gray circles. However, when calculated as
FoM(smaller ellipse, larger ellipse), depicted with the gray+
signs, FoM is below 0.3, indicating a much poorer match.

4.4 Noisy comparisons

The noisy comparisons from Gilleland et al. (2020) are ana-
lyzed with Gβ , using β = (200 · 200)3/2 and FoM (Fig. 11).
The first comparison is the same as that for C1C4 but
with additional noise, as described in the Fig. 11 cap-
tion. G(C1,C4)≈ 0.65, which is a bit lower than it is for
G(N1,N2)≈ 0.87. In this case, the amount of overlap is
about the same, but because of the noise that is scattered
about the entire domain in both fields, there is less aver-
age distance between N1 and N2 than there is between C1
and C4. Indeed, Gilleland et al. (2020) show MED values

that are smaller by about 10 grid squares for the N1N2 case,
which explains the lowerGβ value here. The difference is not
great, however, demonstrating thatGβ is not overly sensitive
to noise.

The latter two noisy comparisons again involve the C1C4
comparison but with a single point of noise added to the C4
field. In the first, the single point is added at the center of
C1, and in the last it is added to the lower left corner of the
domain. G(C1,N3)≈ 0.76 is closer to the value for C1C4
and is nearly identical for C1N4. All of the measures applied
in Gilleland et al. (2020) were fairly sensitive to this noise,
which is positioned far away from any other nonzero grid
point. Because of the differences in scale, the measured effect
cannot be compared, but both 0.76 and 0.65 are reasonably
close together on the zero to one scale. Moreover, differenti-
ating between the two fields is desired, but it is important to
note the size of the difference relative to the error.

FoM is also applied to these comparisons, and while it
ranks them the same as Gβ (i.e., N1N2 has the highest value
followed by C1N3 and C1N4, resp.), it suggests a very poor
match between each set of comparisons. It also gave a low
grade to the C1C4 comparison, and the value changes in the
same direction as for Gβ but only very slightly, as it was al-
ready very close to zero.

5 Gβ and Gβ,IL applied to real test cases

Figure 5 shows a snapshot of the MesoVICT core case veri-
fication set valid on 20 June 2007 at 18:00 UTC. Comparing
Fig. 5a and c, it is clear that CMH (Fig. 5d) missed 3 h precip-
itation in northern Germany and over forecast precipitation
in southern Germany, Austria, and a small part of the Czech
Republic at this valid time. The circle histogram (Fig. 5b)
shows the difference in sorted CMH-modeled 3 h precipita-
tion minus the sorted VERA analysis values binned by the
bearing of the grid points associated with these sorted values
from VERA to those of CMH using north as reference. The
northern misses and southern false alarms stand out with the
long petals in the north and south directions. The q–q plot
(Fig. 5d) shows a generally good agreement in terms of the
distribution of 3 h accumulated precipitation values but with
a slight tendency for the CMH to forecast larger values. Fi-
nally, the histogram (Fig. 5e) shows the distances between
the sorted values, which are generally very far apart, with a
high density of distances beyond 500 km.

Figure 6 is the same as Fig. 5 but ends the 3 h period
21:00–24:00 UTC on 21 June. At this valid time, there is
considerably more missed 3 h accumulated precipitation cov-
ering much of northern Germany, the Czech Republic, and
western Poland (the rest of Poland is outside of the domain).
It also misses the precipitation found off the coast of, as well
as over, Brittany, France. Figure 6b again shows a north–
south issue, while the q–q plot (Fig. 6d) reveals that, for this
valid time, the forecast is now under-predicting lower values
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Figure 11. The noisy cases from Gilleland et al. (2020), with results for G2004/2 and FoM rounded to three decimal places. Images show
the difference between each case. Cases N1 and N2 are the same as C1 and C4 but with additional random noise (IN1(s)= 1 and IN2(s)= 1
at randomly chosen s). N3 and N4 are again the same as C4 but with IN3(s)= 1 at s= (100,100) and IN4(s)= 1 at s= (1,1).

of 3 h accumulated precipitation but otherwise captures the
distribution well for values above about 5 mm(3h)−1. The
histogram of distances (Fig. 6e) between sorted values again
shows the long distances between them.

