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Abstract. This paper proposes a criterion for deciding whether climate model simulations are consistent with
observations. Importantly, the criterion accounts for correlations in both space and time. The basic idea is to
fit each multivariate time series to a vector autoregressive (VAR) model and then test the hypothesis that the
parameters of the two models are equal. In the special case of a first-order VAR model, the model is a linear
inverse model (LIM) and the test constitutes a difference-in-LIM test. This test is applied to decide whether
climate models generate realistic internal variability of annual mean North Atlantic sea surface temperature.
Given the disputed origin of multidecadal variability in the North Atlantic (e.g., some studies argue it is forced
by anthropogenic aerosols, while others argue it arises naturally from internal variability), the time series are
filtered in two different ways appropriate to the two driving mechanisms. In either case, only a few climate
models out of three dozen are found to generate internal variability consistent with observations. In fact, it is
shown that climate models differ not only from observations, but also from each other, unless they come from
the same modeling center. In addition to these discrepancies in internal variability, other studies show that models
exhibit significant discrepancies with observations in terms of the response to external forcing. Taken together,
these discrepancies imply that, at the present time, climate models do not provide a satisfactory explanation of
observed variability in the North Atlantic.

1 Introduction

A basic question in climate modeling is whether a given
model realistically simulates observations. In the special
case of a single random variable and independent samples,
this question can be addressed by applying standard tests
of equality of distributions, such as the t test, F test, or
Kolmogorov–Smirnov test. However, in many climate stud-
ies, multiple variables are of concern, and the associated time
series are serially correlated. For such time series, these stan-
dard tests are not meaningful.

The above question arises often in the context of North
Atlantic sea surface temperature (NASST) variability. The
North Atlantic is an area of enhanced decadal predictability
and thus a prime candidate for skillful predictions on multi-
year timescales (Kushnir, 1994; Griffies and Bryan, 1997;
Marshall et al., 2001; Latif et al., 2004, 2006; Keenlyside
et al., 2008). However, the dominant mechanisms of North

Atlantic variability remain unclear. Some argue that North
Atlantic variability is a manifestation of internal variability
(DelSole et al., 2011; Tung and Zhou, 2013), while others
argue that these multidecadal swings are forced mostly by
anthropogenic aerosols (Booth et al., 2012). Climate models
are the primary tool with which to address this issue, but their
answers can be trusted only if they prove capable of simu-
lating variability that is consistent with nature. Remarkably,
there does not exist a standard test for consistency with ob-
servations that accounts for spatial and temporal correlations.
Without an objective criterion for deciding consistency, it has
proven difficult to reject a model based on its multi-year be-
havior. As a result, models with widely different behaviors
continue to be deemed equally plausible.

One of the most well-developed techniques for comparing
time series is optimal fingerprinting (Bindoff et al., 2013).
However, optimal fingerprinting is concerned mostly with
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forced variability. Although internal variability can be as-
sessed by comparing control simulations to the residuals af-
ter removing forced variability, this assessment often is based
on the residual consistency test of Allen and Tett (1999). This
test considers only aggregate variance: it does not assess con-
sistency on a component-by-component basis. As a result,
each individual component could have the wrong variance,
but the total variance could be consistent with observations
because components with too much variance are compen-
sated by components with too little variance. For this reason,
the residual consistency check is not a stringent test of con-
sistency of internal variability.

The above considerations demonstrate a need for a rigor-
ous criterion for deciding whether model variability is con-
sistent with observations. The purpose of this paper is to
propose such a criterion that is multivariate and that ac-
counts for serial correlation. To simplify the problem, we
consider only second-order stationary processes, in which
the mean and covariance function are invariant to translations
in time. Although non-stationarity is important in climate, a
statistical framework based on stationarity provides a starting
point for comparing non-stationary processes. Also, tests for
differences in means often assume equality of covariances
(e.g., the t test and its multivariate generalization through
Hotelling’s T -squared statistic). Thus, the natural first step to
testing consistency is to test differences in covariance func-
tions. Such a test is equivalent to testing equality of power
spectra, since power spectra and covariance functions are re-
lated by the Fourier transform.

Note that standard tests of equality of covariance matrices
(e.g., Anderson, 1984, Chap. 10) cannot be used to test equal-
ity of covariance functions. The reason is that these tests
assume independent data and hence do not account for se-
rial correlation. Here, we overcome this problem by fitting
a vector autoregressive model to data and then test equality
of model parameters. The resulting test is the multivariate
generalization of the test proposed by DelSole and Tippett
(2020), which is Part 1 of this paper series. Techniques for
diagnosing differences in vector autoregressive (VAR) mod-
els will be discussed in Part 3 of this paper series.

