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Abstract. The field of statistics has become one of the mathematical foundations in forecast evaluation studies,
especially with regard to computing scoring rules. The classical paradigm of scoring rules is to discriminate be-
tween two different forecasts by comparing them with observations. The probability distribution of the observed
record is assumed to be perfect as a verification benchmark. In practice, however, observations are almost always
tainted by errors and uncertainties. These may be due to homogenization problems, instrumental deficiencies,
the need for indirect reconstructions from other sources (e.g., radar data), model errors in gridded products like
reanalysis, or any other data-recording issues. If the yardstick used to compare forecasts is imprecise, one can
wonder whether such types of errors may or may not have a strong influence on decisions based on classical
scoring rules. We propose a new scoring rule scheme in the context of models that incorporate errors of the
verification data. We rely on existing scoring rules and incorporate uncertainty and error of the verification data
through a hidden variable and the conditional expectation of scores when they are viewed as a random variable.
The proposed scoring framework is applied to standard setups, mainly an additive Gaussian noise model and
a multiplicative Gamma noise model. These classical examples provide known and tractable conditional distri-
butions and, consequently, allow us to interpret explicit expressions of our score. By considering scores to be
random variables, one can access the entire range of their distribution. In particular, we illustrate that the com-
monly used mean score can be a misleading representative of the distribution when the latter is highly skewed
or has heavy tails. In a simulation study, through the power of a statistical test, we demonstrate the ability of
the newly proposed score to better discriminate between forecasts when verification data are subject to uncer-
tainty compared with the scores used in practice. We apply the benefit of accounting for the uncertainty of the
verification data in the scoring procedure on a dataset of surface wind speed from measurements and numerical
model outputs. Finally, we open some discussions on the use of this proposed scoring framework for non-explicit
conditional distributions.

1 Introduction

Probabilistic forecast evaluation generally involves the com-
parison of a probabilistic forecast cumulative distribution
function (cdf) F (in the following, we assume that F ad-
mits a probability density function f ) with verification data
y that could be of diverse origins (Jolliffe and Stephenson,
2004; Gneiting et al., 2007). In this context verification data
are, most of the time, but not exclusively, observational data.

Questions related to the quality and variability of observa-
tional data have been raised and tackled in different scien-
tific contexts. For instance, data assimilation requires careful
estimation of uncertainties related to both numerical mod-
els and observations (Daley, 1993; Waller et al., 2014; Janjić
et al., 2017). Apart from a few studies (see, e.g., Hamill and
Juras, 2006; Ferro, 2017), error and uncertainty associated
with the verification data have rarely been addressed in fore-
cast evaluation. Nonetheless, errors in verification data can
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Figure 1. “Perfect” (dark grey) and “imperfect” (light grey) syn-
thetic forecasts, with respective distributions N (0,2) and N (0.5,4),
are compared with “perfect” verification data (a) with distribution
N (0,2) and imperfect verification data Y and (b) with distribution
N (0,3). Comparing a perfect forecast (forecast with the same dis-
tribution as the true data) to corrupted verification data leads to an
apparent underdispersion of the perfect forecast.

lead to severe mischaracterization of probabilistic forecasts,
as illustrated in Fig. 1, where a perfect forecast (a forecast
with the same distribution as the true data) appears underdis-
persed when the verification data have a larger variance than
the true process. In the following, the underlying hidden pro-
cess that is materialized by model simulations or measured
through instruments will be referred to as the true process.
Forecast evaluation can be performed qualitatively through
visual inspection of statistics of the data such as in Fig. 1 (see,
e.g., Bröcker and Ben Bouallègue, 2020) and quantitatively
through the use of scalar functions called scores (Gneiting
et al., 2007; Gneiting and Raftery, 2007). In this work, we
focus on the latter, and we illustrate and propose a frame-
work based on hidden variables to embed imperfect verifi-
cation data in scoring functions via priors on the verification
data and on the hidden state.

1.1 Motivating example

To illustrate the proposed work, we consider surface wind
data from a previous work (Bessac et al., 2018). Time se-
ries of ground measurements from the NOAA Automated
Surface Observing System (ASOS) network are available
at ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin, last access:
8 September 2021 and are extracted at 1 min resolution. We
focus on January 2012 in this study; the data are filtered via a
moving-average procedure and considered at an hourly level,
leading to 744 data points. These ground-station data are
considered verification data in the following. Outputs from
numerical weather prediction (NWP) forecasts are generated
by using WRF v3.6 (Skamarock et al., 2008), a state-of-the-
art numerical weather prediction system designed to serve
both operational forecasting and atmospheric research needs.
The NWP forecasts are initialized by using the North Amer-
ican Regional Reanalysis fields dataset that covers the North
American continent with a resolution of 10 min of a degree,

Figure 2. Time series of surface wind speed measurements of two
days of January 2012 in Wisconsin, USA. The solid line represents
ground measurements and the light grey shaded area represents ob-
servational uncertainty (±σ , with σ = 0.5 defined in Pinson and
Hagedorn, 2012). The dashed line represents a numerical model
output and the model uncertainty in dark grey shade. The model
uncertainty refers to the standard deviation computed on the avail-
able forecast time series.

29 pressure levels (1000–100 hPa, excluding the surface), ev-
ery 3 h from the year 1979 until the present. Simulations are
started every day during January 2012 with a forecast lead
time of 24 h and cover the continental United States on a grid
of 25×25 km with a time resolution of 10 min. Only one tra-
jectory is simulated in this study. As observed in Fig. 2, the
uncertainty associated with observation data can affect the
evaluation of the forecast. As an extension, if two forecasts
were to fall within the uncertainty range of the observations,
it would require a non-trivial choice from the forecaster to
rank forecasts.

We will apply our proposed scoring framework to this
dataset in Sect. 5.2 and compute scores embedding this un-
certainty.

1.2 Imperfect verification data and underlying physical
state

In verification and recalibration of ensemble forecasts, an es-
sential verification step is to find data that precisely iden-
tify the forecast events of interest, the so-called verifica-
tion dataset (see, e.g., Jolliffe and Stephenson, 2004). Jol-
liffe and Stephenson (2004), in Sect. 1.3 of their book, dis-
cussed the uncertainty associated with verification data, such
as sampling uncertainty, direct measurement uncertainty, or
changes in locations in the verification dataset. Verification
data arise from various sources and consequently present var-
ious types of errors and uncertainties, such as measurement
error (Dirkson et al., 2019), design, and quality: e.g., gridded
data versus weather stations, homogenization problems, sub-
sampling variability (Mittermaier and Stephenson, 2015), or
mismatching resolutions. Resolution mismatching is becom-
ing an issue due to weather or regional climate models run-
ning at ever finer resolution with increased fidelity for which
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observational data are rarely available for evaluation, hence
requiring us to account for up- or down-scaling error. In order
to provide accurate forecast evaluations, it is crucial to distin-
guish and account for these types of errors. For instance, the
effect of observational error can be stronger at a short-term
horizon when forecast error is smaller. Additive models have
been used for the observational error (Ciach and Krajewski,
1999; Saetra et al., 2004) or used to enhance coarser reso-
lutions to allow comparison with fine-resolution data (Mit-
termaier and Stephenson, 2015). In the following, we will
present an additive and a multiplicative framework based on
a hidden variable to embed uncertainty in data sources.

