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Abstract. Extreme weather and climate events such as floods, droughts, and heat waves can cause extensive so-
cietal damages. While various statistical and climate models have been developed for the purpose of simulating
extremes, a consistent definition of extreme events is still lacking. Furthermore, to better assess the performance
of the climate models, a variety of spatial forecast verification measures have been developed. However, in
most cases, the spatial verification measures that are widely used to compare mean states do not have suffi-
cient theoretical justification to benchmark extreme events. In order to alleviate inconsistencies when defining
extreme events within different scientific communities, we propose a new generalized Spatio-Temporal Thresh-
old Clustering method for the identification of extreme event episodes, which uses machine learning techniques
to couple existing pattern recognition indices with high or low threshold choices. The method consists of five
main steps: (1) construction of essential field quantities; (2) dimension reduction; (3) spatial domain mapping;
(4) time series clustering; and (5) threshold selection. We develop and apply this method using a gridded daily
precipitation dataset derived from rain gauge stations over the contiguous United States. We observe changes in
the distribution of conditional frequency of extreme precipitation from large-scale well-connected spatial pat-
terns to smaller-scale more isolated rainfall clusters, possibly leading to more localized droughts and heat waves,
especially during the summer months. The proposed method automates the threshold selection process through a
clustering algorithm and can be directly applicable in conjunction with modeling and spatial forecast verification
of extremes. Additionally, it allows for the identification of synoptic-scale spatial patterns that can be directly
traced to the individual extreme episodes, and it offers users the flexibility to select an extreme threshold that is
linked to the desired geometrical properties. The approach can be applied to broad scientific disciplines.

1 Introduction

Extreme events of essential climate variables (Bojinski et al.,
2014) such as heavy rainfall, high temperatures, and strong
winds and their derivatives such as droughts and heat waves
are a major source of risk to society and the environment.
The purpose of risk management is to design and implement
a set of common procedures for predicting, measuring, and
managing such high impact events. The critical step is how
to identify these extreme processes. However, there is no
uniformly accepted definition of extreme events. More often
than not, the process of identifying extreme events has been
typically based on classifying them into groups with charac-
teristics such as frequency of occurrence, intensity, tempo-

ral duration, and timing (Stephenson, 2008). In addition, the
evaluation of the multidimensional nature of extreme events,
in most cases, has been confined to individual grid points or
stations, thus overlooking embedded spatial dependency. The
Intergovernmental Panel on Climate Change (IPCC) defines
a climate extreme as “the occurrence of a value of a weather
or climate variable above (or below) a threshold value near
the upper (or lower) ends of the range of observed values of
the variable” (IPCC, 2012). Typically, the choice of a high (or
low) threshold depends on the conventions of specific scien-
tific disciplines. For example, the climate science community
tends to select location-specific thresholds based on either
categories (e.g., Sun et al., 2007; Dai, 2001; Dai et al., 2017),
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quantiles (e.g., Groisman et al., 2005; Lau et al., 2013; Pen-
dergrass and Hartmann, 2014), combinations (e.g., Kunkel
et al., 2003, 2007, 2010, 2012), or indices (e.g., Alexander
et al., 2006; Zhang et al., 2011; Donat et al., 2013a, b). Here-
after, we refer to these selection methods as conventional
location-specific threshold (CLST) methods.

In the realms of statistical modeling, under appropriate
conditions, excesses above (below) a high (low) threshold
are often modeled using the generalized Pareto distribution
(GPD) (Balkema and de Haan, 1974; Pickands, 1975), where
the requirement for a chosen threshold is to be high (low)
enough to satisfy a chosen goodness-of-fit test. Although
threshold choices often overlap across disciplines, it is still
difficult to compare extreme value analysis results between
different scientific studies if the threshold selection method-
ologies differ. Even when the same forecast verification strat-
egy is used (e.g., Jolliffe and Stephenson, 2003; Wilks, 2011,
chap. 8), the results will be different. Thus a unified ap-
proach for threshold selection (i.e., universal extreme event
definition) is essential because it standardizes the inference
process for extreme event analysis, leading to further con-
sistency and transparency when comparing results between
different scientific findings. Unification, standardization, and
transparency are the key pillars of disciplined risk manage-
ment.

While many univariate methods have been proposed to
automate the threshold choice (e.g., Fukutome et al., 2015;
Scarrott and MacDonald, 2012; Bader et al., 2017), there are
no clear-cut criteria, and in practice, threshold choice tends
to be determined by either exploration methods or by stabil-
ity assessments of parameter estimates, and in most cases,
the threshold selection is disconnected from the geometri-
cal properties of the desired spatial field. Here, we express
geometrical properties by geometric attributes that measure
the texture/dispersiveness of the spatial field. Ultimately, the
choice of threshold is always an interplay between bias and
variance (Smith, 1987). For high extreme thresholds, if the
chosen threshold is not high enough, the GPD likely will not
have a good fit to the excesses above the threshold, leading to
approximation bias. Conversely, if the chosen threshold is too
high, only a small number of exceedances will be generated,
and consequently, there will be high variance in the estima-
tors (in the case of low extreme thresholds, these conditions
are reversed). A more comprehensive evaluation of univari-
ate extreme value theory (EVT) is given in Coles (2001).

Analysis of extreme events must also incorporate the spa-
tial nature of the key climate variables since many single
quantities, such as precipitation or temperature, are measured
at multiple locations that may also be teleconnected via at-
mospheric circulations or hydrological cycles. Implementa-
tion of spatial extreme value analysis has to be done using
an integrative modeling approach (IMA), in which different
scientific disciplines are combined into one holistic process,
joined by a common modeling factor(s) subject to uniform
assumptions. For example, in statistics, it may involve the

Table 1. Geometrical constructs used in geometric indices.

Pixel Smallest unit of a digital image
Isolated structure Collection of adjacent pixels with a value of one
Area Number of non-zero pixels in the structure
Convex hull Smallest convex polygon that contains the structure
Perimeter Length of the outside boundary of the structure

integration of multivariate EVT (e.g., Cooley et al., 2012),
geostatistics (e.g., Banerjee et al., 2015), and spatial forecast
verification (e.g., Friederichs and Thorarinsdottir, 2012), and
in atmospheric science, it would encourage the use of high-
resolution climate models (e.g., to resolve localized extreme
events) combined with a spatio-temporal threshold selection
algorithm and multivariate EVT to capture spatial dependen-
cies. While a myriad of other coupling combinations is pos-
sible, the challenging aspect of this integration lies in main-
taining suitable and consistent statistical assumptions across
all modeling blocks.

