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Abstract. Robust, proxy-based reconstructions of relative sea-level (RSL) change are critical to distinguishing
the processes that drive spatial and temporal sea-level variability. The relationships between individual proxies
and RSL can be complex and are often poorly represented by traditional methods that assume Gaussian likeli-
hood distributions. We develop a new statistical framework to estimate past RSL change based on nonparametric,
empirical modern distributions of proxies in relation to RSL, applying the framework to corals and mangroves as
an illustrative example. We validate our model by comparing its skill in reconstructing RSL and rates of change
to two previous RSL models using synthetic time-series datasets based on Holocene sea-level data from South
Florida. The new framework results in lower bias, better model fit, and greater accuracy and precision than the
two previous RSL models. We also perform sensitivity tests using sea-level scenarios based on two periods of in-
terest – meltwater pulses (MWPs) and the Holocene – to analyze the sensitivity of the statistical reconstructions
to the quantity and precision of proxy data; we define high-precision indicators, such as mangroves and the reef-
crest coral Acropora palmata, with 2σ vertical uncertainties within ± 3 m and lower-precision indicators, such
as Orbicella spp., with 2σ vertical uncertainties within ± 10 m. For reconstructing rapid rates of change in RSL
of up to ∼ 40 m kyr−1, such as those that may have characterized MWPs during deglacial periods, we find that
employing the nonparametric model with 5 to 10 high-precision data points per kiloyear enables us to constrain
rates to within ± 3 m kyr−1 (1σ ). For reconstructing RSL with rates of up to ∼ 15 m kyr−1, as observed during
the Holocene, we conclude that employing the model with 5 to 10 high-precision (or a combination of high- and
low-precision) data points per kiloyear enables precise estimates of RSL within ±∼ 2 m (2σ ) and accurate RSL
reconstructions with errors . 0.7 m. Employing the nonparametric model with only lower-precision indicators
also produces fairly accurate estimates of RSL with errors .1.50 m, although with less precision, only constrain-
ing RSL to ±∼ 3–4 m (2σ ). Although the model performs better than previous models in terms of bias, model
fit, accuracy, and precision, it is computationally expensive to run because it requires inverting large matrices for
every sample. The new model also provides minimal gains over similar models when a large quantity of high-
precision data are available. Therefore, we recommend incorporating the nonparametric likelihood distributions
when no other information (e.g., reef facies or epibionts indicative of shallow-water environments to refine coral
elevational uncertainties) or no high-precision data are available at a location or during a given time period of
interest.
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1 Introduction

Realistically projecting future rates of change in relative sea
level (RSL) requires a better understanding of past rates of
RSL change during warmer periods and times of abrupt cli-
mate change. Recent statistical models of past RSL change
(e.g., Stanford et al., 2011; Khan et al., 2015; Kopp et al.,
2016; Cahill et al., 2016; Kopp et al., 2009) significantly im-
prove upon earlier studies by using Bayesian frameworks to
estimate RSL while accommodating elevation and age uncer-
tainties and temporal incompleteness of proxy data. While
modern statistical techniques have advanced the study of sea
level, many statistical models of RSL assume that the rela-
tionships between RSL and the elevation of RSL proxies fol-
low parametric (usually Gaussian) distributions, an assump-
tion that may not be accurate (Kemp et al., 2014; Hay et al.,
2015; Cahill et al., 2016; Khan et al., 2017). This assumption
is especially problematic for proxies such as corals that have
large, non-Gaussian elevational ranges (Hibbert et al., 2016).

Several recent studies have attempted to account for the
empirical distributions of RSL proxies. Stanford et al. (2011)
inferred a RSL curve using smoothing splines and combining
multiple proxy records from various sites using some non-
Gaussian (e.g., lognormal) parametric distributions. Hibbert
et al. (2016, 2018) provided a thorough consideration of the
depth distributions of coral taxa across all ocean basins and
used Markov chain Monte Carlo (MCMC) sampling to em-
pirically estimate RSL at single points in time from taxon-
specific coral depth distributions, but they did not account
for temporal correlations in RSL. These temporal correla-
tions stem from the gradual climatic, oceanographic, and
geophysical processes that modulate RSL and generally pro-
duce a smooth time series of sea-level change over centen-
nial to millennial timescales (Horton et al., 2018; Rovere
et al., 2016). Some statistical reconstructions of RSL and
other climate variables based on multiproxy biotic assem-
blages have incorporated empirical likelihoods (e.g., through
a transfer function using abundance or counts of foraminifera
or pollen microfossils; Parnell et al., 2015; Cahill et al.,
2016), although the nature of these data, which are based
on community assemblages, differs from that of the single
coral taxon usually found in a given depth horizon of a dated
core. Holocene and deglacial coral records are often obtained
from narrow cores that preclude complete characterizations
of the species composition of the reef-forming community
(see Toth et al., 2019). Furthermore, only one study (Kopp
et al., 2009) has developed methods to statistically incorpo-
rate data that provide only an upper or lower bound on past
RSL position, such as those that come from subaerial (e.g.,
freshwater peats) or subtidal (e.g., marine mollusks) zones.
However, upper- and lower-bound data have not been inte-
grated concurrently with other nonparametric data in sea-
level estimation.

Here, we expand on previous work to incorporate mod-
ern elevation distributions of individual proxies from field

observations in a new Bayesian statistical model used to es-
timate RSL. The model can use proxy data from any ele-
vational distribution and can also explicitly incorporate data
that provide only an upper or lower bound. We demonstrate
the approach using coral and sedimentary proxies and build
upon the analyses of Hibbert et al. (2016, 2018) to incorpo-
rate empirical proxy distributions in a flexible, hierarchical
statistical framework that permits correlated temporal vari-
ability (e.g., Khan et al., 2015; Kopp et al., 2016; Khan et al.,
2017) through the use of Gaussian process (GP) priors (Ashe
et al., 2019).