2 Derivation of the test

Estimation of autoregressive (AR) models often starts with
the maximum likelihood method (Brockwell and Davis,
1991; Box et al., 2008). For finite samples of serially cor-
related processes, the exact sampling distributions of max-
imum likelihood estimates are prohibitively complicated,
even for Gaussian distributions (Brockwell and Davis, 1991,
Chap. 6). Also, the likelihood for AR models is a nonlin-
ear function of the parameters, and different approximate so-
lutions have been developed. Box et al. (2008) define four
different approximate estimates: least-squares estimates, ap-
proximate maximum likelihood estimates, conditional least-

squares estimates, and Yule–Walker estimates (see their Ap-
pendix A7.4). For a climate example based on Yule–Walker
estimates, see Washington et al. (2019). However, for mod-
erate and large samples, the differences between the esti-
mates are small. Furthermore, for asymptotically large sam-
ple sizes, the distributions of the parameter estimates are con-
sistent with those derived from linear regression theory; e.g.,
see Theorem 8.1.2 and Sect. 8.9 of Brockwell and Davis
(1991) and Appendix A7.5 of Box et al. (2008). This consis-
tency also holds for the multivariate case (Lütkepohl, 2005,
Chap. 3). Accordingly, we first derive an exact test for equal-
ity of parameters for multivariate regression models, whose
estimates are equivalent to the conditional least-squares esti-
mates of Box et al. (2008), and then invoke asymptotic the-
ory to argue that the test for equality of regression models
can also be used to test equality of VAR models.

We begin by considering the two multivariate regression
models

Y∗1 = X∗1B1+ j1µ
T
1 +E1, (1)

Y∗2 = X∗2B2+ j2µ
T
2 +E2, (2)

where N1 and N2 are the respective sample sizes, S is the
number of time series (variables), M is the number of ran-
dom predictors, and j1 and j2 are N1- and N2-dimensional
vectors of ones. The dimensions of the above quantities are

Y∗1 ∈ R
N1×S, X∗1 ∈ R

N1×M , B1 ∈ RM×S,

j1 ∈ RN1×1, µ1 ∈ RS×1,

Y∗2 ∈ R
N2×S, X∗2 ∈ R

N2×M , B2 ∈ RM×S,

j2 ∈ RN2×1, µ2 ∈ RS×1.

The matrices E1 and E2 are independent and distributed as

rows of E1
iid
∼ NS (0,01) ,

rows of E2
iid
∼ NS (0,02) .

In this paper, we are interested in comparing variability, and
hence we test hypotheses without restricting the intercept
terms µ1 and µ2. Accordingly, our null hypothesis is

H0 : B1 = B2 and 01 = 02.

Let B0 and 00 denote the common regression parameters and
noise covariance matrix under H0, respectively. The alterna-
tive hypothesis is that there are no restrictions on the param-
eters:

HA : no restriction on B1,B2,01,02.

It turns out that inferences based on models (1)–(2) are
identical to inferences based on models

Y1 = X1B1+E1, (3)
Y2 = X2B2+E2, (4)

where the intercept terms µ1 and µ2 have been dropped and
X,Y contain centered variables (i.e., the mean of each col-
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umn is subtracted from that column). For simplicity then,
we hereafter consider models (3)–(4), with the understanding
that X,Y refer to centered variables. Under this transforma-
tion, 1 extra degree of freedom should be subtracted at the
appropriate steps. This will be done below. It proves conve-
nient to define

bbAcc = ATA.

Gaussian maximum likelihood estimates (MLEs) of the re-
gression parameters are (Anderson, 1984, Chap. 6)

B̂1 =
(
XT

1 X1
)−1XT

1 Y1 and B̂2 =
(
XT

2 X2
)−1XT

2 Y2, (5)

the MLEs of the noise covariance matrices are

01 = bbY1−X1B̂1cc/N1, (6)

02 = bbY2−X2B̂2cc/N2, (7)

and the associated maximized likelihoods are

l1 =
1

(2π )SN1/2
1

|01|N1/2
e−SN1/2, (8)

l2 =
1

(2π )SN2/2
1

|02|N2/2
e−SN2/2, (9)

where | · | denotes the determinant.
Under H0, the MLEs of B0 and 00 are

B̂0 =
(
XT

1 X1+XT
2 X2

)−1 (XT
1 Y1+XT

2 Y2
)
,

00 =
bbY1−X1B̂0cc+ bbY2−X2B̂0cc

N1+N2
,

and the associated maximized likelihood is

l0 =
1

(2π )S(N1+N2)/2
1

|00|(N1+N2)/2
e−S(N1+N2)/2.