This paper proposes a new generalized Spatio-Temporal
Threshold Clustering (STTC) method for extreme events
within the IMA framework. By generalized, we mean the
algorithm’s applicability to the wide variety of essential
climate and non-climate variables (e.g., air pollution, crop
yield, streamflow) and their derived quantities, hereafter es-
sential field quantities (EFQs). The algorithm, as objectively
as possible, detects large-scale extreme spatial patterns that
occupy fairly extensive geographical areas. Those patterns
contain extreme fields (i.e., for high or low extreme thresh-
olds, only fields from the respective upper or lower quantile
of the distribution are selected) in both temporal and spatial
variations. They can be linked to individual extreme episodes
such as flash floods, heat waves, hurricanes, and droughts.

The threshold selection process is conditioned on these ex-
treme patterns and enables one to detect latent spatial de-
pendencies with the help of geometric indices from digital
topology. Furthermore, to evaluate areas with the largest con-
ditional frequency values, we apply the STTC methodology
that uses a time series clustering procedure for a number of
geometric indices. This procedure facilitates the algorithm’s
ability to classify a spatial pattern of an image (e.g., the con-
ditional frequency of positive or negative extreme EFQ) by
several geometrical constructs described in Table 1. As far as
we are aware, this machine learning IMA is a new contribu-
tion in atmospheric science that links the threshold selection
process conditioned on extreme patterns with the clustering
of multivariate series of geometric properties.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the conceptual framework and details all steps
for the STTC algorithm. Section 3 describes the dataset for
illustrating the algorithm development and evaluation. Sec-
tion 4 and its subsections present underlying methods. Sec-
tion 5 highlights an outcome of the clustering algorithm and
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comparative analysis utilizing daily precipitation data and
underlines essential findings. Section 6 gives the conclusions.

2 Conceptual framework

The STTC algorithm consists of five main steps:

1. EFQ construction closely matched to the timeframe of
interest;

2. dimension reduction based on statistical quantiles;

3. spatial domain mapping represented by the geometric
indices;

4. time series clustering applied to the multivariate series
of geometric properties; and

5. threshold selection linked to the time series clustering.

The first step is the most flexible and difficult to apply.
The user must decide whether to convert (e.g., normalize,
standardize) the raw data to best represent an extreme pat-
tern of interest. Large-scale patterns are usually described by
gridded data, such as precipitation, temperature, geopoten-
tial height, or vorticity, to name a few. The patterns can be
analyzed either at the right or left tail of the distribution. Ul-
timately, the choice of EFQ is based on the problem at hand
and individual user preference.

Next, the dimension reduction or conditioning step iden-
tifies extreme processes that are spread out over a relatively
extended portion of the spatial domain. This step is necessary
to narrow spatio-temporal space to fit the class of events of
interest. For example, the conditioning can be performed uti-
lizing the algorithm to find either positive (i.e., wet-day) or
negative (i.e., dry-day) extreme fields. Rather than consider-
ing extreme values at individual locations and their temporal
dependence, we consider an overall spatial field that is con-
ditioned on being extreme (i.e., not all individual grid cells
within the field have to be extreme). In this case, it is possible
to depict large-scale spatial extreme patterns independent of
whether or not individual grid cells in space are extreme. The
concept is similar to the high field energy used to identify
severe storm environments in Gilleland et al. (2013, 2016).
They used the product of the 0–6 km wind shear and maxi-
mum potential wind speed of updrafts and selected its upper
quartile in space greater than its 90th percentile over time to
define the high field energy. Here we adapt this framework
of first identifying data-specific quantile in space (i.e., the
quantile function is applied over entire spatial domain) and
then in time. We also replace the concept of high field en-
ergy with more general positive and negative extreme fields
(see Sect. 4.2) that can accommodate a variety of extreme
field definitions, including different quantile values to meet
the specific needs of different datasets.

The classification and evaluation of the graphical proper-
ties of the spatial fields, depicted in the previous step, are

the purpose of the spatial domain mapping phase of the al-
gorithm. The user selects a vector of initial thresholds where
evaluation takes place. The threshold selection framework is
integrated with methods from digital topology. Values greater
or equal than a chosen threshold are assigned to one, and
values below to zero. It is called image digitizing and is a
widely used technique in computer imaging. The digitized
image then can be mapped to several geometric attributes
that represent a particular graphical property of the image.
As the threshold varies, so do the values of the geometric
attributes. As such, one can create a threshold series that is
mapped to the corresponding multivariate series of geometric
properties. The mapping process can be repeated for all geo-
metric attributes, creating a non-linear dependence between
the threshold series and the desired geometrical properties.

The fourth step of the algorithm consists of applying time
series clustering to the multivariate series of geometric prop-
erties derived in the previous step. This unsupervised ma-
chine learning approach separates the multivariate series of
geometric properties into individual clusters by minimizing
the average dissimilarity between each cluster’s centrally lo-
cated representative object and any other object in the same
cluster. Each of these representative objects is associated
with a specific threshold from the threshold series.

The last threshold selection step selects a threshold out of
the threshold series based on the clustering analysis of the
multivariate series of geometric properties. The position of
the representative object in the multivariate series of geo-
metric properties is then matched to the same position in the
threshold series, producing a cluster-specific threshold.

Thus, the overall objective of the algorithm is to detect la-
tent spatial dependencies for an EFQ of interest within large-
scale extreme episodes and to automate threshold selec-
tion for the extreme spatio-temporal processes. Ultimately,
the identified spatial extremes can be linked to individual
weather patterns because the corresponding occurrence times
of such extreme events are tracked during the identification
process. The objective threshold choice for extreme event
modeling can help to deepen our understanding of the un-
derlying processes in forming those patterns, that were pos-
sibly overlooked in the CLST methods. The STTC algorithm
incorporates spatial and temporal dependencies in one holis-
tic modeling framework and enables future spatio-temporal
analysis of extreme events based on either a single quantity
(e.g., precipitation) or a composite index of multiple quan-
tities (e.g., the Palmer Drought Severity Index). Moreover,
the extreme threshold value that was estimated through the
unsupervised machine learning approach and the resultant
extreme spatial field can be further incorporated into a spa-
tial forecast verification process or independently applied in
statistical modeling utilizing multivariate EVT. The use of
this method can thus ensure consistency between the extreme
threshold values and spatial fields selected during the mod-
eling and forecast verification steps. A detailed summary of
the entire STTC algorithm can be found in Appendix A.
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3 Data

To illustrate the algorithm development and evaluation, we
consider station-based precipitation measurements in mil-
limeters per day obtained from the Global Historical Clima-
tology Network-Daily (GHCN-Daily; Menne et al., 2012a)
collected over the period from 1 January 1961 to 31 De-
cember 2016 (56 years). While the GHCN-Daily dataset was
subject to a rigorous quality assurance procedure (Menne
et al., 2012b), it was not adjusted for artificial discontinu-
ities such as changes in station location, instrumentation, and
time of observation (Donat et al., 2013b). To deal with these
issues, we only select stations with at least 40 % data cover-
age, yielding 8516 stations. In addition, as described in Liang
et al. (2004), we perform topographical adjustments to ac-
count for the strong elevation dependence of the rain gauge
sites by using the Parameter-Elevation Regression on Inde-
pendent Slopes Model (PRISM) (Daly et al., 1994, 1997). We
then interpolate the GHCN-Daily dataset using the Cressman
objective analysis scheme (Cressman, 1959) to a 30 km by
30 km grid covering the contiguous United States (CONUS).
As a result, we obtain approximately 27 000 spatial points,
with each point having over 20 000 days of temporal rainfall
coverage.