Finally, Fig. 7 shows the same graphic displays but ends
the 3 h period 21:00–24:00 UTC on 22 June. CMH again
misses precipitation in the north, this time near the east-
ernmost Frisian islands through to the northwestern coast
of Germany, and some scattered showers in northern Ger-
many. The circle histogram (Fig. 7b) again shows the north–
south bias, but the q–q plot (Fig. 7d) suggests that the model
matched the distributional properties of the analysis very
well at this valid time. The histogram of distances (Fig. 7e)
between sorted values is similar to the previous two valid
times.

Much information about forecast performance is provided
in Figs. 5 to 7. Subjective analysis of these figures would
suggest that the forecast on 20 June is the best, followed by
22 June, with 21 June clearly being the worst. In practice,
it is not always possible to diagnose forecast performance
with this much detail, and a good summary measure should
rank the forecasts valid on these 3 d as a subjective inspec-
tion of the graphs in these figures would. Of course, subjec-
tive evaluation is also limited, and these summary measures
can be useful in identifying problems that are not so easily
seen (e.g., Ahijevych et al., 2009; Gilleland, 2017).

Figure 12 shows the results after applying the FQI to the
core case 3 h accumulated precipitation fields from Meso-
VICT for values above 2 mm(3h)−1. Because the FQI in-
volves randomly generated surrogate fields in its calculation,
its value will vary each time it is computed. Therefore, 100
values are obtained, using 10 surrogate fields each, in order
to obtain a distribution of values. Day 2 is clearly the worst

Figure 12. FQI applied to the MesoVICT case 1 12 h lead time
forecasts for 3 h accumulated precipitation (in millimeters) ending
at 18:00 UTC in 2007 for values above 2 mm(3h)−1. In each case,
100 FQI (using k = 4) values are found using 10 surrogate fields
each, and the box plots represent the distribution of FQI values for
each set of surrogates.

forecast of the 3 d, according to FQI. Day 1 has the most vari-
ability but is found to be the second best for most of the 100
iterations, with its 95 % confidence interval (CI) for the me-
dian (shown via the notches in each box) clearly not overlap-
ping with the FQI median notches of day 3. The FQI suggests
that day 3 is the best forecast day of the three. Subjectively,
one might argue that the day 1 is the best, though the fore-
cast did not fare very well in any case. When applied with
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β =N2/2, Gβ,IL is near one, suggesting that the choice of
β is too large, which is expected as it is the relatively small
spatial areas of intense precipitation that are of interest, and
Gβ with β =N2/2 is not bothered by such small-scale phe-
nomena. Instead, a much smaller value of β is necessary.

To ascertain a better choice of β, Fig. 13 shows results for
Gβ andGβ,IL applied to these same three cases for three dif-
ferent thresholds and choices of β, as well as two choices
of weight (ω = 1/2,3/4) for Gβ,IL. In fact, using the logic
of choosing β to be on the scale of the phenomena of inter-
est, Gβ = 0 and Gβ,IL simply give the resulting correlation
of the sorted values within the threshold excess areas multi-
plied by 1−ω. Such low values for these fields should be de-
sired. Nevertheless, the results shown in Fig. 13 are for much
larger choices of β in order to give a sense of the sensitiv-
ity in choosing this parameter. The value of N2/2 for these
fields is of the order of 800 million, so the choices in Fig. 13
are very large but substantially smaller than N2/2, and they
represent values where, for these types of fields, Gβ moves
from zero to near one. Both Gβ and Gβ,IL at these levels of
β clearly indicate the poorest performance of the model on
21 June, with a slight preference for the day 1 over day 3,
which is arguably consistent with subjective evaluation.

Figure 14 displays the results from applyingGβ,IL,G2,β,IL
(a modification ofGβ discussed briefly in Sect. 6.2), and ETS
to the 32 ICP real cases. Both of the new measures gener-
ally agree with previous results using MODE, image warp-
ing, and MED that ARW-WRF has a similar performance to
NMM but slightly better. While there are some occasions for
the lowest threshold whereGβ,IL suggests poor performance
for NMM, most show fairly good performance, especially for
the two highest threshold choices, which agrees with subjec-
tive evaluation and suggests that NMM occasionally has too
much scatter that is omitted as the threshold increases. The
ETS, on the other hand, suggests close to no skill for both
models across the range of values, which is to be expected
from a grid-point-by-grid-point type of measure.