We run two distinct types of tests on the model: (1) valida-
tion tests to compare performance to previous RSL models
and (2) sensitivity tests to evaluate the performance of the
new framework for different types and combinations of data.
The validation tests simulate Holocene sea level with syn-
thetic data that mimic actual proxy data from South Florida.
We evaluate the bias, precision, and accuracy of the new
framework compared to two previous models (e.g., Khan et
al., 2017; Hibbert et al., 2016). Within the validation tests,
we also analyze the Gaussian and nonparametric models to
determine the portion of any improvement due to the empiri-
cal distributions versus the inclusion of more data in the new
model. The sensitivity analysis evaluates the performance
of the new framework using synthetic data of various pre-
cision and quantity from two scenarios with differing rates
of sea-level change. This assessment estimates the type of
data needed to accurately reconstruct sea level and its rates
of change employing the new nonparametric framework, es-
pecially for periods of rapid accelerations in RSL. For both
types of analyses, precision refers to how exact a prediction
is (i.e., higher uncertainty corresponds to lower precision),
and accuracy refers the proximity of a model estimate to the
correct value for both sea-level and uncertainty predictions
(i.e., larger errors correspond to lower accuracy).

Although we use the example of mangroves and corals to
implement the modeling framework, our method could be
applied to any RSL proxies that have nonparametric rela-
tionships to RSL or other climate variables for which mod-
ern distributions have been measured. We do not attempt to
make conclusions about RSL for any particular location or
time period with real proxy data in this paper; rather, we aim
to demonstrate the validity of this nonparametric modeling
framework and how it could be used to answer open ques-
tions about variability in the past.

2 Methods

Geological RSL reconstructions are derived from sea-level
proxies, such as sediments, fossils, and geomorphological
and archeological features (e.g., mangrove peat, corals, and
salt-marsh sediment cores), the formation of which were con-
trolled by the past position of RSL (Shennan, 2015). These
sea-level proxies possess a systematic and quantifiable re-
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lationship to elevation with respect to a tidal datum (e.g.,
mean sea level, MSL, or highest astronomical tide, HAT).
Different proxies have distinct relationships with sea level, a
term called the “indicative meaning”, which includes the cen-
tral tendency and range that are inferred from contemporary
coastal settings (Hijma et al., 2015). When a sea-level proxy
is found in geological archives (e.g., by collecting cores of
mangrove peat or coral-reef framework) and dated (typically
using radiocarbon or U-series methodologies), the past posi-
tion of RSL can be approximated through reasoning by anal-
ogy (Sect. 2.1.1). In other words, we estimate past RSL by
subtracting the proxy’s indicative meaning from its elevation
in the geological record (Fig. 1a).

Whereas proxies with bounded indicative meanings pro-
duce sea-level index points, other proxies like freshwater
peats and marine invertebrates have less precise relationships
with RSL and only provide an upper (or lower) bound on
past RSL; these proxies produce terrestrial (or marine) lim-
iting data (Fig. 1), respectively. All samples have unique un-
certainty estimates, where age uncertainty is associated with
the method used to date the sample (e.g., measurement and
calibration uncertainties for radiocarbon-dated samples) and
RSL uncertainty stems from both the indicative meaning and
error in measuring the elevation of proxies within geological
archives.

Here, using the proxy estimates of RSL and age, we em-
ploy a hierarchical framework to characterize the variabil-
ity in sea level through temporal correlations and predict
the evolution of RSL through time with uncertainties. This
framework partitions uncertainties among model levels. Al-
though we develop the model with mangrove, coral, and
marine- and terrestrial-limiting samples in mind, it is flex-
ible and can accommodate other data types. In the follow-
ing sections, we describe the statistical model structure and
how we incorporate uncertainties into the hierarchical frame-
work, which accommodates measurement and inferential
data uncertainties in its different levels (Sect. 2.1). We then
demonstrate how we fit nonparametric probability distribu-
tions through kernel density estimation to proxies with non-
Gaussian relationships to sea level by modeling the mod-
ern occurrences of individual coral taxa by depth to describe
their indicative meanings (Sect. 2.2.1). Finally, we evaluate
the performance of the new framework through (1) validation
tests (Sect. 2.3.1) and (2) sensitivity tests (Sect. 2.3.2), which
are all performed using synthetic data.

2.1 Statistical model structure

We use Bayesian analysis (Cressie and Wikle, 2015) to in-
fer all unknown quantities, including RSL, parameters within
the model, and uncertainties in each, as described in the
model implementation (Sect. 2.2). The model structure is
shown through a directed acyclic graph (Fig. 2), which high-
lights the levels of the Bayesian model. Throughout, we use
italicized variables to represent scalars (e.g., the elevation of

a single observation) and bold italic variables to introduce
vectors (e.g., the elevations of all observations). The vari-
ables used throughout the statistical analyses are summarized
in Table 1.

The goal of our analysis is to determine the probability
distribution of RSL through time f (t), based on the ob-
served elevations (y) of proxy data points and their estimated
ages (t̂). Using hierarchical modeling, we explicitly distin-
guish between three levels: (1) a data level, (2) a process
level, and (3) a parameter level (see Eq. 1). The data model
describes p(y|f , t̂,2d )×p(t̂ |t∗,2d ), the joint probability
for all samples i of each measured elevation yi conditional
upon RSL (fi), estimated age (t̂i), and the data-level pa-
rameters (2d ), multiplied by the probability of an estimated
age t̂i conditional on the latent (unobserved) true age (t∗i )
and the data-level parameters (2d ). The data level character-
izes the way in which RSL is recorded by different proxies
through the data parameters, according to modern depth dis-
tributions, measurement uncertainties, and dating uncertain-
ties. The process level describes p(f (t)|2p), the probabil-
ity distribution of RSL through time f (t) conditional upon
the process-level hyperparameters 2p. The parameter level
characterizes key attributes (2p,2d ) of the process and data
levels, respectively.