4 Methods

4.1 EFQ construction

A fundamental decision in any extreme value analysis is to
choose the types of extreme events to analyze (e.g., flash
floods, persistent droughts, or other natural disasters). De-
pending on the choice, our algorithm allows adjustment of
an accumulation window (W ). The proposed EFQ deriva-
tion involves several steps, which can be modified or entirely
skipped depending on a specific application.

1. Remove seasonal patterns by subtracting climatological
mean values over the entire time length from the raw
data.

2. Calculate W -period rolling accumulated anomalies.

3. Standardize accumulated anomalies by the correspond-
ing high (or low) temporal quantile.

In this research paper, we select no accumulation window
and a high quantile of order 0.95 and use daily precipitation
as the field of study. That is, our interest during the algo-
rithm testing lies in short-term extreme rainfall. These short-
duration impactful precipitation events can produce a major
natural hazard, such as a flash flood in some areas. To illus-
trate the general application, we also later present examples
using more extended W s for extreme EFQs. By design, EFQ
has no units.

Table 2. Possible forms for function λ[xt ].

Name Value

Fixed value λ[xt ] = constant
Average λ[xt ] =

1
T

∑
t
xt = u

Temporal quantile λ[xt ] = xτ , where P{xt ≤ xτ } = τ and τ ∈ [0,1]

4.2 Dimension reduction

Conventional temporal dimension reduction methods such as
principal component analysis (PCA) and linear discriminant
analysis (LDA), which rely heavily on mean and covariance
estimation, are not very informative for extremes. The block-
maximum approach is often used to analyze extremes and
potentially excludes relevant observations (Coles, 2001). The
challenge is, therefore, to subsample a relatively small num-
ber of observations to represent the tail of the distribution
and to select an aggregate measure that accurately describes
extreme events. Gilleland et al. (2013) considered, for this
purpose, a conditional frequency with quantile-based dimen-
sion reduction methodology in analyzing severe storms. In
the present context, we modify this method to apply for tem-
poral and spatial quantile values more appropriate in our case
(see Sect. 5). We further formalize this method with the fol-
lowing definitions.

Definition 4.2.1. Let Y(s, t) be a spatio-temporal EFQ with
a number of spatial pixels s ∈D, where D is the spatial
domain; then, at each time point t = [1, . . .,T ], the ηth
quantile in space yt,η is given by P{Y(s, t)≤ yt,η} = η,
where η ∈ [0,1].

The quantile yt,η in Definition 4.2.1 is taken over space
at each point in time so that a univariate time series of
the spatial quantile results. We denote this series by gt =

g1, . . .,gT = y1,η, . . .,yT ,η. In addition, we introduce a func-
tion λ[·] with possible forms in Table 2.

Definition 4.2.2. A space–time process Y(s, t) is called a
Positive Extreme Field (PEF) at any time point ti when
{gti > λ[gt ], i = [1, . . .,NH ],NH6T } denote H(s, ti)
to be the subset of Y(s, t) when Y(s, t) is a PEF.

Definition 4.2.3. A space–time process Y(s, t) is called a
Negative Extreme Field (NEF) at any time point tj when
{gtj < λ[gt ],j = [1, . . .,NL],NL6T } denote L(s, tj )
as the subset of Y(s, t) when Y(s, t) is a NEF.

The PEF (NEF) concepts are general constructs that can
be applicable to both short- and long-term impactful extreme
events. For instance, if we express PEF and NEF in terms
of precipitation rates and try to detect natural disasters such
as documented in the NOAA National Centers for Environ-
mental Information (NCEI) report titled “U.S. Billion-Dollar
Weather and Climate Disasters (2018)”, we can identify a
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Figure 1. Examples of PEF: (a) October 2012 Superstorm Sandy (W = 4); (b) May to October Great Flood of 1993 (W = 180). Examples
of NEF: (c) 2002 Drought, April–June (W = 90); (d) 1988 Drought, March–July (W = 150). The PEF and NEF were derived from precip-
itation measurements obtained from the gridded Global Historical Climatology Network-Daily (GHCN-Daily) dataset (see Sect. 3 for more
information) and expressed in terms of standardized anomalies. The function λ[·] from Table 2 was set to the temporal quantile definition
with η = 0.99 for PEF (η = 0.01 for NEF) for the univariate time series gt with τ = 0.95 for PEF (τ = 0.05 for NEF).

multitude of high-profile cases, a few of which are presented
in Fig. 1.

Figure 1a shows Superstorm Sandy, where high PEF val-
ues (> 6) are observed over the Mid-Atlantic and New Eng-
land regions and northern Ohio. The Great Flood of 1993,
which is found with a much longer accumulation window
(W = 180), is displayed in Fig. 1b. The areas with PEF> 2
can be seen along the Missouri and Mississippi rivers and
their tributaries. In addition, several heavy rainfall events are
spotted in Montana during the same time period. Results for
the drought of 2002 are shown in Fig. 1c. The Rocky Moun-
tains and Midwest regions are particularly impacted by very
dry conditions. Figure 1d shows a similar graph but for the
1988 drought and withW = 150. The effects of low negative
NEF (<−1) are seen in Mid-Atlantic states, the southeastern
United States, the midwestern United States, and the western
United States. These are all examples of types of extreme
processes H(s, ti) (L(s, tj )) that define a spatio-temporal sub-
set of a dataset used to define a conditional frequency of ex-
treme EFQ.

The conditional frequency of an EFQ Y(s, t) is given by
(i.e., conditioned on) H(s, ti) and can be defined as a func-
tion of high threshold θh at any spatial pixel s ∈D in the
following way:

f (s;θh)=

NH∑
i=1

1{H(s,ti )>θh}

NH
, (1)

where 1{·} is the indicator function.
Alternatively, we can delineate a similar quantity but con-

ditioned on L(s, tj ) if a low threshold θl is of interest:

f (s;θl)=

NL∑
j=1

1{L(s,tj )<θl}

NL
. (2)

In terms of additional notations, let θ = [θ1, . . .,θn] be a
set of initial thresholds such as θ1 < θ2 <,. . .,< θn. We can
think of the series f (s;θ1), . . .,f (s;θn) as a procedure of par-
titioning the conditional frequency image into several over-
lapping homogeneous fields, where each field is mapped into
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the corresponding geometric properties series described in
the next section.