It follows that the likelihood ratio statistic for testing H0 is

l0

l1l2
=

(
|01|

N1 |02|
N2

|00|N1+N2
.

)1/2

Before proceeding further, we pause to consider the fact
that MLEs of covariances are biased. To correct this bias, we
replace sample sizes by the degrees of freedom

ν1 =N1−M − 1 and ν2 =N2−M − 1,

which leads to the bias-corrected likelihood ratio

30:A =

(
|0̂1|

ν1 |0̂2|
ν2

|0̂0|ν1+ν2

)1/2

,

where

0̂1 = bbY1−X1B̂1cc/ν1, (10)

0̂2 = bbY2−X2B̂2cc/ν2, (11)

0̂0 =
bbY1−X1B̂0cc+ bbY2−X2B̂0cc

ν1+ ν2
. (12)

Regression models (3) and (4) together involve 2S+
2MS+ S(S+ 1) parameters. The model under H0 involves

2S+MS+ S(S+ 1)/2 parameters. If H0 is true, then stan-
dard asymptotic theory indicates that the deviance statistic
D0:A has a χ2 distribution with degrees of freedom equal to
the difference in the number of parameters between models:

D0:A =−2log30:A ∼ χ
2
MS+S(S+1)/2. (13)

This distribution holds for both −2log30:A and
−2log(l0/(l1l2)) because the two are asymptotically
equivalent. A more accurate sampling distribution for D0:A
can be derived using Monte Carlo techniques, but for our
data, the resulting significance thresholds differ from that
of Eq. (13) by less than 4 %. Since the difference is small
and does not affect any of our conclusions, the asymptotic
distribution (13) is satisfactory for our purposes, and the
Monte Carlo technique is not discussed further.

A VAR for {zt } is of the form

zt = A1zt−1+ . . .+Apzt−p + εt ,

where A1, . . .,Ap are constant S× S matrices, and {εt } is a
Gaussian white noise process with covariance 0. For a real-
ization of length N , the above model can be written in the
form (3) or (4) or equivalently YT

= BTXT
+ET, using the

identifications

YT
=
(
zp+1 zp+2 . . . zN

)
∈ RS×(N−p),

BT
=
(
A1 A2 . . . Ap

)
∈ RS×Sp,

XT
=


zp zp+1 . . . zN−1
zp−1 zp . . . zN−2
...

...
. . .

...

z1 z2 . . . zN−p

 ∈ RSp×(N−p).

Based on this identification, we compute Eq. (5), which Box
et al. (2008) call conditional least-squares estimates. Then,
we compute covariance matrices (10)–(12) and the deviance
statistic (13) usingM = pS. For large sample sizes, the sam-
pling distribution (13) is assumed to be valid for VAR mod-
els, for reasons discussed at the beginning of this section.

3 Application to North Atlantic variability

Choice of variable and data

We now apply our test to compare annual-mean NASST vari-
ability between models and observations. In particular, we
focus on comparing multi-year internal variability. For our
data sets, the number of grid cells far exceeds the available
sample size, leading to underdetermined VAR models. To ob-
tain a well-posed estimation problem, we reduce the dimen-
sion of the state space by projecting data onto a small number
of patterns. Given our focus on multi-year predictability, we
consider only large-scale patterns. Specifically, we consider
the leading eigenvectors of the Laplacian over the Atlantic
between 0 and 60◦ N. These eigenvectors, denoted l1, . . ., lS ,
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form an orthogonal set of patterns that can be ordered by a
measure of length scale from largest to smallest. The first
six Laplacian eigenvectors are shown in Fig. 1 (these were
computed by the method of DelSole and Tippett, 2015). The
first eigenvector is spatially uniform. The second and third
eigenvectors are dipoles that measure the large-scale gradient
across the basin. Subsequent eigenvectors capture smaller-
scale patterns. Defining the matrix L= [l1 . . . lS], the grid-
ded data set at each time t is approximated as Lzt . Then,
the sth element of zt gives the time series for the sth Lapla-
cian eigenvector. Because the Laplacian eigenvectors are or-
thogonal, the sth element of zt is obtained by projecting the
annual-mean NASST field (at time t) onto ls (the precise
projection procedure is discussed in more detail in DelSole
and Tippett, 2015, and amounts to an area-weighted pseudo-
inverse).