Comparing Fig. 14 with Fig. 5 from Gilleland et al. (2010)
shows that there is reasonably good agreement between the
two methods in terms of which valid times have the best
performance and which ones do not and which of the two
models is better. The image-warping procedure from Gille-
land et al. (2010) is a relatively cumbersome procedure that
is difficult to implement in practice, while Gβ,IL and G2,β,IL
are straightforward and efficient to compute. On the other
hand, no thresholding procedure is required with the image-
warping method.

Figure 15 compares rankings for the nine ICP real cases
that are a subset of the 32. These cases were introduced and
evaluated subjectively in Ahijevych et al. (2009), and they
were also evaluated using a summary, called IWS, based on
image-warping results by Gilleland et al. (2010). These re-
sults are included for comparison with Gβ and Gβ,IL. The
subjective scores cannot be taken as truth, and indeed, there
was a large amount of variability among the subjective eval-

uators’ opinions. Rankings for all of these methods are more
similar for the NMM model than for ARW. With some no-
table exceptions, such as 13 May and 4 June for the ARW
model, the IWS rankings are fairly similar to those of Gβ
and Gβ,IL.

6 Discussion and conclusions

A total of three new measures are presented, dubbed G, Gβ
and Gβ,IL, which provide meaningful summaries of forecast
performance. The first two are spatial alignment and distance
based, and the third additionally includes intensity error in-
formation in a distributional sense. The latter two measures
each range from zero to one, where one represents a perfect
match and zero a very poor forecast with the notion of very
poor, determined by a user-chosen parameter, β. Desirable
properties that have proved challenging for competing mea-
sures include that they provide (i) sensible information, even
when one or both fields are empty of values, (ii) sensible in-
formation, when one or both fields are mostly empty of val-
ues, and (iii) information that is not overly sensitive to noise.

Although considerable effort has been made to rigorously
test G and Gβ , tests for Gβ,IL, here, are less rigorous and
should be seen as evidence that the measure provides reason-
able information. Further testing will be necessary to know
how well it can inform about forecast performance under
all possible situations. Indeed, the intensity portion of the
measure sets a low bar for a forecast to pass muster. How-
ever, if a single summary is needed, then it seems to per-
form well. However, G or Gβ , combined with the tradi-
tional frequency bias, along with a distributional summary
of intensity errors (e.g., differences in mean intensity or, bet-
ter, the Kullback–Leibler divergence; Kullback and Leibler,
1951) provide a relatively comprehensive summary of fore-
cast performance with little complexity and computational
efficiency.

Table 3 grossly summarizes the findings in Gilleland et al.
(2020) for some of the measures tested there and for G and
Gβ . Each column specifies an attribute, where an affirma-
tive answer is a positive and a negation is a negative for the
measure. The first column refers to whether or not the mea-
sures behave well for all of the pathological cases. The next
column, labeled “No positional effects,” refers to the first five
circle cases in which the first three and second two setsA and
B are completely identical, apart from their positions within
the field. An affirmative answer means that the measure gives
the same value for each set of identical cases. The third col-
umn refers to the comparison C2C11 as contrasted against
any of the first three circle comparisons. An affirmative an-
swer means that the measure provides sensible information
for such biases. The “Useful for rare events” column per-
tains to whether the measure gives a poor grade to the case
C13C14 or not. The last two columns refer to the pair of com-
parisons C6C7, as contrasted with any of the first three com-
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Figure 13. Gβ (a), Gβ,IL (b) with β = 1× 108, 5× 108, and 1× 109 and with thresholds of 0.1, 2.1, and 5.1 mm(3h)−1 applied to the
MesoVICT core case.

Table 3. Summary of the performance of the distance-based measures as informed through testing on the geometric cases from Gilleland
et al. (2020). For each column, affirmative answers represent a positive attribute of the measure and negations represent a negative attribute.
See the text for a description of each column heading.