A common way of modeling errors is by representing the
truth as a hidden underlying process also called the state
(Kalman, 1960; Kalman and Bucy, 1961). Subsequently each
source of data is seen as a proxy of the hidden state and mod-
eled as a function of it. This forms the basis of data assim-
ilation models where the desired state of the atmosphere is
estimated through the knowledge of physics-based models
and observational data that are both seen as versions of the
non-observed true physical state. In the following, we base
our scoring framework on the decomposition of the verifica-
tion data as a function of a hidden true state, referred to asX,
and an error term.

1.3 Related literature

Uncertainty and errors arise from various sources, such as the
forecast and/or the verification data (predictability quality,
uncertainty, errors, dependence and correlation, time-varying
distribution), and the computational approximation of scores.
A distribution-based verification approach was initially pro-
posed by Murphy and Winkler (1987), where joint distribu-
tions for forecast and observation account for the information
and interaction of both datasets. Wilks (2010) studied the ef-
fect of serial correlation of forecasts and observations on the
sampling distributions of Brier score and, in particular, seri-
ally correlated forecasts inflate its variance. Bolin and Wallin
(2019) discussed the misleading use of average scores, in par-
ticular for the continuous ranked probability score (CRPS)
that is shown to be scale-dependent, when forecasts have
varying predictability such as in non-stationary cases or ex-
hibit outliers. Bröcker and Smith (2007), in their conclu-
sion, highlighted the need to generalize scores when veri-
fication data are uncertain in the context of properness and
locality. More specifically, robustness and scale-invariance
corrections of the CRPS are proposed to account for out-
liers and varying predictability in scoring schemes. Concern-
ing the impact of the forecast density approximation from
finite ensembles, Zamo and Naveau (2018) compared four
CRPS estimators and highlighted recommendations in terms
of the type of ensemble, whether random or a set of quan-
tiles. In addition, several works focus on embedding verifi-
cation data errors and uncertainties in scoring setups. Some
methods aimed at correcting the verification data and using

regular scoring metrics, such as perturbed ensemble meth-
ods (Anderson, 1996; Hamill, 2001; Bowler, 2008; Gorgas
and Dorninger, 2012). Other works modeled observations
as random variables and expressed scoring metrics in that
context (Candille and Talagrand, 2008; Pappenberger et al.,
2009; Pinson and Hagedorn, 2012). Some approaches di-
rectly modified the expression of metrics (Hamill and Juras,
2006; Ferro, 2017), and others (see, e.g., Hamill and Juras,
2006) accounted for varying climatology by sub-dividing the
sample into stationary ones. In Ciach and Krajewski (1999)
and Saetra et al. (2004), additive errors were embedded in
scores via convolution. Analogously to the Brier score de-
composition of Murphy (1973), Weijs and Van De Giesen
(2011) and Weijs et al. (2010) decomposed the Kullback–
Leibler divergence score and the cross-entropy score into un-
certainty into reliability and resolution components in order
to account for uncertain verification data. Kleen (2019) dis-
cussed score-scale sensitivity to additive measurement errors
and proposed a measure of discrepancy between scores com-
puted on uncorrupted and corrupted verification data.

1.4 Proposed scoring framework

The following paper proposes an idealized framework to ex-
press commonly used scores with observational uncertainty
and errors. The new framework relies on the decomposition
of the verification data y into a “true” hidden state x and an
error term and on the representation of scores as a random
variable when the verification data are seen as a random vari-
able. Information about the hidden state and the verification
data is embedded via priors in the scoring framework, shar-
ing analogies with classical Bayesian analysis (Gelman et al.,
2013). More precisely, the proposed framework relies on the
knowledge about the conditional distribution of the “true”
hidden state given the verification data or about information
which allows us to calculate that conditional distribution.

Section 2 introduces a scoring framework that accounts
for errors in the verification data for scores used in prac-
tice. Sections 3 and 4, respectively, implement the additive
and multiplicative error-embedding cases for the logarithmic
score (log score) and CRPS. Section 5 illustrates the merits
of scores in a simulation context and in a real application
case. Finally, Sect. 6 provides a final discussion and insights
into future works. In particular, we discuss the possible gen-
eralization of the proposed scoring framework when the de-
composition of the verification data y into a hidden state x
and an error does not fall into an additive or multiplicative
setting as in Sects. 3 and 4.

2 Scoring rules under uncertainty

In the following, we propose a version of scores based on the
conditional expectation of what is defined as an “ideal” score
given the verification data tainted by errors, when scores are
viewed as random variables. The idea of conditional expec-
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tation was also used in Ferro (2017) but with a different con-
ditioning and is discussed below as a comparison.

2.1 Scores as random variables

In order to build the proposed score version as well as to in-
terpret scores further than through their mean and assess for
their uncertainty, we will rely on scores represented as ran-
dom variables. In practice, scores are averaged over all avail-
able verification data y, and the uncertainty associated with
this averaged score is mostly neglected. However, this uncer-
tainty is revealed to be significant, as pointed out in Dirk-
son et al. (2019), where confidence intervals were computed
through bootstrapping. In order to assess the probability dis-
tribution of score s0, we assume Y is a random variable repre-
senting the verification data y and write a score as a random
variable s0(F,Y ), where F is the forecast cdf to be evalu-
ated. This representation gives access to the score distribu-
tion and enables us to explore the uncertainty of the latter. A
few works in the literature have already considered scores to
be random variables and performed the associated analysis.
In Diebold and Mariano (2002) and Jolliffe (2007), score dis-
tributions were considered to build confidence intervals and
hypothesis testing to assess differences in score values when
comparing forecasts to the climatology. In Wilks (2010), the
effect of serial correlation on the sampling distributions of
Brier scores was investigated. Pinson and Hagedorn (2012)
illustrated and discussed score distributions across different
prediction horizons and across different levels of observa-
tional noise.

2.2 Hidden state and scoring

Scores used in practice are evaluated on verification data y,
s0(F,y). We define the “ideal” score as s0(F,x), where x
is the realization of the hidden underlying “true” state that
gives rise to the verification data y. Ideally, one would use x
to provide the best assessment of forecast F quality through
s0(F,x); however, since x is not available, we consider the
best approximation of s0(F,x) given the observation y in
terms of the L2 norm via the conditional expectation. For
a given score s0, we propose the following score version
s∨(.,y):

s∨(F,y)= E (s0(F,X)|Y = y) , (1)

where X is the true hidden state, Y is the random variable
representing the available observation used as verification
data, and F is the forecast cdf to be evaluated. One can view
this scoring framework incorporating information about the
discrepancy between the true state and the verification data
in terms of errors and uncertainty in a Bayesian setting. To
compute Eq. (1), we assume that the distributional features
of the law of X and the conditional law of [Y |X], where [.]
and [.|.] denote, respectively, marginal and conditional distri-
butions, are directly available or can be obtained. This is the

classical framework used in data assimilation when both ob-
servational and state equations are given, and the issue is to
infer the realization x given observations y; see also our ex-
ample in Sect. 5.2. Under this setup, the following properties
hold for the score s∨:

EX [s0(F,X)]= EY [s∨(F,Y )] ,

VX [s0(F,X)]≥ VY [s∨(F,Y )] , for any forecast cdf F. (2)

Details of the computations are found in Appendix A. The
first equality guarantees that any propriety attached to the
mean value of s0 is preserved with s∨. The second inequal-
ity arises from the law of total variance and implies a reduced
dispersion of the corrected score compared to the ideal score.
This can be explained by the prior knowledge on the verifi-
cation data that reduces uncertainty in the score. These prop-
erties are illustrated with simulated examples and real data in
Sect. 5.