We construct a Bayesian hierarchical model to estimate the
posterior distribution of RSL and parameters given observed
data.

p
(
f (t),2p|y, t,2d

)︸ ︷︷ ︸
posterior

∝ p
(
y|f , t̂,2d

)
×p

(
t̂ |t∗,2d

)︸ ︷︷ ︸
data model

×p
(
f (t)|2p

)︸ ︷︷ ︸
process model

× p
(
2p,2d

)︸ ︷︷ ︸
parameter model

(1)

We follow Parnell et al. (2015) and Cahill et al. (2016) in
making some simplifying assumptions and taking a modu-
lar approach to implementation of the model (Sect. 2.2). As
described in Sect. 2.2.1, we assume that the data model hy-
perparameters can be estimated from the modern data and
that all proxy measurement errors (temporal and elevation)
are adequately characterized by the uncertainties defined in
the collection of the data. We assume that the relationship
between RSL and the elevation of each proxy is independent
of the RSL process. We also assume that elevation measure-
ment uncertainty and age uncertainty are independent and
normally distributed for all RSL proxies (with both nonpara-
metric and normally distributed likelihoods). Although the
assumption of normality in age uncertainty is an oversim-
plification, many RSL models assume normal uncertainties
for calibrated radiocarbon ages or ignore age uncertainty en-
tirely (e.g., Shennan et al., 2002; Engelhart et al., 2009). The
widths of the normal versus nonparametric age distributions
are also similar (i.e., both capture a similar range of possible
ages). In addition, this simplifying assumption both signifi-
cantly speeds up computation (i.e., O(n3) versus O(n4)) and
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Figure 1. Schematic representation of the indicative meaning and a theoretical example of its application to reconstruct relative sea level
(RSL) from radiocarbon-dated mangrove sediment and reef-crest cores: (a) the vertical distribution (indicative meaning) of mangrove and reef
zones for the Caribbean region with respect to mean sea level (MSL) and highest astronomical tide (HAT); (b) the distribution-fitting module,
which determines the likelihoods that will be used in the subsequent modules; (c) elevations of dated samples in theoretical cores; (d) the
sampling module, which approximates the distribution of RSL at each point with proxy data by conditioning the Gaussian process (GP) prior
with sampled hyperparameters on all other data. The result is multiple sets of noisy RSL samples paired with sampled hyperparameters. Note,
for example, that some samples of noisy RSL are very different from their original likelihood distributions prior to conditioning on all other
data. (e) The sample-wise prediction module, which takes an arbitrary number of samples (here, 10) from the posterior GP created from each
paired set of RSL samples and hyperparameters from the sampling module. These samples are pooled to estimate RSL. Symbols courtesy
of the Integration and Application Network (https://ian.umces.edu/symbols/, last access: 4 February 2022) of the University of Maryland
Center for Environmental Science and https://www.fisheries.noaa.gov/species/mountainous-star-coral, last access: 4 February 2022.

is unlikely to impact the results of the analysis for the fol-
lowing two reasons: (1) these uncertainties are smaller and
have less impact on the posterior distributions of sea level
than the uncertainties in the proxy distributions, and (2) the
models that we use for comparison in the validation tests also
employ the same assumption.

2.1.1 Data level

The data level includes the noisy, observed elevation yi and
estimated age t̂i of each RSL proxy data point. This level

characterizes the relationship between elevation and RSL fi
and describes measurement error. We make the simplifying
assumptions that the elevation measurement error (ε) and the
temporal (age) calibration error (γ ) of the RSL proxies are
independent and normally distributed, whereas the likelihood
distribution (η) with respect to sea level does not need to be
parametric, such that

yi,j = f (t∗i )+ εi + ηj (2)
t̂i = t

∗

i + γi, (3)
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Table 1. Definitions of relevant notation in the model.

Variable Definition

i Indexes the observed proxy elevations and ages as well as their uncertainties

j Indexes the type of proxy (e.g., coral taxa, sedimentary indicator) and, thus, its likelihood distribution,
which is common to all proxies of that type

k Indexes the thinned samples of estimated RSL f

f ∗ Synthetic RSL representing true sea level in the validation and sensitivity tests

f̂i,k Estimated RSL sample for proxy observation i and sample k

t Age, the input variable to the sea-level model, such that RSL can be estimated at any time point

f (t) Distribution of RSL at any time point t ; the final output from the Bayesian hierarchical model

yi Observed noisy elevations

t∗
i

Synthetic, true age used to create synthetic data f ∗ in the validation and sensitivity tests

t̂i Estimated age, based on radiocarbon dates (midpoint of calibrated age)

2d Data-level hyperparameters {λi ,δi ,µj ,σj ,Kj } for the ith observation and j th proxy type
which are estimated in the distribution-fitting module

ηj The likelihood distribution for the j th proxy type based on modern distributions; from hyperparameter Kj

µj Mean (for normal) parameter of the likelihood distribution for the j th proxy type

σj Standard deviation (for normal) parameter of the likelihood distribution for the j th proxy type

εi Measurement error in elevation (assumed to come from a normal distribution)

δi Standard deviation of elevational measurement uncertainty for the ith observation

γi Age error (assumed to come from a normal distribution)

λi Standard deviation of age uncertainty for the ith observation

2p Process-level hyperparameters {αc,βc,αw}, which are estimated in the sampling module

αc Amplitude hyperparameter for rc

βc Temporal-scale hyperparameter for rc

αw Amplitude hyperparameter for the white-noise term w(t)

rc(t) Represent nonlinear signals in the process model with different parameterizations (which allows
for c = 1,2, . . .,nc distinct amplitudes and temporal scales)

w(t) Represents white noise in the process model, which captures high-frequency variability

yi,j is the ith observed elevation of the j th proxy type, t̂i is
the median calibrated age, t∗i is the true (unobserved) age,
εi ∼N (0,δi), and γi ∼N (0,λi). The standard deviations of
elevation uncertainty are quantified based on the sampling
process, which typically involves sediment coring in contem-
porary mangrove environments, underwater drilling of coral-
reef framework, or extraction of fossil corals from subaerial
outcrops. These uncertainties stem from errors inherent in
determining the depth of a sample in a core and determin-
ing the absolute elevation of a core top or sample within an
outcrop relative to a tidal or orthometric datum (Khan et al.,
2015; Hijma et al., 2015).

The model can accommodate both parametric and non-
parametric fitted distributions as likelihoods (ηj in Eq. 2),
which characterize the relationship between elevation and
RSL. For corals, a kernel density function (ηj ∼K(x)) is
fitted to each coral taxa’s modern elevation data (x), where
j indexes the proxy type, and ηj is a distribution on nega-
tive values for coral because their elevations are below MSL
(Fig. 1a). See Sect. 2.2.1 for details on the distribution fitting.