4.3 Spatial domain mapping

Geometric indices employed here were first introduced by
AghaKouchak et al. (2010) and applied to validate radar
data against satellite precipitation estimates and weather pre-
diction models. Gilleland (2017b) complemented geomet-
ric indices with mean-error and mean-square-error distances,
to introduce new diagnostic plots within a spatial forecast
verification framework. The diagnostics were applied to a
number of cases from the spatial forecast verification inter-
comparison project (ICP, http://www.ral.ucar.edu/projects/
icp, last access: 13 April 2021) (Ahijevych et al., 2009; Gille-
land et al., 2009, 2010). The indices vary between zero and
one and describe the connectivity, shape, and area of the im-
age pixels for a predefined threshold. The connectivity index
is defined as

Cindex = 1−
n− 1
√
m+ n

, (3)

where n is the number of isolated structures, and m is the
number of pixels with a value of one (i.e., above a chosen
threshold). Here, an isolated structure is a group of adja-
cent non-zero pixels. The connectivity index shows how the
structures within the image are interconnected. The higher
(lower) the index, the more connected (dispersed) the fields
are within the image. The shape index is given by

Sindex =
Pmin

P
, (4)

where P is the perimeter of the pixels above a given thresh-
old, and Pmin is the theoretical minimum perimeter of an m-
pixel pattern, which is attained if the pattern of non-zero pix-
els was formed closest to a perfect circle. Mathematically, it
is defined as

Pmin =

{
4×
√
m, if b

√
mc =

√
m

2×
(
b2×
√
mc+ 1

)
, otherwise ,

where b·c is the floor function. The near-one values of Sindex
imply an approximately circular pattern of non-zero pixels.
For a more detailed discussion about these indices, see Gille-
land (2017b). Finally, to measure object complexity, we in-
troduce another geometric index defined in Bullock et al.
(2016) as follows:

Āindex = 1−Aindex ≡ 1−
A

Aconvex
, (5)

whereA is the area of the pixels (i.e., the number of non-zero
grid points) above a given threshold, Aconvex is the area of
the convex hull around those pixels, and Aindex is defined as
their ratio. The index values close to zero are representative
of more structured image patterns, whereas fairly dispersive
image patterns imply values near one.

As previously stated, past applications of geometric in-
dices were performed primarily for model validation. How-
ever, we adapt this approach to observed data to evaluate ge-
ometric index values for different thresholds. The aim is to
determine specific geometrical properties that are relevant to
the conditional frequency of extreme EFQ, where high (or
low) threshold values are derived via an unsupervised clus-
tering procedure. That is, for every threshold θi from the
set of initial thresholds θ , geometric properties are estimated
and then grouped into the multivariate series of geometric
properties for time series clustering depicted in the follow-
ing section. For brevity, we represent these geometric prop-
erties series as Gα[f (s;θ )], where α = [1, . . .,4] and Gα[·]
is an index operator for geometric attribute α of the condi-
tional frequency f at threshold θ . We set G1[·] = Cindex[·],
G2[·] = Sindex[·], G3[·] = Āindex[·] and G4[·] = A[·].

Figure 2 shows a typical example of the evolution of geo-
metric indices as the functions of threshold series. The con-
nectivity index starts high, near 0.7, with a few isolated non-
zero grid points; then, as the threshold increases, the index
drops as more contiguous clusters are segmented out and
finally levels off at around 0.2 with more scattered spatial
fields. The shape index is almost monotonically decreasing
as a function of threshold series, with values near one in-
dicating an approximately circular pattern of non-zero grid
cells. The complexity index is almost an inverse mirror im-
age of the shape index, with higher values indicating more
structured spatial patterns. Another way to look at it is to
consider how frequency of high extreme events changes as a
function of threshold. At low threshold values the probability
of simultaneous extreme events at two different spatial loca-
tions is relatively high and at high threshold values the same
probability is relatively low. As such, both connectivity and
shape indices will be decreasing but complexity index will
be increasing (area will be decreasing). Analyses were per-
formed using the SpatialVx (Gilleland, 2017a) package
in R.

4.4 Time series clustering

Clustering is a statistical process applied in machine learn-
ing to group unlabeled data into homogeneous segments or
clusters. The clusters are formed through segmentation of
the data to maximize both inter-group dissimilarity and intra-
group similarity according to objective criteria. The segmen-
tation process entirely depends on a distance or dissimilar-
ity metric, which measures how far away two objects are
from each other. The degree of dissimilarity (or similarity)
between the clustered objects is of significant importance in
cluster analysis. Common dissimilarity metrics such as Eu-
clidean and Manhattan are not suitable for time series clus-
tering because they ignore serial correlations within the time
series. Our main aim is to investigate the topological fea-
tures of sequences of the conditional frequency images repre-
sented by multivariate series of geometric properties. These
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Figure 2. Geometric indices’ evolution as a function of threshold
for summer EFQ (GHCN-Daily dataset) with representative thresh-
olds from low (θ1), intermediate (θ2), and high (θ3) threshold clus-
ters.

series may exhibit high degrees of serial correlation at dif-
ferent lag times (Fig. 2). Therefore, the first fundamental
task in applying a clustering method is the selection of a
dissimilarity metric that can capture these subtle character-
istics. In particular, we are interested in discovering clus-
ters of multivariate series of geometric properties with sim-
ilar profiles representing large-scale extreme spatial patterns
that can be buried under noise. For this purpose, several
authors have suggested using dissimilarity measures based
on the estimated autocorrelation functions of the time series
(e.g., Galeano and Peña, 2000; Caiado et al., 2006). Here, we
apply this approach to the multivariate series of geometric
properties defined in the following way. Given f (s;θ ) map-
ping to Gα[f (s;θ )], where α = [1, . . .,4], we can alterna-
tively map f (s;θ ) to Gβ [f (s;θ )], where β = [1, . . .,4]. We
letGα[f (s;θ )] andGβ [f (s;θ )] be two geometric properties
series, that is, Gα[f (s;θ )] =Gα[f (s;θ1)], . . .,Gα[f (s;θn)]
and Gβ [f (s;θ )] =Gβ [f (s;θ1)], . . .,Gβ [f (s;θn)] for α 6=
β. We denote the vectors of the estimated autocorrelation co-
efficients of the geometric properties series Gα and Gβ by
ρ̂Gα = (ρ̂1,Gα . . .ρ̂R,Gα ) and ρ̂Gβ = (ρ̂1,Gβ . . .ρ̂R,Gβ ) for some
R such as ρ̂i,Gα ≈ 0 and ρ̂i,Gβ ≈ 0 for i > R. Dissimilarity
between Gα and Gβ is measured by the following Euclidean
distance:

dACF(Gα,Gβ )=

√√√√ R∑
i=1

(ρ̂i,Gα − ρ̂i,Gβ )2. (6)

Analogously, we define φ̂ii,Gα and φ̂ii,Gβ as the vectors of
the estimated partial autocorrelation coefficients of Gα and
Gβ . A corresponding dissimilarity metric is given by

dPACF(Gα,Gβ )=

√√√√ R∑
i=1

(
φ̂ii,Gα − φ̂ii,Gβ

)2
. (7)

In the seasonal analysis that follows, the dACF and dPACF
measures vary between 0 and 0.001, indicating further how
delicate the autocorrelation differences between geometric
properties series can be. To calculate both distances, we used
R package TSclust (Montero and Vilar, 2014).