As a comparison, Ferro (2017) proposed a mathematical
scheme to correct a score when error is present in the verifi-
cation data y. Ferro’s modified score, denoted sF (f,y) in this
work, is derived from a classical score, say s0(f,x), where x
is the hidden true state. With these notations, the corrected
score sF (f,y) is built such that it respects the following con-
ditional expectation:

s0(f,x)= E (sF (f,Y )|X = x) .

In other words, the score sF (f,y) computed from the ys
provides the same value on average as the proper score com-
puted from the unobserved true state xs. The modified score
sF explicitly targets biases in the mean induced by imperfect
verification data. In terms of assumptions, we note that the
conditional law of Y given X needs to be known in order to
compute s0(f,x) from sF (f,y); e.g., see Definitions 2 and 3
in Ferro (2017). In particular, in Ferro (2017) the correction
framework is illustrated with the logarithmic score in the case
of a Gaussian error model, i.e., [Y |X = x] ∼N (x,ω2).

Implementation and generalization

The proposed score reveals desirable mathematical proper-
ties of unbiasedness and variance reduction while account-
ing for the error in the verification data; however, it relies on
the knowledge of [X|Y ] or equivalently of [Y |X] and [X].
We assume that the decomposition of Y into a hidden stateX
and an error is given and is fixed with respect of the eval-
uation framework. Additionally, the new framework relies
on the necessity to integrate s0(f,x) against conditional dis-
tributions, which might require some quadrature approxima-
tions in practice when closed formulations are not available.
In this work, we assume we have access to the climatology
distribution, and we rely on this assumption to compute the
distribution of X or priors of its distribution. However, de-
pending on the context and as exemplified in Sect. 5.2, alter-
native definitions and computations of X can be considered,
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as for instance relying on known measurement error models.
Nonetheless, as illustrated in Sects. 3 and 4, the simplifying
key to the score derivation in Eq. (1) is to use Bayesian con-
jugacy when applicable. This is illustrated in the following
sections with a Gaussian additive case and a Gamma multi-
plicative case. Although the Bayesian conjugacy is a simpli-
fying assumption, as in most Bayesian settings it is not a nec-
essary condition, and for cases with non-explicit conjugate
priors, all Bayesian and/or assimilation tools (e.g., via sam-
pling algorithms such as Markov chain Monte Carlo meth-
ods (Robert and Casella, 2013) or non-parametric approaches
such as Dirichlet processes) could be used to draw samples
from [X|Y ] and estimate the distribution [s0(F,X)|Y = y]
for a given s0(F,.). Finally, in the following we assume that
distributions have known parameters; however, this assump-
tion can be relaxed by considering prior distributions on each
involved parameter via hierarchical Bayesian modeling. The
scope of this paper is to provide a conceptual tool, and the
question of parameter estimation, besides the example in
Sect. 5, is not treated in detail. In Sect. 5, we apply the pro-
posed score derivation to the aforementioned surface wind
data example described in the introduction. In Sect. 6, we dis-
cuss the challenges of computing scores as defined in Eq. (1)
or in Ferro (2017) in more general cases of state-space mod-
els that are not limited to additive or multiplicative cases.

3 Gaussian additive case

As discussed earlier, a commonly used setup in applications
is when errors are additive and their natural companion dis-
tribution is Gaussian. Hereafter, we derive the score from
Eq. (1) for the commonly used log score and CRPS in the
Gaussian additive case, where the hidden stateX and the ver-
ification data Y are linked through the following system:

Model (A)
{
X ∼N

(
µ0,σ

2
0
)
,

Y =X+N
(
0,ω2) ,

where Y is the observed verification data, X is the hid-
den true state, and all Gaussian variables are assumed to
be independent. In the following, for simplicity we consider
E(X)= E(Y ); however, one can update the model easily to
mean-biased verification data Y . Parameters are supposed to
be known from the applications; one could use priors on the
parameters when estimates are not available. In the follow-
ing, we express different versions of the log score and CRPS:
the ideal version, the used-in-practice version, and the error-
embedding version from Eq. (1). In this case, as well as in
Sect. 4, since conditional distributions are expressed through
Bayesian conjugacy, most computational efforts rely on inte-
grating the scores against the conditional distributions.

3.1 Log-score versions

For a Gaussian predictive probability distribution function
(pdf) f with mean µ and variance σ 2, the log score is de-

fined by

s0(f,x)= logσ +
1

2σ 2 (x−µ)2
+

1
2

log2π (3)

and has been widely used in the literature. Ideally, one would
access the true state X and evaluate forecast against its re-
alizations x; however, since X is not accessible, scores are
computed against observations y:

s0(f,y)= logσ +
1

2σ 2 (y−µ)2
+

1
2

log2π. (4)

Applying basic properties of Gaussian conditioning, our
score defined by Eq. (1) can be written as

s∨(f,y)= logσ +
1

2σ 2

{
ω2σ 2

0

σ 2
0 +ω

2

+ (y−µ)2
}
+

1
2

log2π,

where y =
ω2

σ 2
0 +ω

2
µ0+

σ 2
0

σ 2
0 +ω

2
y. (5)

In particular, y = E(X|Y = y) arises from the conditional
expectation of s∨(f,Y ) in Eq. (3) and is a weighted sum that
updates the prior information about X ∼N (µ0,σ

2
0 ) with the

observation Y ∼N (µ0,σ
2
0 +ω

2). In the following equations,
y represents the same quantity. Details of the computations
are found in Appendix B and rely on the integration of Eq. (3)
against the conditional distribution of [X|Y = y].

As a comparison, the corrected score from Ferro (2017)
is expressed as sF (f,y)= logσ+ (y−µ)2

−ω2

2σ 2 +
1
2 log2π , with

the same notations and under the assumption [Y |X = x] ∼
N (x,ω2). In this case, the distribution of the hidden state x
is not involved; however, y is not scale-corrected, and only a
location correction is applied compared to Eq. (5).

3.2 CRPS versions

Besides the logarithmic score, the CRPS is another classical
scoring rule used in weather forecast centers. It is defined as

c0(f,x)= E|Z− x| −
1
2
E|Z−Z′|, (6)

where Z and Z′ are independent and identically distributed
copy random variables with a continuous pdf f . The CRPS
can be rewritten as c0(f,x)= x+2E(Z−x)+−2E(ZF (Z)),
where (Z− x)+ represents the positive part of Z− x and
F (x)= 1−F (x) corresponds to the survival function asso-
ciated with the cdf F . For example, the CRPS for a Gaussian
forecast with parameters µ and σ is equal to

c0(f,x)= x+ 2σ
[
φ

(
x−µ

σ

)
−
x−µ

σ
8

(
x−µ

σ

)]
−

[
µ+

σ
√
π

]
, (7)
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where φ and 8 are the pdf and cdf of a standard normal dis-
tribution (Gneiting et al., 2005; Taillardat et al., 2016). Sim-
ilarly to Eq. (4), in practice one evaluates Eq. (7) against ob-
servations y since the hidden state X is unobserved.