A major advantage of Laplacian eigenvectors, compared
to other patterns such as empirical orthogonal functions
(EOFs), is that the Laplacian eigenvectors depend only on
the geometry of the domain and therefore are independent
of data. Thus, the Laplacian eigenvectors provide a common
basis set for analyzing simulations and observations. Further-
more, because only large-scale patterns are considered, the
projection is not sensitive to the grid resolution of individual
models (this fact was systematically investigated in DelSole
and Tippett, 2015). Accordingly, the output from each model
is first interpolated onto a common 1◦× 1◦ grid resolution
and then projected onto each of the Laplacian eigenvectors.
Projecting data onto the first Laplacian eigenvector is equiv-
alent to taking the area-weighted average in the basin. For
NASST, the time series for the first Laplacian eigenvector
is merely an AMV index (AMV stands for “Atlantic multi-
decadal variability”).

For observational data, we use version 5 of the Extended
Reconstructed SST data set (ERSSTv5 Huang et al., 2017)
and consider the 165-year period 1854–2018. The question
arises as to how to extract internal variability from obser-
vations. There is considerable debate about the magnitude
of forced variability in this region, particularly the contribu-
tion due to anthropogenic aerosols (Booth et al., 2012; Zhang
et al., 2013). To elaborate, consider the time series for the first
Laplacian eigenvector, which we call the AMV index. Fig-
ure 2 shows the observed AMV index and the corresponding
least-squares fit to second- and ninth-order polynomials in
time. The second-order polynomial captures the secular trend
toward warmer temperatures but otherwise has weak multi-
decadal variability. In contrast, the ninth-order polynomial
captures both the secular trend and multidecadal variability.
There is no consensus as to whether this multidecadal vari-
ability is internal or forced. Therefore, to account for either
possibility, we analyze two sets of residuals: one in which
a second-order polynomial in time is removed from each
Laplacian time series and one in which a ninth-order poly-
nomial in time is removed from each Laplacian time series.
The residuals are called anomalies, and the anomalies for the

first seven Laplacian eigenvectors are shown in Fig. 3. In the
case of removing a second-order polynomial, the anomaly
time series for Laplacian 1 contains marked multidecadal
variability. Comparing such anomalies between observations
and control simulations implicitly assumes that this variabil-
ity is internal variability. In the case of removing a ninth-
order polynomial, little to no multidecadal variability is evi-
dent in the time series (see the right-hand column of Fig. 3).
A 10th- or higher-order polynomial would also remove this
multidecadal variability, but following common practice we
prefer the lowest possible order. Using anomalies with and
without multidecadal variability allows us to draw conclu-
sions while being agnostic about the source of observed mul-
tidecadal variability. Note that only Laplacians 1 and 2 are
sensitive to this assumption; time series for Laplacians 3 or
higher are nearly the same in the two cases.

To be clear, we do not claim that regressing out polyno-
mials perfectly eliminates forced variability. Other methods
include subtracting (or regressing out) the global mean tem-
perature (Trenberth and Shea, 2006) or estimating the forced
response and using optimal fingerprinting methods to remove
forced variability (Bindoff et al., 2013). Each method has its
own advantages and disadvantages. We have chosen polyno-
mial fitting because it is simple and the underlying assump-
tions are clear.

Whether observations can be assumed to be stationary is
an open question. After all, non-stationary effects may be
caused by the changing observational network or by exter-
nal forcing that is not removed by polynomial fitting (e.g.,
volcanic eruptions). In addition, some model simulations ex-
hibit surprisingly large changes in variability even without
changes in external forcing (Wittenberg, 2009). If a VAR
model cannot reproduce such changes, then our test might
incorrectly indicate that two realizations from the same dy-
namical model come from different processes. We investi-
gate these issues in the following way. First, time series of
length 165 years are drawn from the control simulations to
match the dimensions of the observational time series. Then,
each 165-year time series is split in half (82 and 83 years),
and time series from the two halves are compared. Our antic-
ipation is that if a time series comes from the same source,
then the null hypothesis is true and the method should detect
a difference at the expected type-I error rate. This expectation
will be checked in the analyses below.

For model data, we use pre-industrial control simulations
of SST from phase 5 of the Coupled Model Intercompari-
son Project (CMIP5 Taylor et al., 2012). Control simulations
use forcings that repeat year after year. As a result, interan-
nual variability in control simulations comes from internal
dynamical mechanisms. Thus, interannual forced variability
is absent in control simulations. Thirty-five CMIP5 models
have pre-industrial control simulations of length 165 years
or longer.
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Figure 1. Laplacian eigenvectors 1, 2, 3, 4, 5, and 6 over the North Atlantic between the Equator and 60◦ N, where dark red and dark blue
indicate extreme positive and negative values, respectively.