The choice of the number of clusters K to form is an-
other important task in the clustering algorithm. It typically
involves iteratively searching for the number of clusters that
optimizes a variety of criterion measures. Generally, cluster
selection is still an unresolved problem requiring multiple it-
erations. However, in our case, it is somewhat simpler.

Previously we described that a balance between bias and
variance was necessary when determining a threshold in
EVT. A threshold choice for extremes in digital topology is
also a challenge. A prudent question to pose is “what are de-
sirable geometrical properties of the conditional frequency of
extreme EFQ?” While it is difficult to generalize the shape
and complexity indices, we postulate that choosing a thresh-
old value with the desirable geometrical properties is an in-
terplay between the connectivity index and area of non-zero
points (referred to henceforth as connectivity/area trade-off).
In cases involving both relatively low and very high thresh-
old values connectivity index is close to one (see Eq. 3).
The higher the threshold value, the lower the probability of
simultaneous extreme events at two different spatial loca-
tions, the smaller the area of non-zero grid points. To balance
this trade-off, we need to find a threshold value that is high
enough to be practical to determine large-scale spatial pat-
terns but not too high to cause the connectivity index to get
close to one and the area of the non-zero pixels to be close to
zero. Thus, there are three clusters of interest: the first cluster
has multivariate series of geometric properties linked to the
thresholds that are still high but may not be high enough to
provide the desired geometric properties for the conditional
frequency of extreme EFQ; the second cluster provides the
high thresholds linked to desirable geometric properties; the
third cluster produces the thresholds that are too high and
impractical for our purpose. Therefore, we can observe that,
if we have chosen more than three clusters, our task to deal
with connectivity/area trade-off becomes very daunting. That
is why we decided to concentrate our analysis on the second
cluster to minimize potential connectivity/area impacts.

After selecting the dissimilarity measures and the num-
ber of clusters, it is necessary to select a clustering algo-
rithm. The most popular partitioning clustering approaches
are k-means and partitioning around medoids (PAM) (Kauf-
man and Rousseeuw, 1987).K-means creates cluster centers
by averaging points within the cluster. However, this averag-
ing process can be sensitive to outliers, and it also breaks
the max-stability property, so that the mean of two max-
ima is no longer a maximum, which is an essential assump-
tion in EVT. We, therefore, chose PAM, implemented in the
cluster package in R (Maechler et al., 2017), which pro-
vides a more robust outcome, where each cluster is identi-
fied by its most representative object, called a medoid. Addi-
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tionally, PAM preserves observational features of the dataset,
which is essential for clustering extremes. The algorithm has
two phases, BUILD and SWAP.

1. In the first phase, k representative objects are selected
to form an initial clustering set.

2. In the second phase, an attempt is made to improve clus-
tering by exchanging selected and unselected objects.

The objective of PAM is for all selected clusters to min-
imize average dissimilarity between their centrally located
representative object and any other object in the same clus-
ter. Further details can be found in Kaufman and Rousseeuw
(1990). The quality of the resulting clusters and the choice of
the number of clusters can be assessed using the “silhouette
coefficient” (Rousseeuw, 1987), a statistic to determine how
similar an object is to its own cluster (cohesion) compared
to other clusters (separation). For an object i it is defined as
follows:

Sil(i)=
b(i)− a(i)

max{a(i),b(i)}
, (8)

where a(i) is the average dissimilarity of the object i to all
other objects in its cluster and b(i) is the minimum average
distance of object i to all other objects in the given cluster
not containing i. The value of the silhouette coefficient Sil(i)
ranges between −1 and 1, where a negative value is undesir-
able. If Sil(i)≈ 1, a strong structure has been found, which
means that inter-cluster distance is much larger than intra-
cluster distance. Conversely, if Sil(i)< 0.25, no substantial
structure has been found. The average silhouette coefficient
Sil(K) can be used to evaluate the quality of segregation into
K clusters, such as, for any finite K find max

K
Sil(K).

4.5 Spatio-temporal threshold selection

Threshold selection is commonly used in the process of im-
age segmentation (e.g., Sezgin and Sankur, 2004; Sahoo
et al., 1988), that is, the process of using thresholds to par-
tition an image into meaningful regions. This may include
computer vision tasks such as finding a single threshold
to separate an object in an image from its corresponding
background, or separation of light and dark regions. How-
ever, these methods are not informative about spatial patterns
(Kaur and Kaur, 2014) and are thus not appropriate for com-
plex images (i.e., color images where multiband thresholding
may be necessary) (Yogamangalam and Karthikeyan, 2013)
such as those involved in this study. The problems we aim
to solve involve identifying distinct extreme episodes that
spread out over a large spatial domain and thus require more
sophisticated methods.

Our threshold choice is directly linked to the outcome
of the time series clustering step. The clustering solution
produces results for the three clusters and their medoids,
where every member is associated with the threshold and

corresponding values of geometric properties series. As men-
tioned in the previous section, we address connectivity/area
trade-off by selecting members from the second cluster only.
The threshold selection is implemented as follows. First,
we select maximum average silhouette coefficient between
SilACF and SilPACF and called it Silbest. This is necessary to
select the best clustering solution between two distance mea-
sures. Next, the medoid from the second cluster is matched
by the Silbest to correspond to our threshold choice. Finally,
the medoid index in the multivariate series of geometric
properties is used to determine the corresponding geomet-
ric attributes. Equipped with both the high spatio-temporal
threshold value and the spatial domain snapshot represented
by geometric properties series, the user can make a more in-
formative choice on a threshold appropriate for the particular
class of extreme events and the needed applications.

4.6 Comparative analysis

To better understand the difference in spatial patterns pro-
duced by the two threshold selection methodologies, we
compare geometrical properties between the STTC and
CLST methods. The former is represented by a binary image
of f (s;θ ) conditioned on the fields’ being a PEF, whereas
the latter is a binary image of the usual location-specific fre-
quency. However, in this form, the two frequencies are not
compatible over space because they represent different sub-
sets of the temporal domain. To put them on an equal footing,
we start with a definition of a location-specific frequency.
Let Y(s, tj ) be a spatio-temporal EFQ such that Y(s, tj )> 0
for any j = [1, . . .,M], M6T (i.e., our interest lies in “wet”
EFQs in this comparative study). Then for any spatial pixel
s ∈D, we can write

fτ (s)=

M∑
j=1

1{Y(s,tj )>λ[Y(s,tj )]}

M
, (9)

where λ[·] is the temporal quantile defined in Table 2 such as
λ[Y(s, tj )] = Yτ (s) with τ = 0.95. Note that fτ (s) is a single
spatial field representing the frequency of exceeding the τ th
quantile at each spatial location.