Under the Gaussian additive Model (A), the proposed
CRPS defined by Eq. (1) is written as

c∨ (f,y)= y+ 2σω

[
φ

(
y−µ

σω

)
−
y−µ

σω
8

(
y−µ

σω

)]
−

[
µ+

σ
√
π

]
, (8)

where σ 2
ω = σ

2
+

ω2σ 2
0

σ 2
0+ω

2 and y = ω2

σ 2
0+ω

2µ0+
σ 2

0
σ 2

0+ω
2 as defined

above. Details of the computations are found in Appendix C
and rely on similar principles to the above paragraph.

3.3 Score distributions

Under the Gaussian additive Model (A), the random vari-
ables associated with the proposed log scores defined by
Eq. (4) and (5) are written as

s0 (f,Y ) d= a0+ b0χ
2
0 and s∨ (f,Y ) d= a∨+ b∨χ2

∨, (9)

where d
= means equality in distribution and χ2

0 and χ2
∨ non-

central chi-squared random variables with 1 DOF (degree of
freedom) and respective non-centrality parameters λ0 and
λ∨. The explicit expressions of the constants λ0, λ∨, a0, a∨,
b0, and b∨ are found in Appendix D. The distribution of
s0 (f,X) can be derived similarly. Figure 3 illustrates the dis-
tributions in Eq. (9) for various values of the noise parameter
ω. The distributions are very peaked due to the single degree
of freedom of the chi-squared distribution; moreover, their
bulks are far from the true mean of the ideal score of s0(.,X),
challenging the use of the mean score to compare forecasts.
The concept of propriety is based on averaging scores; how-
ever, the asymmetry and long right tails of the non-central
chi-squared densities make the mean a non-reliable statistic
to represent such distributions. Bolin and Wallin (2019) dis-
cussed the misleading use of averaged scores in the context
of time-varying predictability where different scales of pre-
diction errors arise, generating different orders of magnitude
of evaluated scores. However, the newly proposed scores ex-
hibit a bulk of their distribution closer to the mean and with
a reduced variance as stated in Eq. (2), leading to more con-
fidence in the mean when the latter is considered.

Similarly, under the additive Gaussian Model (A), the ran-
dom variable associated with the proposed CRPS defined by
Eq. (8) is written as

c∨ (f,Y )= Y + 2σω

[
φ

(
Y −µ

σω

)
−
Y −µ

σω
8

(
Y −µ

σω

)]

−

[
µ+

σ
√
π

]
,

(10)

where σ 2
ω = σ

2
+

ω2σ 2
0

σ 2
0+ω

2 and the random variable Y =

ω2

σ 2
0+ω

2µ0+
σ 2

0
σ 2

0+ω
2 Y follow a Gaussian pdf with mean µ0 and

variance σ 2
0 ×

σ 2
0

σ 2
0+ω

2 . The distribution of Eq. (10) does not

belong to any known parametric families; however, it is still
possible to characterize the score distribution through sam-
pling when the distribution of Y is available. Finally, having
access to distributions like Eq. (9) or Eq. (10) gives access
to the whole range of uncertainty of the score distributions,
helping to derive statistics that are more representative than
the mean as pointed out above and to compute confidence
intervals without bootstrapping approximations as in Wilks
(2010) and Dirkson et al. (2019). Finding adequate represen-
tatives of a score distribution that shows reliable discrimi-
native skills is beyond the scope of this work. Nevertheless,
in Appendix G we take forward the concept of score distri-
butions and apply it to computing distances between score
distributions in order to assess their discriminative skills.

4 Multiplicative Gamma case

The Gaussian assumption is appropriate when dealing with
averages, for example, mean temperatures; however, the nor-
mal hypothesis cannot be justified for positive and skewed
variables such as precipitation intensities. For instance, mul-
tiplicative models are often used in hydrology to account
for various errors and uncertainty (measurement errors, pro-
cess uncertainty, and unknown quantities); see Kavetski et al.
(2006a, b) and McMillan et al. (2011). An often-used alter-
native in such cases is to use a Gamma distribution, which
works fairly well in practice to represent the bulk of rain-
fall intensities. Hence, we assume in this section that the true
but unobservedX follows a Gamma distribution with param-

eters α0 and β0: fX(x)= β
α0
0

0(α0)x
α0−1 exp(−β0x), for x > 0.

For positive random variables such as precipitation, additive
models cannot be used to introduce errors. Instead, we prefer
to use a multiplicative model of the type

Model (B)
{
X ∼ 0(α0,β0),
Y =X× ε,

(11)

where ε is a positive random variable independent of X.
To make feasible computations, we model the error ε as
an inverse Gamma pdf with parameters a and b: fε(u)=
ba

0(a)u
−a−1 exp

(
−
b
u

)
, for u > 0. The basic conjugate prior

properties of such Gamma and inverse Gamma distributions
allows us to easily derive the pdf [X|Y = y]. Analogously to
Sect. 3, we express the log score and CRPS within this mul-
tiplicative Gamma model in the following paragraphs.
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Figure 3. Probability distribution functions (pdfs) from Eq. (9) of the log score used in practice s0(.,Y ) (green) and the proposed score
s∨(.,Y ) (red) computed for the perfect forecast f0 on the left (µ= µ0 = 0 and σ = σ0 = 2) and imperfect forecasts f on the right (µ= 1
and σ = 3). The mean of the ideal score is depicted with an orange line: (a) E(s0(f0,X)) and (b) E(s0(f,X)) on the right. The following
distributions are used: X ∼N (0,4) and Y ∼N (0,4+ω2) with several levels of observational noise ω2

= 0.5, 1, and 3.

4.1 Log-score versions

Let us consider a Gamma distribution f with parameters α >
0 and β > 0 for the prediction. With obvious notations, the
log score for this forecast f becomes

s0(f,x)= (1−α) logx+βx−α logβ + log0(α). (12)

Under the Gamma multiplicative model (B), the random
variable associated with the corrected log scores defined by
Eqs. (1) and (12) is expressed as

s∨(f,Y )= (1−α) (ψ (α0+ a)− log(β0+ b/Y ))

+β
α0+ a

β0+ b/Y
−α logβ + log0(α), (13)

where ψ(x) represents the digamma function defined as
the logarithmic derivative of the Gamma function, namely,
ψ(x)= dlog0(x)/dx. Details of the computations are found
in Appendix E.

4.2 CRPS versions

For a Gamma forecast with parameters α and β, the corre-
sponding CRPS (see, e.g., Taillardat et al., 2016; Scheuerer
and Möller, 2015) is equal to

c0(f,x)=
[
α

β
−

1
βB(.5,α)

]
− x

+ 2
[
x

β
f (x)+

(
α

β
− x

)
F (x)

]
. (14)

Under the multiplicative Gamma model (B), the random
variable associated with the CRPS Eq. (14) corrected by

Eq. (1) is expressed as

c∨(f,Y )=
[
α

β
−

1
βB(5,α)

]
−
α0+ a

β0+
b
Y

+ 2
βα−1(β0+ b/Y )α0+a

B (α,α0+ a) (β +β0+ b/Y )α+α0+a

+
2(β0+ b/Y )α0+a

0(α)0 (α0+ a)

+∞∫
0

(
α

β
− x

)
0(α,βx)xα0+a−1 exp(− (β0+ b/Y )x)dx. (15)

Details of the computations are found in Appendix F. Sim-
ilarly to Sect. 3.3, one can access the range of uncertainty of
the proposed scores, Eqs. (13) and (15), when sampling from
the distribution of Y is available. As an illustration, Fig. 4
shows the distributions of the three CRPSs presented in this
section. Similarly to the previous section, one can see that
the benefits of embedding the uncertainty of the verification
data are noticeable in the variance reduction of distributions
shaded in red and the smaller distance between the bulk of
distributions in red and the mean value of the ideal score.