Mangrove peats are assumed to form between MTL (mean
tide level) and HAT (highest astronomical tide) in a normal
distribution with mean µ and standard deviation σ , such that
ηj ∼N (µj ,σj ) based on the indicative meaning of man-
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Figure 2. Directed acyclic graph of the Bayesian hierarchical
framework of our model. Square nodes represent observed quanti-
ties (data), and circular nodes represent unknown quantities (latent
variables and model parameters), where the gray circle represents
the ultimate variable of interest to be modeled. Arrows indicate con-
ditionality. Each node in the graph is conditionally independent of
all others, given the parameters in the previous level. Variables and
conditional distributions are specified in the main text. The hyperpa-
rameters are represented in the lowest level, where x represents the
data used in the data-fitting process, and K represents the nonpara-
metric empirical distribution (kernel density function). Parameters
of the models in the middle level are controlled by the hyperparam-
eters in the bottom level. The (hyper)parameters on the left (right)
represent the data (process) model. Unobserved (latent) variables t∗

i
and f (t) are represented in the process level, such that the data level
represents the only observed quantities in the model. Posterior esti-
mates of the parameter distributions contribute to the process uncer-
tainty in the model, and sea levels over time can be estimated from
distributions of the data and parameters. The Bayesian nature of the
framework allows for the inversion of the conditional distributions
resulting in the posterior distribution f (t), the final model output.
Further details of each level and the parameters involved may be
found in the text.

grove peat and local tidal levels (Fig. 1a). This simplifying
assumption for mangroves is warranted, both due to anal-
yses of modern mangrove distributions indicating that they
are reasonably approximated by a normal distribution (Leong
et al., 2018) and due to the relatively small distributional
ranges (±1.0 m in South Florida). It is, therefore, worth the
computational savings of the assumption of normality. These
distributions can also be updated with new data to reflect lo-
cal distributions. For mangrove peat index points, µj is posi-
tive because mangroves are assumed to grow above sea level.

Marine-limiting and terrestrial-limiting data define the
lower and upper limits of sea level, respectively. We assume
that the RSL likelihood decreases with the distance from the
measured elevation of the limiting data. In order for the dis-
tribution to be normalized (continuous probability distribu-
tion function integrating to 1), we assign these a triangle dis-
tribution, which we conservatively bound with a lower (up-
per) limit of 50 m and an upper (lower) limit of 0 m for ter-
restrial (marine) limiting data points. In the limiting cases,

the distribution of ηj takes the following form:

p(ηj = x)∝



1+ x/50 for marine limiting
if− 50≤ x ≤ 0;

1− x/50 for terrestrial limiting
if 0< x ≤ 50;

0 otherwise for all
limiting data.

(4)

We maintain the simplifying assumption of condi-
tional independence among observed elevations (p(y1|f1)⊥
p(y2|f2)) and among calculated ages (p(t̂1|t∗1 )⊥ p(t̂2|t∗2 )),
although there is clearly a correlation at the process level
in the underlying RSL. In other words, we assume the re-
lationship between RSL and the elevation of one observation
does not affect that relationship for any other observation.
The same is true for age uncertainties. The assumed indepen-
dence may not strictly hold in all cases (e.g., measurements
from the same sediment core where elevation estimates may
be correlated). However, most samples in this study are not
collected from the same core or are from distinct depositional
periods within a core. Furthermore, given the possibility of a
sea-level highstand in the circum-Caribbean region, the law
of superposition (the geological assumption that sedimentary
strata were deposited in ascending order such that the oldest
strata will lie at the bottom of the sequence) does not strictly
apply. If the elevation estimates were correlated through a
single core age model, we would suggest using the law of
superposition to inform these estimates.

2.1.2 Process level

In the implementation of the process-level model, we treat
RSL f (t) as the sum of several processes with different tem-
poral scales of variability:

f (t)=
∑
all c
rc(t)+w(t), (5)

where rc(t) represents a nonlinear signal with different pa-
rameterizations (which allows for c = 1,2, . . .,nc distinct
timescales), and w(t) is a white-noise process (which cap-
tures high-frequency variability). The rc(t) terms are mod-
eled with mean-zero Gaussian process priors:

rc(t)∼ GP
(

0,α2
cρ
(
t, t ′;βc

))
, (6)

where αc is the amplitude (or prior standard deviation), βc is
the characteristic timescale for each term, and ρ is a Matérn
correlation function with a smoothness parameter of 3/2
(Rasmussen and Williams, 2006). The choice of smooth-
ness parameter ensures that the signal is “once differentiable”
(i.e., it is smooth enough to have a single derivative but not
a second derivative) to enable rough changes in RSL rates of
change without abrupt changes in RSL. Differentiability is a
requirement for the noisy-input Gaussian process (NIGP; see
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Sect. A1) approach to approximate the effects of geochrono-
logical uncertainty. The white-noise term has a standard de-
viation of αw and captures the high-frequency sea-level vari-
ability that is not captured by the other terms.

We choose to employ Gaussian process (GP) priors, which
define the relationship among any arbitrary set of points in
time (can be extended, without loss of generality, to a higher
dimension such as space) as a multivariate normal distribu-
tion defined by a mean vector and a covariance matrix. In
a GP model, the sea-level function, f (t), is nonparametric
(i.e., its form is not predetermined) and can be used to de-
termine trends solely from the data. Accordingly, GP time-
series models have much more flexibility than many other
models (e.g., temporally linear or change-point models). The
shape of the curve is driven by the covariance matrix, which
is estimated through the correlations in the RSL data points.
While nonparametric, certain conditions or assumptions are
inherent in any approach, such as the smoothness or scale
of variability, via the type of covariance function or bounds
on parameters, for example. Those choices and the hyperpa-
rameters of these models are described at the parameter level
(Sect. 2.1.3).

2.1.3 Parameter level

At the parameter level, 2p = {αc,βc,αw} represents the
hyperparameters that characterize the process level of the
model. Here, c = 1,2, . . .,nc, where nc is the number of
terms in the model, representing different frequencies; αc
represents the prior standard deviations of these nc frequen-
cies of sea-level processes; βc represents the characteristic
timescale of variability in sea-level processes; and αw is the
prior standard deviation of the white-noise term w(t).