Figure 2. AMV index from ERSSTv5 (thin grey) and polynomial
fits to second-order (thick black) and ninth-order (red) polynomials.

Model selection

The process of deciding which variables to include in a VAR
model is called model selection. Here, model selection con-
sists of choosing the lag p and the number of Laplacian
eigenvectors S. While numerous criteria exist for selecting
p, there is no standard criterion for selecting S. Note that
choosing S is tantamount to choosing bothX and Y variables
simultaneously, which is a non-standard selection problem.
Recently, a criterion for selecting bothX and Y variables was
proposed by DelSole and Tippett (2021a), called the mutual
information criterion (MIC). This criterion is consistent with
small-sample-corrected versions of Akaike’s information cri-
terion (AIC) for selecting p. In terms of the regression model
for Y1 given in Eq. (3), the criterion is

MIC(X;Y )=N1 log

(
|01|

|61|

)
+P,

where 61 is the MLE of the covariance matrix of Y1 and

P =N1(N1+ 1)
(

M + S

N1−M − S− 2
−

S

N1− S− 2

−
M

N1−M − 2

)
.

The procedure is to select the subset ofX and Y variables that
minimizes the MIC. The VAR model selected by this crite-
rion for each CMIP5 model is shown in Table 1. The MIC se-
lects slightly different p and S for each CMIP5 model. How-
ever, the difference-in-VAR test requires the same p and S
for each VAR model. Therefore, a single compromise model
must be chosen. Since the vast majority of selected VAR
models are first order, we choose a first-order VAR, which
yields a linear inverse model (LIM). Numerous studies have
shown that LIMs provide reasonable models of monthly-
mean and annual-mean SSTs (Alexander et al., 2008; Vi-
mont, 2012; Zanna, 2012; Newman, 2013; Huddart et al.,
2016; Dias et al., 2018). In effect, our method is a difference-
in-LIM test. (Incidentally, the MIC provides a criterion for
selecting the variables to include in LIMs.) We choose S = 7
Laplacian eigenvectors, which is the maximum for any first-
order VAR. This choice is more likely to capture important
dependency structures than a lower-order VAR model. This
choice might also lead to overfitting, but one should remem-
ber that the distribution of the deviance statistic does not
depend on the actual values of the regression parameters.
Consequently, if some regression parameters vanish, indicat-
ing that the associated predictors are redundant and can be
dropped, the test remains exactly the same as for a model
in which all regression parameters are non-zero. The main
adverse consequence of including more variables than nec-

https://doi.org/10.5194/ascmo-7-73-2021 Adv. Stat. Clim. Meteorol. Oceanogr., 7, 73–85, 2021



78 T. DelSole and M. K. Tippett: Comparing time series – Part 2

Figure 3. Projection of SST anomalies from ERSSTv5 onto the first seven Laplacian eigenvectors of the North Atlantic domain. Panels (a)
and (b) show, respectively, anomalies derived by removing second- and ninth-order polynomials in time. The integers on the right end of
each time series indicate the Laplacian eigenvector.

essary is a loss of power (i.e., the test is less able to detect a
difference when such a difference exists). For our data, this
is not a major concern: we consistently find that the test re-
jects H0 more often as S increases (this will be shown in the
Results section). In this study, we are more concerned with
capturing important dependency structures than with loss of
power, hence our choice to include the maximum number of
Laplacian eigenvectors selected by the MIC.

For validity of the significance tests, perhaps the most im-
portant assumption is that the residuals of the VAR(p) mod-
els form a stationary Gaussian white noise process. Unfor-
tunately, no exact, small-sample test for stationary Gaussian
white noise exists, although some approximate tests exist. To
check for whiteness of the residuals, we performed the mul-
tivariate Ljung–Box test using a maximum lag of 10 years
(Lütkepohl, 2005, Sect. 4.4.3). About 20 % of the residual
time series were found to have significant non-whiteness.
However, this result is sensitive to the choice of maximum
lag and to the time period tested, so the interpretation is un-
clear. After a Bonferroni correction, only one CMIP5 model
(CMCC-CMS) had residuals in both time periods that were
significantly non-white, which suggests that VAR(1) with
S = 7 is adequate for our time series.

To be clear, our method can be applied to arbitrary VAR
models. Our choice of VAR(1) with S = 7 is merely a com-
promise designed to capture significant large-scale spatial
dependencies while also adequately modeling temporal cor-
relations.