By its definition, the binary area calculated for all spa-
tial pixels s and derived from Aindex for this quantity will
have more non-zero pixels than the segmented area of f (s;θ )
and therefore will still not be adequate for the comparison.
To reach a compromise, we threshold the spatial field for
fτ (s) to get as close to the area of f (s;θ ) as possible. We
can write this area-matched indicator as fτ (s;θ ′) for some
threshold θ ′. Mathematically, we are searching for threshold
θ ′ such that A[fτ (s;θ ′)] ≈ A[f (s;θ )]. Henceforth, geomet-
rical properties comparison is performed between fτ (s;θ ′)
and the algorithmically determined f (s;θ ).
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5 Results

We apply the STTC algorithm to the EFQ of daily precipi-
tation over the CONUS. Throughout, our analysis describes
the spatial pattern and temporal evolution of the conditional
frequency of an extreme, short-duration (i.e., daily), EFQ
based on a high threshold. That is, our goal is to select a high
threshold θh for the frequency of extreme EFQ conditioned
on the fields’ being a PEF based on daily precipitation rates.
Based on empirical tests not shown here, we set η = 0.99 for
the univariate time series gt and apply the temporal quantile
definition for the function λ[·] from Table 2 with τ = 0.95.

Heavy rainfall is seasonally dependent and varies in space
and time. Thus, to understand the complete evolution of
f (s;θ ) and its spatial extent, we stratify the dataset by sea-
sons defined as winter (DJF), spring (MAM), summer (JJA),
and fall (SON). For every season, the clustering algorithm
determines a high threshold value using the multivariate se-
ries of the geometric properties clustering procedure. Each
cluster strength is represented via its average silhouette coef-
ficient; values near one suggest strong clustering structures.
Every threshold value is mapped to the corresponding set of
geometric properties series, revealing the geometrical prop-
erties of the spatial image.

We demonstrate the performance of the STTC algo-
rithm using inter-cluster comparison and determine impor-
tant graphical properties of the three clusters. Also, we com-
pare the results of our algorithm to the area-matched fre-
quency (see Eq. 9) and identify the key differences between
these two methods.

5.1 Inter-cluster comparison

To evaluate the performance of the clustering algorithm and
the resultant geometrical properties of the conditional fre-
quency of extreme EFQ, we characterize the results in the
following manner.

Cluster 1. Low thresholds. Expected both high values for the
connectivity index and the area of non-zero points.
The probability of simultaneous extreme events at
two different spatial locations is relatively high.

Cluster 2. Intermediate thresholds. Expected intermediate
values (i.e., between the first and third clusters)
for the area of non-zero points. The connectivity
index is greater than zero and less than one-half.
The threshold values from this cluster can be po-
tentially used for modeling in EVT in conjunction
with other statistical diagnostic tools. The proba-
bility of simultaneous extreme events at two dif-
ferent spatial locations is decreasing.

Cluster 3. High thresholds. Expected small values for the
area of non-zero points. The connectivity index is
greater than zero. The probability of simultaneous

Table 3. Results of the Spatio-Temporal Threshold Clustering al-
gorithm for the first (low thresholds) cluster.

Months θ Sil(K) Cindex Sindex Āindex A

DJF 4.05 0.73 0.66 0.59 0.55 4901
MAM 6.12 0.80 0.64 0.62 0.48 4793
JJA 8.42 0.71 0.39 0.49 0.70 2930
SON 8.52 0.70 0.42 0.53 0.61 3904

Table 4. Results of the Spatio-Temporal Threshold Clustering al-
gorithm for the second (intermediate thresholds) cluster.

Months θ Sil(K) Cindex Sindex Āindex A

DJF 7.22 0.46 0.42 0.41 0.72 2008
MAM 9.86 0.46 0.31 0.40 0.75 1800
JJA 11.44 0.49 0.30 0.35 0.84 1379
SON 11.80 0.50 0.34 0.36 0.81 1668

extreme events at two different spatial locations is
relatively low.

Tables 3–5 display the outcome of this process. Not surpris-
ingly, the first low thresholds cluster has a higher connec-
tivity and shape index and a larger areal extent and smaller
complexity than the other two clusters. The average silhou-
ette coefficient for this cluster is between 0.70 and 0.80. This
cluster is useful if it is necessary to sample lower threshold
values than the other two clusters. However, as we pointed
out earlier, it may not be appropriate for extreme value anal-
ysis. As expected, the third high thresholds cluster has the
lowest values for the connectivity and shape index and the
smallest non-zero area among all other clusters. The aver-
age silhouette coefficient for the third cluster varies between
0.58 and 0.65. Finally, the second intermediate thresholds
cluster has values of the geometric indices and the non-zero
area between the first and second clusters. In addition, further
examination of Fig. 2 reveals that the location of the second
cluster falls within a low volatility regime for connectivity in-
dex, which is desirable for extreme value analysis as it helps
to deal with connectivity/area trade-off. However, compared
with the other two clusters, it results in a lower a(i) (i.e., the
average dissimilarity of the object i to all other objects in its
cluster) from Eq. (8) and, consequently, a lower average sil-
houette coefficient, which fluctuates between 0.46 and 0.50.
However, it is still relatively high, as in all other clusters (i.e.,
above 0.25). Clearly, our clustering process characterizes the
common features of multivariate series of geometric prop-
erties for the three clusters reasonably well. Hence, select-
ing a threshold from a different cluster for the conditional
frequency of extreme EFQ can lead to different spatial fore-
cast verification outcomes and ultimately to different statisti-
cal inferences regarding factors that explain extreme weather
and climate events.
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Table 5. Results of the Spatio-Temporal Threshold Clustering al-
gorithm for the third (high thresholds) cluster.

Months θ Sil(K) Cindex Sindex Āindex A

DJF 9.17 0.65 0.36 0.32 0.82 1128
MAM 12.20 0.58 0.27 0.31 0.85 940
JJA 13.57 0.58 0.26 0.27 0.89 829
SON 13.70 0.65 0.33 0.31 0.86 1104

Figure 3 provides a graphical representation of the above
results. The intermediate thresholds cluster has fewer iso-
lated and more contiguous clusters (i.e., higher connectiv-
ity index), which are approximately circular in shape (i.e.,
higher shape index) and less scattered (i.e., lower complex-
ity index). It occupies a broader spatial domain than the high
thresholds cluster. The main advantage of having higher con-
nectivity and larger areal extent attributes in spatial forecast
verification for extremes is that it provides a more coherent
representation of extremes patterns in space and, as a result,
allows for a more informed decision about the causes, sever-
ity, and impact of the extremes under climate change, assum-
ing climate models can simulate these graphical configura-
tions reasonably well. These graphical qualities make the in-
termediate thresholds cluster the most likely choice for high
threshold selection for the conditional frequency of extreme
EFQ.