For each parameter, we employ uniform prior distribu-
tions with bounds set to separate the terms in the covariance
function according to patterns in RSL and to exclude unre-
alistic interpretations of the data, based on prior knowledge
(see Fig. C1 for plots of various hyperparameter combina-
tions). For example, the prior standard deviation (or ampli-
tude) and temporal scale are restricted proportionally, based
on the ratio of magnitude to time of RSL change during the
Holocene epoch, such that the prior standard deviation pa-
rameter α1 may take on values between 5 and 50 m, and the
temporal-scale parameter β1 may take on values between 4
and 40 kyr. In contrast the higher-frequency term r2(t) re-
stricts the prior standard deviation, such that α2 may take
on values between 0.001 and 20 m, and β2 may take on val-
ues between 500 years and 10 kyr. We restrict the bounds
on the white-noise standard deviation αw to between 0.001
and 10 m. Prior expectations regarding dominant scales of
RSL variability inform our choices of prior distributions on
hyperparameters for distinct sea-level processes. For exam-
ple, glacial isostatic adjustment (GIA; a process driven by
the viscous response of the mantle to the changes in ice mass
loads since the Last Glacial Maximum) is known to adhere

to roughly linear patterns over the past 3 to 4 kyr. Conversely,
ocean dynamics occurs on shorter timescales with nonlinear
variability (Kopp, 2013). Thus, these processes and others
can be decomposed based on various magnitudes and tem-
poral scales. The choices of priors on the hyperparameters
allow for variation in this decomposition of terms while ad-
hering to prior knowledge. See Fig. C1 for examples of dif-
ferent hyperparameter combinations.

2.2 Statistical model implementation

We define three modules – a distribution-fitting module,
a sampling module, and a sample-wise prediction module
– which are implemented in succession. The distribution-
fitting module estimates data parameters 2d , which are then
used in the sampling module (Eq. 7). The sampling module
employs MCMC sampling and accounts for geochronolog-
ical uncertainty using the noisy-input Gaussian process ap-
proximation method of McHutchon and Rasmussen (2011),
which translates errors in the independent variable (age) into
equivalent uncertainties in the dependent variable (proxy ele-
vation; see Appendix A). The sampling module yields an es-
timate of p(f̂ ,2p|y, t̂,2d ) (left-hand side of Eq. 7), which
is input to the sample-wise prediction module (right-hand
side of Eq. 8). The sample-wise prediction module then in-
fers RSL over time (left-hand side of Eq. 8) through the
NIGP. Each module is described below.

2.2.1 Distribution-fitting module

The distribution-fitting module (Fig. 1b) analyzes the mod-
ern proxy elevations in relation to present-day MSL to de-
termine their indicative meanings. Here, we examine the dis-
tributions of nine corals (Fig. 3) based on their prevalence
in the Quaternary (the past 2.588 million years) fossil record
of the western Atlantic/Caribbean region (Pandolfi and Jack-
son, 2006; Kuffner and Toth, 2017), from which the original
RSL proxy datasets are derived. We evaluate observations of
modern occurrences of each coral taxa by depth (i.e., eleva-
tion of living coral) to determine these distributions, based on
data from the ecological studies archived on the Ocean Biodi-
versity Information System (OBIS) database (OBIS, 2017);
see Appendix D, following Hibbert et al. (2016). The major-
ity of the data used in the analysis come from the Atlantic
and Gulf Rapid Reef Assessment (AGRRA, 2018). AGRRA
monitoring protocols suggest that sampling should focus on
reef zones from 1 to 15 m below MSL (−1 to −15 m ele-
vation), which could bias the distribution data; however, the
fact that the depth optima of some coral taxa in the database
are deeper than 15 m suggests that this bias is small.

We fit nonparametric, empirical probability distributions
to the modern coral depth data, using the “fitdist” function in
MATLAB (Statistics and Machine Learning Toolbox), to as-
sign the likelihood distribution of each coral taxon for use in
the statistical model (Fig. 1b). We use a kernel density with
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Figure 3. Empirical elevation distributions of the nine coral taxa used in the statistical model: (a) histograms of the modern occurrences
of the taxa by depth (negative elevation) with kernel densities overlaid (note that frequencies are not on the same scales), and (b) the fitted
kernel densities for each taxon on the same scale.

positive support, which restricts the range of RSL to posi-
tive values (i.e., elevations of the observed corals are always
below MSL). Using a nonparametric approach avoids mak-
ing assumptions about the distribution of the data (Fig. 3).
The kernel smoother assumes that each modern coral ele-
vation has normal measurement uncertainty and assigns an
individual probability density curve to each data point. The
function has a bandwidth parameter, which can be opti-
mally smoothed. We assigned all taxa densities a bandwidth
value of 0.15 m based on (1) the ∼ 1 ft (0.15 m) precision of
most underwater depth gauges used to measure coral depths,
which is assumed to be the same for all coral taxa, and (2) the
central tendency of the optimized bandwidths for all coral
taxa (the nine optimized bandwidths have a mean of 0.161
and median of 0.121). In the distribution-fitting exercise, the
final probability density function for each coral taxon is the
normalized sum of all of the densities of that coral type (for

details, see “ksdensity” in the MATLAB statistics toolbox;
MATLAB, 2019).

In some cases the nonparametric distributions are bimodal
because the depth distributions of corals are controlled both
by light, which decreases exponentially with depth, and wave
energy, which decreases with depth but is also relatively low
in shallow “back reef” lagoon environments behind the wave-
breaking reef crest (Hubbard et al., 1988).

2.2.2 Sampling module

In the sampling module (Fig. 1d), we transform the observed
paleo-proxy elevations, y, into correlated samples of RSL,
f̂ , and parameters, 2p, that characterize the sea-level pro-
cesses. The likelihoods used in the sampling module are the
kernel densities for each taxa found in the distribution-fitting
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module and at the data level (Sect. 2.1.1), such that

p
(
f̂ k,2p,k|y, t̂,2d

)
∝

n∏
i=1
p
(
f̂i,k,2p,k|f̂−i,k,yi, t̂i,2d

)
×p

(
t̂i |t
∗

i ,2d

)
×p

(
2p,k

)
. (7)

Here, n is the number of RSL proxy records in the model;
k indexes each set of RSL and process-level parameter sam-
ples (nk samples in total); and (f̂−i,k) represents the vec-
tor of RSLs, where subscript −i signifies all points ex-
cept the ith. Thus, each RSL sample (f̂i,k) is successively
conditioned on all other current RSL samples and the cur-
rent GP process-parameter sample p(2p,k). Temporal uncer-
tainty is again incorporated using the noisy-input Gaussian
process (NIGP) method described in Sect. A1. An adaptive
Metropolis-within-Gibbs sampling algorithm (Gelman et al.,
2011) produces nk thinned samples (f̂ k,2p,k). For more de-
tails on the algorithm, see Sect. A6.