Results

The deviance between ERSST 1854–1936 and 82-year seg-
ments of pre-industrial control simulations is shown in Fig. 4.
Also shown is the deviance between ERSST 1854–1936 and
ERSST 1937–2018 (first item on the x axis). The latter de-
viance falls below the 5 % threshold and hence indicates
no significant difference in internal variability between two
halves of ERSST, regardless of polynomial fit. This result
is consistent with the hypothesis that ERSST is a station-
ary VAR process after removing either a second- or ninth-
order polynomial. Only one CMIP5 model is consistent with
ERSST when a second-order polynomial is removed, and
only two CMIP5 models are consistent with ERSST when
a ninth-order polynomial is removed. We conclude that the
vast majority of CMIP5 models generate unrealistic internal
variability.

To explore the sensitivity of the above results to the num-
ber of Laplacians, deviances based on 10 Laplacian eigen-
vectors are shown in Fig. 5. In this case, every CMIP5 model
differs from ERSST, regardless of which polynomial is re-
moved. More generally, as the number of Laplacian eigen-
vectors increases, differences between internal variability
become easier to detect. Because adding Laplacian eigen-
vectors corresponds to resolving smaller scales, this pattern
means that discrepancies in internal variability become more
detectable as smaller-scale spatial structures are taken into
account.
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Table 1. Models selected by the MIC, based on 82-year time series
from each CMIP5 control simulation.

Lags Laplacians

GISS-E2-H 1 3
GISS-E2-H-CC 1 3
GISS-E2-R 1 2
GISS-E2-R-CC 1 3
MPI-ESM-LR 1 5
MPI-ESM-MR 1 4
MPI-ESM-P 1 4
CNRM-CM5 1 5
CNRM-CM5-2 1 4
CMCC-CESM 1 5
CMCC-CM 1 4
CMCC-CMS 2 3
GFDL-CM3 1 7
GFDL-ESM2G 1 5
GFDL-ESM2M 1 3
NorESM1-M 1 4
NorESM1-ME 1 4
CCSM4 2 2
CESM1-BGC 1 4
CESM1-CAM5 1 4
CESM1-FASTCHEM 1 4
CESM1-WACCM 1 4
CanESM2 1 6
ACCESS1-0 1 4
ACCESS1-3 1 4
CSIRO-Mk3-6-0 2 2
inmcm4 1 1
IPSL-CM5A-LR 2 4
IPSL-CM5A-MR 1 4
IPSL-CM5B-LR 1 6
MIROC-ESM 1 4
MIROC-ESM-CHEM 1 4
HadGEM2-CC 1 7
HadGEM2-ES 1 5
MRI-CGCM3 1 4
ersst 1 5

It is instructive to change the reference time series used for
comparison. For instance, instead of comparing to ERSST,
we compare each time series to time series from the
CanESM2 model. The result of comparing every time se-
ries from the first half to every time series in the second
half is summarized in Fig. 6. The plotted numerical value
is the deviance divided by its 5 % critical value. Light and
dark grey shadings indicate significant differences at 5 % and
1 %, respectively. Note that the diagonal is unshaded, indicat-
ing that the test correctly concludes no difference in the VAR
model when time series come from the same CMIP5 model.
Some CMIP5 models differ significantly from all other mod-
els (e.g., MRI, INMCM4), indicating that these models not
only are inconsistent with observations, but are also incon-
sistent with other CMIP5 models.

Figure 4. Deviance between ERSSTv5 1854–1935 and 82-year
segments from 36 CMIP5 pre-industrial control simulations. Also
shown is the deviance between ERSSTv5 1854–1935 and ERSSTv5
1937–2018 (first item on the x axis). The black and red curves
show, respectively, results after removing a second- and a ninth-
order polynomial in time over 1854–2018 before evaluating the de-
viance. The models have been ordered on the x axis from smallest to
largest deviance after removing a second-order polynomial in time.

Figure 5. Same as Fig. 4 but using 10 Laplacian eigenvectors. Note
that the order of the models on the x axis differs from those in Fig. 4.

Interestingly, models from the same modeling center tend
to be indistinguishable from each other (e.g., GISS, NCAR,
MPI, CMCC). This result is consistent with previous studies
indicating that models developed at the same center show
more similarities to each other than to models developed at
different centers (Knutti et al., 2013). The deviances for 10
Laplacian vectors are shown in Fig. 7. With more Laplacians
comes the ability to detect more differences, so that almost
all models are found to differ significantly from each other
unless they come from the same center.