Good No positional Sensitive Useful for Reward partial Correctly penalize
pathological effects to frequency bias rare events perfect match despite partial
handling match

Centroid distance No Yes No Yes No No
Baddeley’s 1 No No Yes No Yes No
Hausdorff distance No Yes No Yes No No
MED No Yes Noa Yes Yesa Yesa

FoM No Yes Yes Unclear No Yes

G Yes Yes Yes No No Yes
Gβ Yes Yes Yes Yesb No Yesb

a MED is an asymmetric measure that provides sensible information for these situations in one direction.
b With an appropriate choice of β parameter.

Adv. Stat. Clim. Meteorol. Oceanogr., 7, 13–34, 2021 https://doi.org/10.5194/ascmo-7-13-2021



E. Gilleland: Spatial forecast verification measures 29

Figure 14. Results from applyingGβ,IL,G2,β,IL (see Sect. 6.2), and ETS to the 32 ICP real cases. Blue solid diamonds areGβ,IL applied to
ARW-WRF, red crosses are forGβ,IL applied to NMM, and open diamonds areG2,β,IL applied to ARW (light blue) and NMM (gray). Black
+ signs are ETS for ARW-WRF, and black circles are ETS applied to NMM. The ordinate axis limits are from −1/3 to 1, corresponding to
the possible range for ETS, and the dashed line provides a visual aid for zero.

parisons and C1C9 and C1C10, respectively. An affirmative
answer in the penultimate column means that the measure
gives a higher score to C6C7 than, for example, C1C2. An
affirmative answer in the last column means that the measure
differentiates between C1C9 and C1C10 rather than yielding
the same value. A negation for a measure in both of these
last columns is particularly undesirable although one might
prefer a negation in the penultimate column for certain ap-
plications. That is, the error part of C6C7 is identical to the
error in C1C9, and the partially correct part of C6C7 could be
contrasted with the correct negatives in C1C9 (they are both
correct in this same region). Therefore, a negation in the last
column seems to be the more egregious error.

As can be quickly surmised from Table 3, the only nega-
tives for G are in the “Useful for rare events” and “Reward
partial perfect match” columns. The latter is the only neg-

ative among these attributes for Gβ , where, again, a careful
choice of β is necessary in order to be useful in this setting. In
terms of the handling of comparison of C6C7 versus C1C2,
the measure gives the same result. Thus, it does not give an
extra reward for having obtained a perfect match in another
part of the field. Thus, the measure will penalize for any de-
fect in the field.

The fact that G is not useful for rare events is by design.
The construction of both G and Gβ is made with the aim of
handling the pathological cases, while still providing sensi-
ble information for most situations, which has clearly been
accomplished. The rare-event situation is not the focus, al-
though Gβ is useful in this setting, provided an appropriate
choice of β is used as described in the text. Moreover, the
one situation in which the Hausdorff distance is particularly
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Figure 15. Comparison of the rankings (1 is best and 9 is worst)
of the nine ICP real test cases from Ahijevych et al. (2009), in-
cluding the subjective rankings described therein, and IWS, which
is the image-warping score proposed by Gilleland et al. (2010).
These cases are a subset of the 32 ICP real cases. A threshold of
2.1 mmh−1 was applied forGβ andGβ,IL. Because the spatial area
of precipitation for these cases is relatively small compared to the
domain size, β =N/2 is used here.

useful is the “rare event” setting so that it can provide com-
plementary information to the measures introduced here.

6.1 Some thoughts about intensity information in spatial
verification

The intensity summary suggested, here, forGβ,IL is based on
the distribution of errors so that, in particular, it is possible to
obtain a perfect score when the two fields are not identical.
The MesoVICT core case studied here shows an example in
which any distributional measure for intensities is meaning-
less because the areas of intensity are separated by far too
much distance. Therefore, the summary is not entirely satis-
factory. It is meaningful when the spatial alignment of errors
is much closer, andG orGβ can be used to help inform about
the existence of such an issue.

Despite the fact that many methods have been proposed
for solving the issue of double penalties and the over-
accumulation of small-scale intensity errors, most of these
methods do not directly assess intensity information. Most
of them target intensity only indirectly through a threshold-
ing procedure, like the one described in Sect. 1.1 and ap-
plied here. For example, the fractions skill score (Roberts and
Lean, 2008) applies a smoothing filter to binary fields ob-
tained through the threshold process in order to obtain infor-

mation about frequency of occurrence within neighborhoods
of points. Similarly, the intensity-scale skill score (Casati
et al., 2004) applies a wavelet decomposition to the verifica-
tion sets after a fair amount of processing, including reduc-
ing the fields to binary fields via thresholding before apply-
ing the wavelet decomposition. Other filter-based approaches
smooth the intensity values before summarizing the perfor-
mance, which is also unsatisfactory. Similarly, measures like
FQI incorporate only distributional information about the in-
tensities.