2.2.3 Sample-wise prediction module

In the sample-wise prediction module (Fig. 1e), we combine
each of the nk pairs f̂ k and 2p,k to get the posterior distri-
bution of RSL over time t :

p
(
f (t)|2p,y, t̂,2d

)︸ ︷︷ ︸
posterior distribution

∝

nk∏
k=1

p
(
f̂ k,2p,k|y, t̂,2d

)
︸ ︷︷ ︸

sampling module

×p
(
t̂ |t∗,2d

)
×p

(
2p

)︸ ︷︷ ︸
NIGP

. (8)

Each sample 2p,k represents a prior distribution of RSL
and is combined with the corresponding RSL sample, f̂ k ,
through the NIGP (see Sect. A1 for details). The resulting
sample-wise predictive distributions are each (k = 1, . . .,nk)
randomly sampled 10 times, resulting in nk × 10 total sam-
ples of f (t). We then pool these samples to estimate the final
posterior distribution of RSL through time. A theoretical il-
lustrative example of the 95 % credible interval and median
posterior predictions over time is shown in purple in Fig. 1e.

More precise data have more weight in the model. For
example, the less precise Orbicella spp. coral data point at
∼ 5 ka in Fig. 1d and e would alone predict lower RSL; how-
ever, because samples are conditioned on all other data, the
more precise points of the same age constrain the MCMC
samples to the upper limits of the coral likelihood distribu-
tion. In contrast, the coral with a relatively low elevation at
∼ 7 ka is the only data point of that age, so the MCMC sam-
pling produces a distribution of samples that broadly matches
its original likelihood distribution.

2.3 Validation tests and sensitivity analysis

We performed a model validation of the nonparametric
model by comparing its predictions to synthetic “truths” and
examined potential improvements over a previous Gaussian
model (Khan et al., 2015) and empirical, uncorrelated model
(Hibbert et al., 2016). For comparison to the Gaussian model,
we also evaluated which portions of potential improvements
in the nonparametric model were due to the more realistic
interpretation of the data and which were due to including
more data in the model. We performed sensitivity analyses
by evaluating the performance of the nonparametric model
with different quantities and qualities of data.

2.3.1 Model validation

We created five random iterations of a synthetic Holocene
RSL dataset to compare model performance to two
previously published models. The elevation and tempo-
ral uncertainties in the dataset are designed to mimic
characteristics of an extensive coral-based Holocene
RSL archive from South Florida (Toth et al., 2018a, b;
Stathakopoulos et al., 2020; Stathakopoulos and Toth,
2020); reef-derived framework cores are housed at the
U.S. Geological Survey core archive in St. Petersburg,
Florida (https://doi.org/10.5066/F7319TR3). The South
Florida dataset consists of 159 coral samples (Toth et al.,
2018b, a) and 62 sedimentary samples (Khan et al., 2017).
The 159 coral samples include Orbicella spp. (n= 54),
A. palmata (n= 53), Pseudodiploria strigosa (n= 18),
Montastraea cavernosa (n= 10), Diploria labyrinthiformis
(n= 9), Colpophyllia natans (n= 6), Pseudodiploria
clivosa (n= 5), Siderastrea siderea (n= 3), and Porites
astreoides (n= 1).

The synthetic “true” RSL curve was created from the ICE-
6G_C VM5a GIA model pairing of Peltier et al. (2015). We
employed linear interpolation on the GIA values, provided at
kiloyear intervals from 11 ka to present, to assign true RSL
through time. After generating true ages and RSL at each age,
we perturbed those values to generate a dataset that mim-
ics the uncertainties in the real Caribbean dataset. First, we
perturbed the true ages, adding random normal error to each
based on

t̂i = t
∗

i + γi, (9)

where t is true age, t̂i is noisy age, γ is age error drawn from
a normal distribution (γi ∼N (0,λ2

i ) years), and λ is the stan-
dard deviation drawn from a normal distribution with a min-
imum value of 11 years (λi ∼min(11, N (140,752)) years).
This choice was informed by the age uncertainties from the
dataset described above.

We perturbed the true RSL heights with measurement er-
ror and to reflect the distribution (indicative meaning) of the
indicator elevation relative to RSL:

yi,j = f
∗

i + εi + ηi,j . (10)
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Here, f ∗ is true RSL, ε is measurement error drawn from a
normal distribution (εi ∼N (0,δ2

i ) m), and δ is the standard
deviation drawn from a normal distribution with a minimum
value of 0.1 m (δi ∼min(0.1, N (0.55,0.222)) m), also based
on the dataset described above. For coral index points, ηi,j
is drawn from the j th kernel density for the ith proxy index
point (see Fig. 3).

We ran the new nonparametric model, a Gaussian model,
and an “uncorrelated model” using the synthetic data de-
scribed above. The Gaussian model samples hyperparame-
ters instead of using single maximum-likelihood point es-
timates and can only handle data with normal distributions
(i.e., the only coral taxa included is A. palmata, and it is as-
signed a normal distribution), similar to the implementation
in Khan et al. (2017) (see Sect. B2 for full model specifica-
tion). The uncorrelated model uses MCMC sampling of ker-
nel densities based on the empirical coral depth distributions
to predict RSL at ages where there are data, but it does not as-
sume any correlation in time to make predictions elsewhere,
similar to the implementation in Hibbert et al. (2016) (see
Sect. B1 for details). We analyzed the log likelihoods, the
precision of predictions, errors, and bias of each model based
on the difference between the predicted median RSL (fi) and
true RSL (si) at each time point at which data were gener-
ated. The precision is measured by credible intervals (95 %
and 67 %), the bias is measured by mean error

(∑
(fi−si )
n

)
and median error

(
med(fi − si)

)
, whereas overall error (or

accuracy) is measured by root-mean-square error
(

RMSE;√∑
(fi−si )2

n

)
. We also calculated the total log likelihood of

each model, by computing the probability of true RSL within
the predicted posterior distribution of RSL at each data point.
Another measure to validate the model is the coverage ratio,
or the ratio of true RSL (si) within the 95 % (67 %) credible
intervals (CIs) to the total number of data points; this ratio
should be ∼ 0.95 (∼ 0.67) in a robust model. We compared
the validation results using five randomly generated synthetic
datasets, identical for the three models: nonparametric, Gaus-
sian, and uncorrelated.