An alternative approach to summarizing dissimilarities be-
tween models is through dendrograms (Knutti et al., 2013;
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Figure 6. The deviance between two non-overlapping time series from CMIP5 pre-industrial control simulations and observations. The time
series are obtained by extracting a continuous 165-year period, regressing out a second-order polynomial, and then splitting the time series
in half (82 and 83 years). For observations, the 165-year period corresponds to 1854–2018. The deviance is divided by the 5 % significance
threshold, so values greater than 1 indicate a significant difference in the VAR model. Light and dark grey shadings highlight values greater
than the 5 % and 1 % significance thresholds. White spaces indicate insignificant differences between VAR models.

Izenman, 2013). An example is shown in Fig. 8 and con-
structed according to the following iterative procedure. First,
each multivariate time series is assigned to its own cluster.
Next, the pair of time series with the smallest deviance are
merged together to form a new cluster. This clustering is in-
dicated by a two-pronged “leaf” whose length equals the de-
viance. After time series are linked, an “agglomeration” rule
is used to measure dissimilarity relative to a cluster. There
is no unique choice for the agglomeration rule. We choose a
standard one called complete-linkage clustering in which the
“distance” between two sets of clusters A and B is defined as
the maximum deviance between elements of each cluster:

max {deviance(x,y) : x ∈A,y ∈ B} .

If this distance exceeds the significance threshold, then at
least one deviance between elements of the clusters is known

to be significant. Then, the smallest distance between any
pair of clusters is linked together again. This process repeats
until all models have been merged into a single cluster. The
x axis shows the distance measure, and the y axis shows the
data sources. Each source name occurs twice because two
time series are drawn from that source. As can be seen, the
shortest leaves are associated with time series from the same
source or from models developed at the same center.

The broad conclusions drawn from the dendrogram in
Fig. 8 are similar to those drawn by Knutti et al. (2013). How-
ever, the dendrogram constructed in Knutti et al. (2013) was
based on the Kullback–Leibler (KL) divergence. Importantly,
KL divergence requires estimation of covariance matrices,
but a significance test for this measure was not examined in
Knutti et al. (2013). The dendrogram developed here is at-
tractive in that it is based on a rigorous statistical measure
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Figure 7. Same as Fig. 6 but for 10 Laplacian eigenvectors.

of dissimilarity that has a well-defined significance thresh-
old that accounts for sampling variability and dependencies
in space and time.

A perennial question is whether models should be
weighted equally when making multi-model projections of
the future. Such weighting schemes lie outside the scope of
this paper, but a related question is whether there exists a
relation between a model’s past performance and its predic-
tions of the future. To investigate this question, we plot a
model’s deviance from ERSST against that model’s equi-
librium climate sensitivity (ECS). ECS is the equilibrium
change in annual mean global surface temperature follow-
ing a doubling of atmospheric CO2 concentration. The re-
sult is shown in Fig. 9. The figure also shows a least-squares
line fit to the data points. The slope is statistically significant
(p = 0.011) under the standard assumptions of independent
and identically distributed residuals, which of course are du-
bious for our problem. Nevertheless, the correlation is neg-
ative, indicating that models that best simulate the past tend
to have larger ECS. Extrapolating to zero deviance yields an

ECS of 4.8 ◦C, although the probabilistic meaning (e.g., con-
fidence interval) of this result is unclear.

4 Conclusions

This paper proposed an approach to deciding whether two
multivariate time series come from the same stochastic pro-
cess. The basic idea is to fit each time series to a vector au-
toregressive model and then test whether the parameters of
the models are equal. The likelihood ratio test for this prob-
lem and the associated sampling distributions were derived.
This derivation leads to a deviance statistic that measures the
difference between VAR processes and can be used to rank
models based on their “closeness” to the VAR process in-
ferred from observations. The test accounts for correlations
in time and correlations between variables. In the special case
of a first-order VAR model, the model is a LIM and the test
is effectively a “difference-in-LIM” test.