5 Applications and illustrations

The following section applies and illustrates through simula-
tion studies the benefit of accounting for uncertainty in scores
as presented in Sect. 2 through the power analysis of a hy-
pothesis test and the numerical illustration of the motivating
example with wind data from Sect. 1. In Appendix G, we
illustrate further the consideration of score distributions via
the Wasserstein distance.

5.1 Power analysis of hypothesis testing

In this section, a power analysis of the following hypothe-
sis test is performed on simulated data following Diebold
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Figure 4. Estimated probability distribution of the CRPS under the multiplicative Gamma model; shown in blue is the distribution of c0(.,X),
shown in green is the distribution of s0(.,Y ), and shown in red is the distribution of c∨(.,Y ), respectively, from Eqs. (14) and (15). The mean
of the ideal score E(c0(.,X)) is depicted with an orange line. (a) Score distributions for the perfect forecast f0 with the same distribution asX
(α = α0 = 7 and β = β0 = 2) validated against X and corrupted verification data Y with different levels of error: a = 7 and 9 and b = 8. (b)
Score distributions for the imperfect forecast f with distribution parameters α = 4 and β = 1 validated against X and corrupted verification
data Y . The following parameters α0 = 7 and β0 = 2 are used for the hidden state X.

and Mariano (2002) in order to investigate the discrimina-
tive skills of the proposed score from Eq. (1). In Diebold
and Mariano (2002), hypothesis tests focused on discrimi-
nating forecasts from the climatology; in the current study,
we test the ability of the proposed score to discriminate any
forecast f from the perfect forecast f0 (forecast having the
“true” hidden state X distribution). We consider the refer-
ence score value of the perfect forecast f0 to be the mean
score evaluated against the true process E(s0(f0,X)). Hy-
pothesis tests are tuned to primarily minimize the error of
type I (wrongly rejecting the null hypothesis); consequently,
it is common practice to assess the power of a test. The power
p is the probability of rejecting a false null hypothesis; the
power is expressed as 1−β, where β is the error of type II
(failing to reject a false null hypothesis) and is expressed as
p = P (Rejecting H0|H1 true). The closer to 1 the power is,
the better the test is at detecting a false null hypothesis. For a
given forecast f , the considered hypothesis is expressed as


H0 : forecast f is perfect (f = f0)

through the score s,
leading to E(s(f, .)) close to E(s0(f0,X)),

H1 : forecast f is imperfect, leading to E(s(f, .))
far from E(s0(f0,X)),

(16)

where f0 and f are, respectively, the perfect forecast and an
imperfect forecast to be compared with the perfect forecast
f0. In the following, the score s(f, .) will represent, respec-
tively, s0(f,X), s0(f,Y ), and s∨(f,Y ) in order to compare
the ability of the ideal score, the score used in practice, and
the proposed score. The parameters associated with the hy-
pothesis are the parameters,µ and σ in the following additive
Gaussian model, of the imperfect forecast f , and they are
varied to compute the different powers. The statistical test

corresponding to Eq. (16) is expressed as{
H0 is accepted if t ≤ c,
H0 is rejected if t > c, (17)

where t = |E(s(f, .))−E(s0(f0,X))| is the test statistics and
c is defined via the error of type I P (t > c|H0 is true)= α
with the level α = 0.05 in the present study.

To illustrate this test with numerical simulations, the ad-
ditive Gaussian Model (A) is considered for the log score,
where the forecast,X, and Y are assumed to be normally dis-
tributed with an additive error. The expectation in Eq. (17) is
approximated and computed overN = 1000 verification data
points, the true state being X and the corrupted data Y . The
approximated test statistic is denoted with t̂ . The power p is
expressed as P (t̂ > c|f is imperfect) and is computed over
10000 samples of length N when parameters µ and σ of the
forecast f are varied.

In Fig. 5, the above power p is shown for varying mean
µ and standard deviation σ of the forecast f in order to
demonstrate the ability of the proposed score s∨(.,Y ) to bet-
ter discriminate between forecasts than the commonly used
score s0(.,Y ). One expects the power to be low around, re-
spectively, µ0 and σ0, and as high as possible outside these
values. We note that the ideal score s0 and the proposed
score s∨ have similar power for the test Eq. (17), suggest-
ing similar discriminating skills for both scores. However,
the s0(.,Y ) score commonly used in practice results in an ill-
behaved power as the observational noise increases (from left
to right), indicating the necessity to account for the uncer-
tainty associated with the verification data. The ill-behaved
power illustrates the propensity of the test based on s0(.,Y )
to reject H0 too often and in particular wrongfully when the
forecast f is perfect and equals f0. In addition, the power
associated with the score s0(.,Y ) fails to reach the nominal
test level α due to the difference in means between s0(.,X)
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and s0(.,Y ) (E(s0(f,X)) 6= E(s0(f,Y )) for any forecast f )
caused by the errors in the verification data Y . This high-
lights the unreliability of scores evaluated against corrupted
verification data. Both varying mean and standard deviation
reveal similar conclusions regarding the ability of the pro-
posed score to improve its discriminative skills over a score
evaluated on corrupted evaluation data.

5.2 Application to wind speed prediction

As discussed in the motivating example of Sect. 1, we
consider surface wind speed data from the previous work
(Bessac et al., 2018) and associated probabilistic distribu-
tions. In Bessac et al. (2018), a joint distribution for observa-
tions, denoted here as Xref, and NWP model outputs is pro-
posed and based on Gaussian distributions in a space–time
fashion. This joint model aimed at predicting surface wind
speed based on the conditional distribution of Xref given
NWP model outputs. The data are Box–Cox-transformed in
this study to approximate normal distributions. The model
was fitted by maximum likelihood for an area covering parts
of Wisconsin, Illinois, Indiana, and Michigan in the United
States. In this study, we focus on one station in Wisconsin
and recover the parameters of its marginal joint distribution
of observations Xref and NWP outputs from the joint spa-
tiotemporal model. In the following, we evaluate with scores
the probability distribution of the NWP model outputs de-
picted in Fig. 2. In Bessac et al. (2018), the target distribution
was the fitted distribution of the observations Xref; however,
in the validation step of the predictive probabilistic model,
the observations shown in Fig. 2 were used without account-
ing for their potential uncertainty and error. This leads to a
discrepancy between the target variableXref and the verifica-
tion data that we denote as Yobs. From Pinson and Hagedorn
(2012), a reasonable model for unbiased measurement error
in wind speed is εobs ∼N (0,0.25). Subsequently to Sect. 3,
we proposed the following additive framework to account for
the observational noise in the scoring framework:{
Xref ∼N (µ0,σ

2
0 ),µ0 and σ0 retrieved from the joint model,

Yobs =Xref+ εobs, with εobs ∼N (0,0.25),

where µ0 = 2.55 and σ0 = 1.23 from the fitted distribution
in Bessac et al. (2018). In Table 1, log scores and CRPS are
computed as averages over the studied time series in the addi-
tive Gaussian case with a previously given formula in Sect. 3.
The variance associated with each average score is provided
in parentheses. Table 1 shows a significant decrease in the
variance when the proposed score is used compared to the
score commonly used in practice that does not account for
measurement error. One can notice that the variance of the
scores used in practice are considerably high, limiting the re-
liability of these computed scores for decision-making pur-
poses. Additionally, the new mean scores are closer to the
ideal mean log score and CRPS, showing the benefit of ac-
counting for observational errors in the scoring framework.