We ran additional validation tests comparing the perfor-
mance of the nonparametric and Gaussian models to deter-
mine which portions of potential improvements were due
to the more realistic interpretation of the data using kernel
densities and which were due to including more data in the
model. In these tests, we approximate both A. palmata and
Orbicella spp. data with a normal distribution for use in the
Gaussian model so as to compare the models with identical
data. We used synthetic time-series data of various precision
and quantity in each of 12 scenarios (i.e., runs 1–12 in Ta-
ble D1). See Sect. 3.1 for results.

2.3.2 Sensitivity analysis

The sensitivity analysis tested the performance of the new
model framework using different combinations of synthetic
time-series data of various precision and quantity (Table D1).
We constructed two synthetic RSL time series that approxi-
mate the rates of RSL change observed during the best con-
strained and most recent interglacial and deglacial periods:
(1) the Holocene and (2) the late Pleistocene deglaciation
following the Last Glacial Maximum ∼ 21 ka. The first syn-
thetic RSL time series, “SL1” (Fig. 4a), uses a sine curve
to simulate rates of change representative of the Holocene
epoch, ranging from ∼−10 to ∼+10 m kyr−1. The second
synthetic RSL time series, “SL2” (Fig. 4a), contains abrupt
changes, breaking the model assumption of a smooth true
RSL curve with a piecewise linear function. SL2 simulates
meltwater pulses (MWPs) that occurred during deglaciation
with rates of change potentially up to ∼ 40 m kyr−1 (e.g.,
Rohling et al., 2008; Lambeck et al., 2014; Abdul et al.,
2016). Both time series extend over 12 kyr time periods but
are not meant to correspond temporally to real-world changes
in RSL.

To test the sensitivity of the model to different types of
data, we applied the model to a total of 48 synthetic datasets
for each of the two RSL time series. These 48 datasets repre-
sent all possible combinations of three factors: (1) the num-
ber of data points per 1 kyr period (1, 5, or 10), (2) the preci-
sion of the data (combinations of normally distributed sedi-
mentary data, limiting data, and fitted kernel distributions for
the two most common coral taxa: A. palmata and Orbicella
spp.), and (3) the age uncertainty (normal with a standard de-
viation of 75 or 250 years). The precision (the inverse of the
variance) of each distribution is presented in Fig. 4b, and the
factors used in each individual test are provided in Table D1.
The synthetic data for the sensitivity tests are generated in the
same way as in the model validation (Sect. 2.3.1), except that
the true ages are drawn from a uniform distribution within
2 kyr periods during the 12 kyr time period (e.g., ti ∼ U (4,
2 ka)) and the temporal error has a standard deviation of ei-
ther 75 years or 250 years.

We applied the nonparametric model to the synthetic data,
taking 20 000 MCMC samples for each of the 48 tests for
each sea-level scenario (SL1 and SL2). We ran each set of
tests with five starting seeds (random numbers for replica-
tion) in order to maximize randomness and increase sample
size for accurate statistical evaluation of the models. Each
model run produced a posterior predictive distribution of
RSL and its rates of change at 100-year intervals in addition
to summary statistics (e.g., 67 % and 95 % credible intervals
and coverage, cross-model mean RSL, and root-mean-square
errors; Sect. 3.2), which describe the precision and accuracy
of predicted RSL relative to true RSL. In addition, we evalu-
ated the ability of the model to successfully predict the max-
imum rate in SL2 for each iteration of the model, which tests
the model’s ability to detect MWPs and their timing; there-
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Figure 4. (a) Synthetic relative sea-level (RSL) time series, which simulate rates characteristic of the Holocene (SL1) and the last deglaciation
(SL2); (b) precision and elevation of the synthetic data distributions, where sedimentary indicators are normally distributed and centered
above mean sea level (MSL), while Acropora palmata (A. palmata) and Orbicella spp. are distributed according to their regional empirical
distributions below MSL.

fore, we calculated the maximum median rate predicted from
each test to determine the model’s success in this capacity for
each combination of data.

3 Results

3.1 Validation test results

We evaluated the ability of the nonparametric, Gaussian, and
uncorrelated models to predict RSL at each point where we
generated synthetic data. The log likelihood, credible inter-
vals (CIs), average bias, absolute mean error, root-mean-
square error (RMSE), and the coverage of each of the CIs
for each model are provided in Table D2. Overall, the non-
parametric model performed better than previously published
models (both Gaussian, Khan et al., 2015, and uncorre-
lated, Hibbert et al., 2016) because it incorporates more data
than the Gaussian model and uses correlations in time to
make predictions where there are no data and the uncorre-
lated model cannot (Fig. 5). The nonparametric model had a
higher likelihood (smaller magnitudes indicate better model
fit) across all random seeds with a cross-model mean log like-
lihood of ∼−649. The Gaussian and uncorrelated models
had cross-model means of ∼−725 and ∼−131 305, respec-
tively (Table D2; Figs. 5, 6). The nonparametric model pro-
duced RSL estimates with similar precision to the Gaussian
model, with 95 % CI widths averaging ∼ 0.87 and ∼ 0.85 m,
respectively. The uncorrelated model appears to be much
more precise; however, these CI widths are unrealistic given
that the coverage of the 95 % CI is only 46 %. The nonpara-
metric model has coverage that is approximately as expected
with a cross-model mean of 95.2 % coverage, and the Gaus-

sian model averaged 84.4 % (i.e., less than the expected 95 %
of true values fall within 95 % CIs). The 67 % CI coverage re-
sults (Table D2) are even more distinct in the different mod-
els with cross-model means of 84.0 %, 48.3 %, and 32.0 %,
respectively, indicating that the nonparametric model esti-
mates higher-than-necessary uncertainties (CIs are too wide),
whereas the other two models produce the opposite result.
In other words, the Gaussian and uncorrelated models are
overly confident in their predictions at the 67 % CI level,
whereas the nonparametric model more conservatively pre-
dicts uncertainties.