The threshold selection methodology adopted here for
f (s;θ ) illustrates a fundamental difference with other con-
ventional approaches for defining extreme event frequency. It
is a common practice for threshold choice in univariate EVT
to carry out an exploratory analysis or stability assessment of
estimated parameters in the temporal domain without con-
sidering any spatial dependency. In our case, the threshold
selection process has been conditioned on the fields’ being
a PEF, which allows analysis of temporal processes within a
reasonably large spatial field, notwithstanding that many of
the individual grid cells may not be necessarily extreme.

5.2 Comparison with the conventional approach

We stratify our dataset annually and by seasons, and Table 6
contains a summary of the large differences for connectivity,
shape, and complexity indices between fτ (s;θ ′) and f (s;θ ).
Based on the experimental analysis (not shown here), we de-
fine a large difference for connectivity and shape indices as
a difference smaller than −0.2, and for the complexity in-
dex the corresponding large difference is defined as greater
than 0.2. In the table, we count those differences, and the
resulting sum is divided by the number of samples (56 in
our case). Analysis of the table clearly reveals that the small-
est differences between fτ (s;θ ′) and f (s;θ ) are observed in
complexity and shape indices. This is because fτ (s;θ ′) is de-
signed to closely match the area of f (s;θ ). The Āindex is re-

Table 6. Percent difference in geometric properties series between
fτ (s;θ ′) and f (s;θ ) when the difference is large.

Months Cindex Sindex Āindex

DJF 82 2 5
MAM 89 2 2
JJA 68 0 0
SON 57 2 2

lated to the area in Aindex, and the Sindex is related to the
square root of the area in Pmin. On the other hand, it is ap-
parent that the largest differences are confined to the connec-
tivity index. That is, the algorithmically determined f (s;θ )
has more connected and contiguous regions than the area-
matched fτ (s;θ ′). To show this information graphically, we
select a representative example with a large connectivity in-
dex difference equal to−0.27. Figure 4a and b display results
for f (s;θ ) and fτ (s;θ ′) respectively.

It is clear that the STTC algorithm has captured real spa-
tial relationships by having low complexity and a greater
number of contiguous (though a few were isolated), approx-
imately circular-in-shape clusters. One of these regions cov-
ers most of the California, southern Nevada, Utah, and west-
ern Arizona, while another one starts in eastern Texas and
stretches northeast along the Mississippi and Ohio rivers (see
Fig. 4a). By comparison, the CLST method may or may not
pick up important synoptic systems because it displays spa-
tial fields with high complexity, including more isolated and
disconnected clusters. For example, there are spatial areas
with large fτ (s;θ ′) located in northeastern Montana, south-
ern Georgia, and central Florida (see Fig. 4b).

To understand why f (s;θ ) and fτ (s;θ ′) spatial represen-
tations have such different graphical properties, we consider
the individual extreme event cases that we use to calculate
these two frequencies. In the case of f (s;θ ), we map these
cases (Fig. 5; see caption) to the extreme weather episodes
described in National Weather Service and local weather
station reports. Figure 5a and b show high PEF values in
southern–central California from the substantial rainfall and
considerable snow accumulation in the mountains. Two sig-
nificant snowstorms in California are displayed in Fig. 5c and
d. Severe storms that spawn at least one tornado, causing am-
ple rainfall and flooding in northeastern Texas and Arkansas,
are shown in Fig. 5e. Conversely, since fτ (s;θ ′) calculations
are done for every grid cell, we present a frequency distribu-
tion of the extreme cases in Fig. 5f. For every calendar day
of the studied period from 1 January to 31 December 2001,
we assign corresponding sequential number from 1 to 90. We
display this number on the x axis. On the y axis, we show a
frequency distribution of only extreme days that we use in
fτ (s;θ ′) calculation (Eq. 9) across the entire spatial domain.
High-frequency values imply a large contribution to fτ (s;θ ′)
over s, whereas low values imply a small contribution. The
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Figure 3. Frequency of extreme daily EFQ conditioned on the fields’ being a PEF (GHCN-Daily dataset) for the three clusters: low thresholds
cluster with threshold values from Table 3 (Cl1); intermediate thresholds cluster with threshold values from Table 4 (Cl2); high thresholds
cluster with threshold values from Table 5 (Cl3), for every season: (a–c) winter (DJF); (d–f) spring; (g–i) summer; and (j–l) fall. All
frequencies are stated in percent form.

Figure 4. Examples of (a) f (s;θ ) and (b) fτ (s;θ ′) for the winter of 2001 when the difference in Cindex =−0.27, Sindex =−0.12 and
Āindex = 0.1 between fτ (s;θ ′) and f (s;θ ). All frequencies are stated in percent form.

red crosses mark days for the extreme cases from f (s;θ ) cal-
culation (Eq. 1). While the same days for the extreme cases
appear in both frequencies, there were many other local ex-
treme events present in fτ (s;θ ′) that were eliminated from
f (s;θ ) during the dimension reduction step. This explains

why f (s;θ ) and fτ (s;θ ′) have such different spatial repre-
sentations in Fig. 4.

Overall, while helpful for a location-specific analysis,
the CLST method displays extremes at every non-empty
grid cell and, in most cases, is deficient in geometric inter-
connectivity between spatial pixels. At the same time, it has
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Figure 5. PEFs for individual extreme event cases that we use to calculate f (s;θ ) from Fig. 4a: (a) 11 January 2001, (b) 12 January 2001,
(c) 13 February 2001, (d) 26 February 2001, (e) 28 February 2001. PEF has no units. (f) Frequency distribution of only extreme days that we
use in fτ (s;θ ′) calculation (Eq. 9) in Fig. 4b across the entire spatial domain. The red crosses mark days for the extreme cases from f (s;θ )
calculation (Eq. 1).

similar shape and complexity indices to the STTC algorithm.
These graphical properties highlight the main advantage of
the methodology adopted here – it represents larger-scale
weather patterns such as storms and high- or low-pressure
systems more accurately than the CLST method, by remov-
ing noisy data in both space and time, which is clearly desir-
able for spatial forecast verification of extreme events.

6 Conclusions and applications

The lack of a universal definition of the concept “extreme”
makes it difficult to compare different scientific studies of ex-
treme events. It also makes statistical inference much harder
and obfuscates transparency and risk management processes.
The current work was an attempt to formalize this important
concept. We introduced a new generalized Spatio-Temporal
Threshold Clustering method (STTC) for extreme events us-
ing an integrative modeling approach framework. Step by
step, we described the interworking of an algorithm that
is applicable to a wide variety of essential field quantities
(EFQs). We used EFQ constructed from gridded GHCN-
Daily dataset comprised of 8516 stations from 1961 to 2016
across the CONUS. We applied a quantile-based dimension
reduction methodology in space and time to identify extreme
patterns for rainfall and droughts (Fig. 1). These precipita-
tion patterns can be asymmetric for some storms due to the
wind shear and are thus not fully detectable using conven-
tional location-specific methods. To overcome this, we eval-
uated an entire spatial field comprised of relatively large-
scale extreme patterns regardless of whether individual grid

cells in space were extreme or not. Conditioned on these ex-
treme patterns, the STTC method for the frequency of ex-
treme EFQ allowed us to study not only individual local ex-
treme episodes, but also the inter-connectivity, shape, com-
plexity, and spatial extent of multiple extremes.