Table 1. Average scores (log score and CRPS) computed for the
predictive distribution of the NWP model; the associated standard
deviation is given in parentheses. The statistics are computed over
the entire studied time series. The mean ideal score E(s0(f,X)),
the averaged score computed in practice against the measurements
E(s0(f,Y )), and the proposed score E(s∨(f,X)) embedding the er-
ror in the verification data are computed.

Mean score NWP

Log score
Ideal score E(s0(f,X)) 1.76
E(s0(f,Y )) 1.97 (1.52)
E(s∨(f,Y )) 1.81 (1.15)

CRPS
Ideal score E(c0(f,X)) 0.73
E(c0(f,Y )) 0.82 (0.67)
E(c∨(f,Y )) 0.73 (0.48)

Figure 6 shows the pdf of the scores considered in Table 1;
the skewness and the large dispersion in the upper tail illus-
trate with wind speed data cases where the mean is poten-
tially not an informative summary statistic of the whole dis-
tribution. The non-corrected version of the score has a large
variance, raising the concern of reliability on scores when
computed on error-prone data.

6 Conclusions

We have quantified, in terms of variance and even distribu-
tion, the need to account for the error associated with the
verification data when evaluating probabilistic forecasts with
scores. An additive framework and a multiplicative frame-
work have been studied in detail to account for the error as-
sociated with verification data. Both setups involve a prob-
abilistic model for the accounted errors and a probabilistic
description of the underlying non-observed physical process.
Although we look only at idealized cases where the involved
distributions and their parameters are known, this approach
enables us to understand the importance of accounting for the
error associated with the verification data.

6.1 Scores with hidden states

The proposed scoring framework was applied to standard ad-
ditive and multiplicative models for which, via Bayesian con-
jugacy, the expression of the new scores could be made ex-
plicit. However, if the prior on X is not conjugate to the dis-
tribution of Y , one can derive approximately the conditional
distribution [X|Y = y] through sampling algorithms such as
Markov chain Monte Carlo methods. Additionally, one can
relax the assumption of known parameters for the distribu-
tions of [X] and [Y |X] by considering priors on the param-
eters (e.g., priors on µ0 and σ0). In practice, we rely on the
idea that the climatology and/or information on measurement
errors can help express the distribution of X or its priors.
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Figure 5. Power of the test Eq. (17) against varying predictive mean µ (a, b, c) and against varying predictive standard deviation σ (d, e,
f) of the forecast f for different observational noise levels ω2

= 0.25 (a, d), ω2
= 0.5 (b, e), and ω2

= 1 (c, f). In the simulations, the true
state X is distributed as N (µ0 = 0,σ 2

0 = 4), and Y is distributed as N (0,σ 2
0 +ω

2). The power is expected to be low around µ0 (or σ0) and
as large as possible elsewhere.

Figure 6. Empirical distribution of uncorrected (green) and corrected scores (red) for the log score (a) and CRPS (b) for the probabilistic
distribution NWP model 1 evaluated against observations tainted with uncertainty. The ideal mean score value is illustrated by the orange
vertical line.

In the current literature on scoring with uncertain veri-
fication data, most proposed works rely on additive errors
as in Ciach and Krajewski (1999), Saetra et al. (2004),
and Mittermaier and Stephenson (2015). Multiplicative er-
ror models for various error representations have been pro-
posed in modeling studies, such as for precipitation (McMil-
lan et al., 2011), but have not been considered in scoring cor-
rection frameworks. Furthermore, additive and multiplica-

tive state-space models can be generalized to nonlinear and
non-Gaussian state-space model specifications; see chap. 7
of Cressie and Wikle (2015) for a discussion and examples.
More generally, one could consider the following state-space
model specification:

{
X = f (η),
Y = g(X,ε),
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where f and g are nonlinear functions describing the hid-
den state and the state-observation mapping, and η and ε are
stochastic terms representing, respectively, the stochasticity
of the hidden state and the observational error. This gener-
alized specification of the state-observation model could be
integrated in future work in the proposed scoring framework
via Bayesian specifications of the new score in order to ac-
count for prior information on the verification data Y and its
uncertainty and priors on the true state X.

6.2 Scores as random variables

Finally, the study raises the important point of investigating
the distribution of scores when the verification data are con-
sidered to be a random variable. Indeed, investigating the
means of scores may not provide sufficient information to
compare between score discriminative capabilities. This has
been pointed and investigated in Taillardat et al. (2019) in the
context of evaluating extremes. This topic has also been ex-
tensively discussed by Bolin and Wallin (2019) in the context
of varying predictability that generates non-homogeneity in
the score values that is poorly represented by an average. One
could choose to take into account the uncertainty associated
with the inference of distribution parameters and compute
different statistics of the distribution rather than the mean.
In this case, a Bayesian setup similar to the current work
could elegantly integrate the different hierarchies of knowl-
edge, uncertainties, and a priori information to generalize the
notion of scores.
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Appendix A: Proof of Eq. (2)

For any random variable, say U , its mean can be written con-
ditionally to the random variable y in the following way:

E [U ]= E
[
E
[
U |Y = y

]]
.

In our case, the variables U = so(f,X) and s∨(f,y)=
E
[
U |Y = y

]
. This gives E

[
s∨(f,Y )

]
= E

[
so(f,X)

]
. To

show the inequality Eq. (2), we use the classical variance de-
composition

V [U ]= V
[
E
[
U |Y = y

]]
+E

[
V
[
U |Y = y

]]
.

With our notations, we have

V
[
so(f,X)

]
= V

[
E
[
so(f,X)|Y = y

]]
+E

[
V
[
so(f,X)|Y = y

]]
= V

[
s∨(f,Y )

]
+ a non-negative term.

This leads to

V
[
so(f,X)

]
≥ V

[
s∨(f,Y )

]
.

Figure A1. (a) Mean log score for an imperfect forecast f minus the mean log score of the perfect forecast f0 when evaluated against perfect
data X; the imperfect forecast f ∼N (µ,σ ) has a varying mean µ (x axis) and varying standard deviation σ (y axis). (b) Relative difference
between E(s0(f,X)) and E(s0(f,Y )).
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Appendix B: Proof of Eq. (5)

To express the score proposed in Eq. (1), one needs to de-
rive the conditional distribution [X|Y = y] from Model (A).
More precisely, the Gaussian conditional distribution of X
given Y = y is equal to

[X|Y = y] ∼N
(
y,

ω2σ 2
0

σ 2
0 +ω

2

)
,

where y is a weighted sum that updates the prior information
about X ∼N (µ0,σ

2
0 ) with the observation Y ∼N (µ0,σ

2
0 +

ω2):

Y =
ω2

σ 2
0 +ω

2
µ0+

σ 2
0

σ 2
0 +ω

2
Y ∼N

(
µ0,σ

2
0 ×

σ 2
0

σ 2
0 +ω

2

)
.