The test was used to compare internal variability of an-
nual mean North Atlantic SST in CMIP5 models and ob-
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Figure 8. Dendrogram derived from the deviance matrix between
all pairs of VAR(1) models estimated from the first and second
halves of the 1854–2018 period (the specific year is not relevant for
pre-industrial control simulations). The clusters are agglomerated
according to the complete-linkage clustering, which uses the maxi-
mum deviance between elements of each cluster. The VAR models
contain seven Laplacian eigenfunctions, and a second-order poly-
nomial in time is removed. The vertical red line shows the 5 % sig-
nificance threshold for a significance difference in the VAR models.

servations. Internal variability was estimated by removing
either a second- or ninth-order polynomial, corresponding
to different views about the source of multidecadal vari-
ability, as discussed in Sect. 3. Remarkably, almost every
CMIP5 model generates internal variability that differs sig-
nificantly from observations. This conclusion holds regard-
less of whether a second- or ninth-order polynomial in time
is regressed out and therefore is independent of assump-
tions about whether observed multidecadal NASST variabil-
ity is forced or internal. Furthermore, the degree of dissim-
ilarity increases when smaller-scale (∼ 2000 km) informa-
tion is included. Our conclusions are broadly consistent with
other studies that have highlighted model inconsistencies;
for example, climate models give inconsistent estimates of
the magnitude and spatial structure of internal predictabil-
ity (Branstator et al., 2012). We further showed that time
series from the same model or from models from the same
modeling center tend to be more similar than time series

Figure 9. Deviance versus equilibrium climate sensitivity of
CMIP5 models. The deviance is computed for NASST separately
for the first and second halves of the 1854–2018 period, which
yields two points per CMIP5 model for a total of 72 points. ECS
is derived from Table 9.5 of Flato et al. (2013). The red line shows
the least-squares line fit, and the red triangle at the top shows the
intercept of the best-fit line.

from models from other centers. These results are consistent
with previous claims that the effective number of indepen-
dent models is smaller than the actual number of models in
a multi-model ensemble (Pennell and Reichler, 2011; Knutti
et al., 2013). Other studies have shown that models also ex-
hibit significant discrepancies in their forced response. For
instance, Zhang et al. (2013) showed that the model response
to anthropogenic aerosols exhibits significant inconsistencies
with observations, particularly in terms of upper-ocean con-
tent, surface salinity, and spatial SST patterns (Zhang et al.,
2013). Taken together, these discrepancies imply that, at the
present time, climate models do not provide a satisfactory
explanation of observed variability in the North Atlantic.

Recently, Mann et al. (2021) argued that there exists no
compelling evidence for internal multidecadal oscillations.
In particular, oscillations seen in proxies of pre-industrial
temperature can be explained as an artifact of volcanic ac-
tivity that happens to project onto the multidecadal frequency
band. Under this hypothesis, variability in NASST is due pri-
marily to external forcing, and removing a ninth-order poly-
nomial would be better at removing forced variability than a
second-order polynomial. Nevertheless, even after removing
a ninth-order polynomial, our results show that most models
are inconsistent with observations.

One limitation of the proposed method is that it as-
sumes that a given time series is adequately modeled as a
VAR(p) process. The proposed method could be generalized
to VARMA processes. Specifically, maximum likelihood es-
timates for VARMA models can be used to derive the pa-
rameter estimates under H0 and HA, and then the deviance
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statistic (13) is evaluated. Asymptotically, the parameter es-
timates have normal distributions, and the distribution of the
deviance statistic has a chi-squared distribution with degrees
of freedom equal to the difference in the number of param-
eters between models. The proposed method could also be
a starting point for generalizing to cyclostationary or non-
stationary processes.

We believe that the proposed method could be valuable
for improving climate models. At present, there is no agreed-
upon standard for comparing climate models. As a result,
different modeling centers use different criteria for assess-
ing their model (Hourdin et al., 2016; Schmidt et al., 2017).
The existence of hundreds of metrics leaves ample room for
cherry picking. One barrier to forming a consensus is that the
available metrics do not (1) account for multiple variables,
(2) account for correlations in space and time, and (3) have
a rigorous significance test. The deviance statistic satisfies
all these conditions. The main remaining barrier would then
be to choose a few key climate indices. Although our exam-
ple uses NASST, any set of relevant climate indices could be
used provided they are well modeled by a VAR process. As
the number of indices included in the VAR model increases,
the sampling variability of the deviance increases (due to the
curse of dimensionality), which may make it more difficult to
detect discrepancies. Such is the price of a rigorous consis-
tency criterion. However, this pattern need not occur in prac-
tice; in our example, inconsistencies became easier to detect
as more patterns were included.

Note that using the proposed method to compare observa-
tional data sets over the same period would not be straightfor-
ward because the two observational data sets would be highly
correlated, and therefore the resulting estimates of the noise
covariance matrices 01 and 02 would not be independent, as
assumed in the test.

As discussed above, we found that climate model simula-
tions of NASST not only differ from observations, but also
between models from different modeling centers. However,
this result does not tell us the nature of those differences. A
natural question is whether the difference can be attributed to
specific parts of the VAR model. Methods for answering this
question will be discussed in Part 3 of this series of papers.
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