The threshold selection process, which is necessary for
the conditional frequency calculation, was based on a multi-
variate series of geometric properties clustering analysis. We
used a silhouette coefficient to measure a quality of resulting
clusters. In Tibshirani et al. (2001) a variety of other met-
rics were used to decide on the number of clusters for non-
extreme events, and it was found that the silhouette method
did not have the best performance. However, in our case, we
performed clustering of the multivariate series of geometric
properties for the extreme events, and we predetermined the
number of clusters and set them to three.

We analyzed the output of the clustering algorithm and we
demonstrated that the intermediate thresholds cluster was the
most suitable choice to deal with connectivity/area trade-off
for analysis of extreme events when compared to the low
thresholds and high thresholds clusters. In addition, we es-
tablished that the STTC algorithm had more spatial connec-
tivity and, in most cases, similar complexity and shape when
compared to the CLST method. This finding is particularly
important for spatial forecast verification of high-resolution
climate models.

Our new threshold selection algorithm has a number of
potential benefits. It objectively automates the threshold se-
lection process through the clustering algorithm and can ul-
timately be used in conjunction with spatial forecast veri-
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Figure 6. Annual linear trend for Cindex of f (s;θ ) from 1961 to 2016. Arrows show selected years, where n is the number of isolated
structures and m is the number of non-zero grid cells (see Eq. 3). List of the years: (a) 1963, (b) 1970, (c) 1988, (d) 1998, (e) 2004; (f) 2014.
All frequencies are stated in percent form.

fication and modeling of extreme events. It is adaptable to
model extremes with both high and low threshold choices. It
incorporates spatial and temporal dependence in one holistic
modeling framework, thus opening an opportunity for future
analysis of statistical inference of extreme events for univari-
ate and possibly multivariate EFQ in space and time, which
is not currently possible using conventional location-specific
methods. It is less sensitive to the data grid size when per-
forming areal mean interpolation (Chen and Knutson, 2008)
and can thus provide a consistent spatial pattern across dif-
ferent grid resolutions. It also links the chosen threshold to
desired geometrical properties, which offers users more in-
formed and flexible choices in selecting extreme events. The
algorithm is relatively fast for large datasets and could be em-
bedded within climate modeling systems (global or regional)
to identify synoptic-scale spatial patterns that are linked to
the individual extreme episodes. However, it entails selecting
a range of initial thresholds, which could be time-consuming
for some users. The proposed threshold selection method re-
quires spatially and temporally varying data and not applica-
ble in modeling location-specific single extreme events (Cat-
tiaux and Ribes, 2018). The algorithm is quite stable to small
changes in the range of the initial thresholds necessary for
time series clustering step. However, it is sensitive to the

choice of λ[·] as well as to spatial and temporal quantile val-
ues, especially when the spatio-temporal data size is small.
The user must decide what form of λ[·] is the most suitable
for the underlying application and what quantile values are
capturing essential extreme episodes for the specific domain
of interest.

The algorithm can be used to compare biases between
global and regional climate models (Liang et al., 2012) and
possibly uncover the underlying physical mechanisms of
these biases. Furthermore, an interesting perspective of this
work is to determine whether or not one can capture dynamic
and thermodynamic properties of the spatio-temporal struc-
ture of the conditional frequency of extreme EFQ from an
ensemble of simulations in a single climate model with mul-
tiple physics configurations (Sun and Liang, 2020) or a set
of different climate models (Min et al., 2011). Another po-
tential application is to investigate how the observed spatio-
temporal processes of the conditional frequency of extreme
EFQ have changed and the causes of those changes, utiliz-
ing the most recent detection and attribution framework (e.g.,
Knutson et al., 2017; Ribes et al., 2017).

We foresee that our novel threshold selection approach
could lead to new insights into spatial trends analysis in
patterns of extreme EFQs. Figure 6 shows a linear down-

https://doi.org/10.5194/ascmo-7-35-2021 Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, 2021



48 V. Kholodovsky and X.-Z. Liang: Framework for identifying large-scale extremes

ward trend for the connectivity index (Cindex) of f (s;θ )
from 1961 to 2016, where the conditional frequencies
are objectively and independently derived for each year.
The model fit (intercept= 5.57± 1.07,p� 0.001; slope=
−0.003∓0.0005,p� 0.001;R2

= 0.29) exhibited about the
same variability between 1961 and 1988 (interquartile range
≈ 0.07) and between 1989 and 2016 (≈ 0.08). The down-
ward trend in Cindex is primarily caused by the upward trend
(not shown here) in the parameter n (i.e., number of isolated
structures). We found no trend in the parameter m (i.e., the
number of non-zero grid cells) (see Eq. 3). Figure 6a–f dis-
play f (s;θ ) for selective years with decreasing n and corre-
sponding m values. To the untrained eye, it is difficult to see
any periodic changes in the number of isolated structures.
However, the supplied numerical values should substantiate
our claim.

An important caveat ofCindex is that it is a binary index. As
such, it only calculates all components based on the number
of non-zero grid cells in the spatial patterns by setting values
below a threshold to zero and those above to one. It does not
provide any information about the original raw intensities.
However, evaluation of this index at different threshold val-
ues can provide some information about the error intensity
(Gilleland, 2017b).

The upward trend in the number of isolated structures im-
plies that the distribution of conditional frequency of extreme
precipitation is changing from large-scale well-connected
spatial patterns to smaller-scale less contiguous rainfall clus-
ters. In order to understand why we observe the distribu-
tional change, it is important to establish the linkages be-
tween changes in circulation and other essential climate vari-
ables (e.g., temperature and precipitation). If the trend con-
tinues, we expect to see more localized droughts and heat
waves, especially during the summer months. It would also
create a tremendous challenge for weather forecasting and
climate adaptation efforts as the forecast skill drops signifi-
cantly at smaller scales. Thus, the STTC offers a unique way
of performing diagnostic analysis of the large-scale weather
patterns specifically associated with these extreme episodes,
and such analysis for the detected trend is in progress.
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Code and data availability. The GHCN-Daily dataset is freely
available from the NOAA website at https://www.ncdc.noaa.gov/
ghcnd-data-access (Menne et al., 2012a), and the PRISM data are
available from the Oregon State University website at https://prism.
oregonstate.edu (Daly et al., 1994, 1997). The algorithm outlined
in the paper was implemented in R. The code is available from the
corresponding author upon request.
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