Combining this information with Eqs. (1) and (3) leads to

s∨(f,y)= logσ +
1

2σ 2

{
E
[
(X−µ)2

|Y = y
]}
+

1
2

log2π

= logσ +
1

2σ 2

{
V[X|Y = y] + (E[X|Y = y] −µ)2

}
+

1
2

log2π

= logσ +
1

2σ 2

{
ω2σ 2

0

σ 2
0 +ω

2

+

(
ω2

σ 2
0 +ω

2
µ0+

σ 2
0

σ 2
0 +ω

2
y−µ

)2}
+

1
2

log2π.

By construction, we have

EY (s∨(f,Y ))= EY
(
s∨(f,Y )

)
= EX (s0(f,X)) .

This means that, to obtain the right score value, we can first
compute Y as the best estimator of the unobserved X and
then use it in the corrected score s∨(f,Y ).
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Figure B1. Bottom row: Wasserstein distance W1(s0(f0, .), s0(f, .)) between log-score s0 distributions evaluated at the perfect forecast f0
and the imperfect forecast f with varying predictive mean µ (x axis) and varying predictive standard deviation σ (y axis). From (a) to (c):
log scores are evaluated against the hidden true stateX via s0(f,X), against Y tainted by observational noise of level ω2

= 1 via s0(f,Y ) and
through the corrected log-score version s∨(f,Y ). The verification data X and perfect forecast f0 are distributed according to f0 ∼N (0,4).
On the central and right surfaces, the white cross “X” indicates the numerical minimum of each surface.
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Appendix C: Proof of Eq. (8)

To compute the corrected CRPS, one needs to calculate the
conditional expectation of c0(f,X) under the distribution of
[X|Y = y]. We first compute the expectationE(c0(f,X)) and
then substitute X by Y and its distribution with mean a = y

and standard deviation b =
√

ω2σ 2
0

σ 2
0+ω

2 . From Eq. (7) we obtain

E(c0(f,X))= E(X)+ 2σ
[
E
(
φ

(
X−µ

σ

))
−E

(
X−µ

σ
80

(
X−µ

σ

))]
−

[
µ+

σ
√
π

]
.

If X follows a normal distribution with mean a and vari-
ance b2, that is, X = a+ bZ with Z a standard random
variable, then we can define the continuous function h(z)=
8
(
a+bz−µ

σ

)
, with h′(z)=− b

σ
φ
(
a+bz−µ

σ

)
. Then, we apply

Stein’s lemma (Stein, 1981), which states that E
[
h′(Z)

]
=

E [Zh(Z)], because Z is a standard random variable. It fol-
lows with the notations t = b2

2σ 2 and λ= a−µ
σ

that

E
[
X−µ

σ
8

(
X−µ

σ

)]
= λE

[
8

(
λ+

b

σ
Z

)]
+
b

σ
E [Zh(Z)] ,

= λE
(
P
[
Z′ >

(
λ+

b

σ
Z

)])
+
b

σ
E
[
h′(Z)

]
,

where Z′ has a standard normal distribution

= λE
(
P
[
Z′−

b

σ
Z > λ

])
−
b2

σ 2E
[
φ

(
a+ bZ−µ

σ

)]
,

with

λP
[
Z′−

b

σ
Z > λ

]
= λ8

[
λ√

1+ b2/σ 2

]

= λ8

[
a−µ
√
σ 2+ b2

]
=
a−µ

σ
8

[
a−µ
√
σ 2+ b2

]
.

Then

E
[
X−µ

σ
8

(
X−µ

σ

)]
=
a−µ

σ
8

[
a−µ
√
σ 2+ b2

]
−
b2

σ 2E
[
φ

(
a+ bZ−µ

σ

)]
and

E
[
φ

(
a+ bZ−µ

σ

)]
=

1
√

2π
E

(
exp

(
−

1
2

(
a+ bZ−µ

σ

)2
))

=
1
√

2π
E

(
exp

(
−
b2

2σ 2

(
Z+

a−µ

b

)2
))

.

(
Z+

(a−µ)
b

)2
is a non-centered chi-squared distribution

with 1 degree of freedom and a non-central parameter ( a−µ
b

)2

with a known moment-generating function

G

(
t;k = 1,λ=

(
a−µ

b

)2
)
=

exp( λt
1−2t )

(1− 2t)k/2
.

It follows that

E
[
φ

(
a+ bZ−µ

σ

)]
=

1
√

2π

G

(
t =
−b2

2σ 2 ;k = 1,λ=
(
a−µ

b

)2
)

=
1
√

2π

exp

(
−(a−µ)2

b2
b2

2σ2

1+ b2

σ2

)
√(

1+ b2

σ 2

)
=

σ
√

2π
√
σ 2+ b2

exp

(
−(a−µ)2

2
(
σ 2+ b2

)) .
We obtain

E(c0(f,X))= E(X)+ 2σ
[(

1+
b2

σ 2

)
E

(
φ

(
X−µ

σ

))
−
a−µ

σ
8

[
a−µ
√
σ 2+ b2

]]
−

(
µ+

σ
√
π

)
= E(X)+ 2σ

[(
1+

b2

σ 2

)
σ√

2π (σ 2+ b2)

exp
(
−(a−µ)2

2(σ 2+ b2)

)
−
a−µ

σ
8

[
a−µ
√
σ 2+ b2

]]
−

(
µ+

σ
√
π

)
= E(X)+ 2

[√
σ 2+ b2
√

2π
exp

(
−(a−µ)2

2(σ 2+ b2)

)
− (a−µ)8

[
a−µ
√
σ 2+ b2

]]
−

(
µ+

σ
√
π

)
.

The expression of Eq. (8) is obtained by substituting X
with Y and its Gaussian distribution with mean a = y and

standard deviation b =
√

ω2σ 2
0

σ 2
0+ω

2 in the expression Eq. (6).
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This gives

c∨(f,y)= E(c0(f,X)|Y = y)

= y−

(
µ+

σ
√
π

)

+ 2


√
σ 2+

σ 2
0ω

2

σ 2
0+ω

2

√
2π

exp

− (y−µ)2

2(σ 2+
ω2σ 2

0
σ 2

0+ω
2 )



− (y−µ)8

 y−µ√
σ 2+

ω2σ 2
0

σ 2
0+ω

2


 .

Appendix D: Proof of Eq. (9)

For Model (A), both random variables Y and Y = ω2

σ 2
0+ω

2µ0+

σ 2
0

σ 2
0+ω

2 Y are normally distributed with the same mean µ0 but

different variances, σ 2
0+ω

2 and
(

σ 2
0

σ 2
0+ω

2

)2

(σ 2
0+ω

2), respec-

tively. Since a chi-squared distribution can be defined as the
square of a Gaussian random variable, it follows from Eq. (5)
that

s0 (f,Y ) d= a0+ b0χ
2
0 and s∨ (f,Y ) d= a∨+ b∨χ2

∨,

where d
= means equality in distribution and

a0 = logσ +
1
2

log2π and b0 =
σ 2

0 +ω
2

2σ 2 ,

a∨ = logσ +
1

2σ 2

ω2σ 2
0

σ 2
0 +ω

2
+

1
2

log2π and

b∨ =
σ 2

0 +ω
2

2σ 2

(
σ 2

0

σ 2
0 +ω

2

)2

,

with χ2
0 and χ2

∨ representing a non-central chi-squared ran-
dom variable with 1 degree of freedom and a non-centrality
parameter:

λ0 =
(µ0−µ)2

σ 2
0 +ω

2
and λ∨ =

(µ0−µ)2

σ 2
0 +ω

2

(
σ 2

0 +ω
2

σ 2
0

)2

.