The feature-based approach proposed in Davis et al.
(2006a, b, 2009) also applies a thresholding process but
maintains the intensity information within features. How-
ever, the intensity performance is also only incorporated in
the final analysis through distributional values, usually in the
upper quartile of intensities within a spatial feature. Because
these comparative summaries are applied to individual fea-
tures within the fields, MODE can be thought of as a crude
deformation approach, so that its distributional summaries
are more satisfactory (e.g., the gross errors of the MesoVICT
core case will be correctly handled).

The issue with assessing forecast performance in terms
of the intensities stems from the inability to apply a grid-
point-by-grid-point accounting of their errors. Once the re-
quirement that their precise locations be used is lifted, then
it becomes less clear which values should be compared. Sub-
sequently, thresholding, smoothing, and distributional sum-
maries of intensity performance are the most relevant solu-
tions, and much work has focused on accounting for their
spatial alignment errors instead.

One of the earliest methods proposed for verifying fore-
casts spatially is based on deformations (see Gilleland, 2013,
and references therein). Gβ , and more so Gβ,IL, can be
thought of as potentially optimistic image warp results. In
particular, the method presented in Gilleland et al. (2010)
tries to optimize an objective function that penalizes for
translations that are non-physical or too long. Gβ and Gβ,IL
summarize how much lack of overlap there is,and, on aver-
age, the distance of any lack of overlap. Thus, if everything
could be perfectly aligned (the potential with or without the
need for non-physical deformations), then it provides a sum-
mary of how much deformation might be required to do so.
Gβ,IL summarizes the intensity errors in a similar way to the
warping procedure of Gilleland et al. (2010) through a distri-
butional measure over the sorted values from each field only
(i.e., a perfect match). They are optimistic because they do
not consider what it might take to actually realign the fields,
and it is possible that no physically meaningful realignment
is possible.
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Letting RMSL0 be the root mean square loss (RMSL)3

calculated grid point by grid point in the traditional manner,
and RMSL1 the RMSL calculated over the sorted values only
(this time it includes all grid points in each field), then, in the
following:

RMSL0−RMSL1

RMSL0
× 100 (5)

would be the potentially perfect percent reduction in RMSL
analogous to that defined in Gilleland et al. (2010) and would
represent an upper bound on the error reduction percent-
age capable of being achieved by the image-warping proce-
dure. This percent reduction in error is analogous to Eq. (2)
from Mittermaier (2014) but where the reference RMSL is
RMSL0. It is possible for a forecast to match the observa-
tion in intensity values perfectly, even if they are not located
at precisely the same grid point locations, so that y3 = 0.
Indeed, a report of each of RMSL0, RMSL1, and the per-
cent reduction in RMSL is a reasonably satisfactory sum-
mary of the intensity performance because it informs about
the importance of displacement errors. Ebert and McBride
(2000) apply translation-only deformations to individual fea-
tures within the verification sets and summarize the RMSL
similarly, as in Eq. (5), but where they are able to break it
down into RMSL attributed to total, displacement, volume,
and pattern types of errors. Such a breakdown is attractive
but the processing involved to obtain them is considerable.

Another issue about summarizing intensity information is
that many forecasts are first calibrated before applying any
verification so that the intensity values should be fairly close
in a distributional sense. Therefore, measures that include in-
tensity components like those suggested here, i.e., FQI and
MODE, among many others, will generally not be affected
much by the intensity terms in their equations. Subsequently,
the summaries proposed herein represent highly efficient, in-
terpretable, and sensible summaries that provide a useful al-
ternative.

6.2 Potential modifications to the proposed summary
measures

A possible generalization of Gβ (Gβ,IL) that would allow a
user to weight each component of y from Eq. (3) differently
would be to replace y1 and y2 with yγ1

1 and yγ2
2 . However,

an initial investigation of implementing this additional com-
plexity inGβ found the measure to be highly erratic for small
changes in γ1 and γ2, making it difficult to obtain an inter-
pretable measure.

Another possible modification toGβ is to introduce an ad-
ditional user-chosen parameter 0≤ α < β in the following

3Here, loss is taken to mean forecast values minus observed val-
ues. In the weather forecast verification literature, loss is referred to
as error. The loss nomenclature is used here so as not to be confused
with the statistical meaning.

manner:

Gα,β (A,B)=max
{

1−
y−α

β −α
,0
}
. (6)

The effect is to allow for a perfect score for a model that
is very close to the observation but not a perfect match. It
could be thought of as an adjustment for errors that are not
considered important. In fact,Gβ given in Eq. (3) is the same
as Eq. (6) but with α = 0.

Another modification that is similar toGβ,IL, denoted here
by G2,β,IL, modifies Eq. (3) through the y term as follows:

G2,β,IL(A,B)=max
{

1−
y1y2(1+ y3)

β
,0
}
, (7)

where y1 and y2 are as in Eq. (3), and y3 is the mean absolute
loss (MAL) between the sorted original values at locations
within the sets A and B. The RMSL (as in Rezacova et al.,
2007) could be used in the place of MAL if applying a greater
penalty for large intensity differences is desired. If y3 = 0,
thenG2,β,IL reduces toGβ . Otherwise, the measure provides
an additional penalty for a lack of distributional agreement in
the intensities.

Figure 14 displays results for this modification along with
those for Gβ,IL, and it can be seen that the results are similar
for both measures, apart from a few cases where the multi-
plication of the intensity term causes a more drastic penaliza-
tion of the forecasts than Gβ,IL (top left panel). A difficulty
withG2,β,IL is that the multiplication of the intensity term in
Eq. (7) makes choosing β more difficult because the intensity
loss information may depend on the specific variable of in-
terest, and the units for y3 will generally differ considerably
from y1 and y2.

The summary measure, y, in both Gβ and Gβ,IL, passes
the requirements to be a true mathematical metric. max{1−
y/β,0} simply rescales the metric to be between zero and
one and reorients it so that one, instead of zero, corresponds
to a perfect match. Gilleland (2017) argued in favor of the vi-
olation of the symmetry property for the mean error distance
(MED) because information about misses and false alarms
can be inferred. Gβ can be modified to be asymmetric in
this way by only including one of the MED terms in the
y2 term of Eq. (3) and by removing one of the nA or nB
terms from y1; that is, an asymmetric Gaβ (A,B) would have
ya1 = nB − nAB and ya2 =MED(A,B) · nB .

The building blocks for Gβ and Gβ,IL themselves make
for a good summary vector for forecast performance. For ex-
ample, knowledge of nA, nB , nAB , MED(A,B), MED(B,A),
and, in the case of non-binary fields, y3 with MAL or RMSL
calculated over the areas A and B, without first sorting them,
provides a wealth of diagnostic information about forecast
performance. Examples include which component(s) con-
tributed most to a particularGβ orGβ,IL value, the frequency
bias, the average distance from observed areas of activity to
those that were forecast (and vice versa), and the potential
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and actual intensity error in addition to the percent reduc-
tion in error possible if the forecast field could be perfectly
realigned with the observation field.

The proposed measures are designed for 2D spatial fields
here, but because of the simplicity of the measures, they can
be easily extended to any number of dimensions. For exam-
ple, a third dimension of time could be added in order to
verify an entire spatiotemporal verification set with a single
summary number. Such a scheme would provide limited in-
formation, but it would nevertheless provide a simple sum-
mary that would allow for a ranking between competing grid-
ded forecast models over numerous time points. Many vari-
ables also have an important vertical component so that the
measures could be extended for the horizontal and vertical di-
mensions. Additionally, although the analysis here is focused
on gridded verification sets, the measure can be extended to
a verification set where both spatial fields are irregular point
locations. Further study would be needed to investigate these
applications, both in terms of their behavior in these settings
and their feasibility in terms of computational efficiency.

Spatial forecast verification is only one avenue in which
the measures introduced here can be applied. For example,
G could be especially useful as the loss function when pre-
dicting a spatial-exceedance region as in Zhang et al. (2008);
Cressie and Suesse (2020).
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