Appendix E: Proof of Eq. (13)

In Model (B), the basic conjugate prior properties of such
Gamma and inverse Gamma distributions allow us to say that
[X|Y = y] now follows a Gamma distribution with parame-
ters α0+ a and β0+ b/y:

fX|Y=y(x|y)=
(β0+ b/y)α0+a

0 (α0+ a)
xα0+a−1

exp(−x (β0+ b/y)) , for x > 0.

It follows that the proposed corrected score is

s∨(f,y)= E
[
so(f,X)|Y = y

]
= (1−α)E

[
log(X)|Y = y

]
+βE

[
X|Y = y

]
−α logβ + log0(α),

= (1−α)
(
ψ(α0+ a)− log

(
β0+

b

y

))
+β

α0+ a

β0+
b
y

−α logβ + log0(α).

Indeed, E
[
X|Y = y

]
=

α0+a

β0+
b
y

and E
[
log(X)|Y = y

]
=

ψ(α0+ a)− log
(
β0+

b
y

)
, where ψ(x) represents the

digamma function defined as the logarithmic derivative of
the Gamma function, namely, ψ(x)= dlog0(x)/dx.

Appendix F: Proof of Eq. (15)

From Eq. (14) we obtain

c∨(f,y)= E
[
X|Y = y

]
−

[
α

β
+

1
βB(.5,α)

]
+ 2

[
E
[
X

β
f (X) |Y = y

]
+E

[(
α

β
−X

)
F (X) |Y = y

]]
.

Since the conditional distribution of [X|Y = y] is known,

E
[
X

β
f (X)|Y = y

]
=

1
β

+∞∫
0

xf (x)
(β0+ b/y)α0+a

0(α0+ a)
xα0+a−1

exp(−x(β0+ b/y))dx

=
βα−1(β0+ b/y)α0+a

0(α)0 (α0+ a)

+∞∫
0

xα+α0+a−1

exp(− (β +β0+ b/y)x)dx

=
βα−1(β0+ b/y)α0+a

0(α)0 (α0+ a)

1
(β +β0+ b/y)α+α0+a

+∞∫
0

uα+α0+a−1

exp(−u)du

=
βα−1(β0+ b/y)α0+a

0(α)0 (α0+ a)
0 (α+α0+ a)

(β +β0+ b/y)α+α0+a

=
βα−1(β0+ b/y)α0+a

B (α,α0+ a) (β +β0+ b/y)α+α0+a
,
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and the last term is

E
((

α

β
−X

)
F (X)|Y = y

)
=

(β0+ b/y)α0+a

0 (α0+ a)

+∞∫
0

(
α

β
− x

)
 +∞∫
x

βα

0(α)
uα−1 exp(−βu)du


× xα0+a−1 exp(− (β0+ b/y)x)dx
with
+∞∫
x

βα

0(α)
uα−1 exp(−βu)du=

1
0(α)

+∞∫
βx

vα−1 exp(−v)dv

=
(β0+ b/y)α0+a

0(α)0 (α0+ a)

+∞∫
0

(
α

β
− x

)
0(α,βx)xα0+a−1

exp(− (β0+ b/y)x)dx,

where 0(α,βx)=
∫
+∞

βx
vα−1 exp(−v)dv is the upper incom-

plete Gamma function.
The entire expression of the corrected CRPS is expressed

as

c∨(f,y)=
[
α

β
−

1
βB(.5,α)

]
−
α0+ a

β0+
b
y

+ 2
βα−1(β0+ b/y)α0+a

B (α,α0+ a) (β +β0+ b/y)α+α0+a

+ 2
(β0+ b/y)α0+a

0(α)0 (α0+ a)
+∞∫
0

(
α

β
− x

)
0(α,βx)xα0+a−1

exp(− (β0+ b/y)x)dx.

Appendix G: Additional results: distance between
score distributions

In order to further study the impact of imperfect verifica-
tion data and to take full advantages of the score distri-
butions, we compute the Wasserstein distance (Muskulus
and Verduyn-Lunel, 2011; Santambrogio, 2015; Robin et al.,
2017) between several score distributions and compare it
to the commonly used score average. In particular, through
their full distributions we investigate the discriminative skills
of scores compared to the use of their mean only. The p-
Wasserstein distance between two probability measures P
and Q on R with finite p moments is given by Wp(P,Q) :=(
infγ∈0(P,Q)

∫
M×M

d(x,y)p dγ (x,y)
)1/p

, where 0(P,Q) is
the set of all joint probability measures on R×R whose
marginals are P andQ. In the one-dimensional case, as here,
the Wasserstein distance can be computed as Wp(F,G)=

(∫ 1
0 |F

−1(u)−G−1(u)|pdu
)1/p

, with F and G the cdfs of

P and Q to be compared, F−1 and G−1 their generalized
inverse (or quantile function), and, in our case p = 1. The R-
package transport (Schuhmacher et al., 2020) is used to com-
pute Wasserstein distances. Figure A1 shows the mean of the
log score minus its minimum E(s0(f0,X)) and the relative
difference between the ideal mean log score and the mean
log score evaluated against imperfect verification data. One
can first observe the flatness of the mean log score around
its minimum, indicating a lack of discriminative skills of the
score mean when comparing several forecasts. Secondly, the
discrepancy between the score evaluated against perfect and
imperfect verification data indicates the effects of error-prone
verification data as discussed earlier.

Figure B1 shows the Wasserstein distance between the dis-
tributions of three scores evaluated in different contexts (a
perfect forecast and an imperfect forecast, true and error-
prone verification data). Three different log scores are con-
sidered the ideal log score s0(.,X), the log score used in prac-
tice s0(.,Y ), and the proposed corrected score s∨(.,Y ). One
can notice that Wasserstein distances exhibit stronger gra-
dients (contour lines are narrower) than the mean log score
in Fig. A1. In particular, the surfaces delimited by a given
contour level are smaller for the proposed score than for the
other scores; for instance, the area inside the contour of level
z= 0.1 is larger for the mean log score in Fig. A1 than for
the Wasserstein distance between the score distance. This in-
dicates that considering the entire score distribution has the
potential to improve the discriminative skills of scoring pro-
cedures. In particular, imperfect forecasts departing from the
perfect forecast will be more sharply discriminated with the
Wasserstein distance computed on score distributions.

Finally, when considering Wasserstein distances associ-
ated with the score evaluated on imperfect verification data,
the minimum of the distances (indicated by white crosses
“X” in the central and right panels) is close to the “true”
minimum (intersection of x = µ0 and y = σ0). This indi-
cates some robustness of the Wasserstein distance between
the score distributions when errors are present in the verifi-
cation data. Similar results are obtained for the CRPS and are
not reported here. As stated earlier, developing metrics to ex-
press the discriminative skills of a score is beyond the scope
of this work.
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be found at https://github.com/jbessac/uncertainty_scoring
(last access: 8 September 2021, Bessac, 2021). Data are
ground measurements from the NOAA Automated Sur-
face Observing System (ASOS) network and are available
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