The nonparametric model also had less bias than the pre-
viously published models. The nonparametric model tended
to slightly underpredict RSL (negative bias measured by the
mean error; cross-model means of ∼−0.01 m), whereas the
Gaussian and uncorrelated models tended to overpredict RSL
by∼ 0.02 and∼ 0.11 m, respectively (Figs. 5b, c, 6). The val-
idation tests suggest that the uncorrelated model can be ex-
tremely inaccurate at points where the elevation of the proxy
is far from the true RSL with a cross-model average RMSE
of 1.19 m (Figs. 5c, 6; Table D2). This inaccuracy is due
to the assumed independence of each sample, as the uncor-
related model does not account for temporal correlation in
RSL. Both the nonparametric and the Gaussian models had
smaller cross-model averages for RMSE values of ∼ 0.10
and ∼ 0.20 m, respectively, indicating higher general accu-
racy.

To account for the possibility that the differences in the
performance of the nonparametric and Gaussian models were
due to the fact that the Gaussian model excludes some (non-
parametric) data that the nonparametric model includes, we
conducted an additional comparison of the model where the
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Figure 5. Results of validation tests. Comparison of three models using a synthetic dataset based on the modern distributions of Acropora
palmata (A. palmata) and Orbicella spp., with median relative sea-level (RSL) estimate and 95 % credible intervals: (a) the current nonpara-
metric model incorporates all available data; (b) the Gaussian model uses the same interpretations of data as in Khan et al. (2017) but samples
to incorporate distributions on parameters; (c) the uncorrelated model, similar to Hibbert et al. (2016), uses sampling to infer the probability
of RSL at specific times based on modern empirical distributions but without consideration of correlations in time; and (d) predictions from
all three models in a single overlapping plot with insets showing model predictions.

number of data points and uncertainties were equivalent.
In 10 of the 12 data cases tested, the nonparametric model
had a lower RMSE (Fig. 7a), although the Gaussian model
performed better in some cases. The general trend is that
models with more data that incorporate A. palmata result in
more pronounced accuracy where the nonparametric model
performs better. Bias (Fig. 7a) is lower for the nonparamet-
ric model in 6 of 12 cases, but the biases are quite similar
in those models where the Gaussian model performs bet-
ter. Conversely, greater bias is more pronounced where the
nonparametric model performs better, in particular when us-
ing Orbicella spp. data, as would be expected. In 8 of the
12 cases, the precision (Fig. 7b) is higher for the nonpara-
metric model, and the coverage is near equivalent for all
models, where each average coverage ratio is greater than
the expected 95 % for both models; the only exception is in
tests with only 12 Orbicella spp. data points, where the aver-

age coverage ratio is less than expected for both models. The
results are similar with SL2 (Fig. 8).

These results indicate that the nonparametric model per-
forms slightly better than the Gaussian model when the same
amount of data are used in each. Thus, the majority of the
improvement stems from the new model’s ability to realisti-
cally handle nonparametric proxies, allowing the use of more
data.

3.2 Sensitivity analysis results

The sensitivity tests analyzed how the nonparametric model
performs with various amounts and types of data (see
Sect. 2.3.2). We compared the true synthetic sea level for
each of the two sea-level scenarios to predict median RSL
at points every 100 years and calculated CI widths, mean
absolute error (MAE), and median error to estimate model
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Figure 6. Validation test results. These metrics are used to validate
the new nonparametric model against the Gaussian and uncorrelated
models when applied to equivalent synthetic datasets: (a) accuracy
is represented by the root-mean-square error (RMSE); (b) coverage
percentage represents the accuracy of uncertainty predictions or the
ratio of true synthetic relative sea level (RSL) falling within the pre-
dicted 95 % credible interval (CI); (c) model fit is represented by the
total log likelihood of each model; (d) precision is represented using
the width of the 95 % CI; and (e) bias is represented using the aver-
age mean error. Purple (green/yellow) colors indicate better (worse)
model performance. The cross-model averages of each metric are
shown in each box, and the five runs (for randomness) are repre-
sented by the circles, with the position of the circle identifying the
seed. Details for each validation test are presented in Table D2.

precision, accuracy, and bias, respectively (Tables D5, D6).
Models that perform well are those that accurately and pre-
cisely detect true RSL and rates of change. Consistent with
statistical expectations, the sensitivity analyses indicated that
the new nonparametric model performs best when the model
is applied to high-precision data and/or a higher quantity of
data, with trade-offs between the two. Details of the effects
of each data factor and results of each test are given in Ap-
pendix D. We summarize the overall trends below.

The precision of the data directly affected the precision
of the RSL and rate predictions as well as the average er-
ror of the predictions for the first sea-level scenario, SL1
(Fig. 9, Table D5). For example, the sensitivity analyses sug-
gested that, in sea-level scenarios similar to the Holocene
(last ∼ 12 ka), data that have the precision of sedimentary
indicators and/or A. palmata and relatively small temporal
uncertainties (standard deviation of ∼ 75 years) were able to
constrain rates of RSL change to ±1.8 m kyr−1 at a ∼ 67 %
confidence level and±2.5 m kyr−1 at∼ 95 % confidence (Ta-
ble D5).

For tests with low-precision data, uncertainties increased
to an average of ±3.0 m kyr−1 at a ∼ 67 % confidence level,
and tests with limiting data were unable to constrain rates of

RSL change to less than ±6.4 m kyr−1 at 67 % confidence.
However, when supplementary sedimentary data were added,
tests with limiting data could constrain rates to± 5.5 m kyr−1

at a ∼ 67 % confidence level. The amount of data also gener-
ally affected the precision and the bias of RSL predictions:
five per 1 kyr period (versus one point) reduced 95 % CI
ranges by an average of ∼ 50 % (Fig. 9c) and cut the bias
even more in both cases (Fig. 9c and d, respectively). An
increase in the temporal uncertainty of the data from 75 to
250 years affected the models with high-precision data more
than the models with lower-precision data but was not the
most important factor in performance (Table D5).

The largest factor in the accuracy, precision, and bias of
all models was the number of data points (Fig. 9), where in-
cluding only one point per 1 kyr period (12 total data points)
decreased accuracy to an average RMSE of almost 13 m for
limiting data only and ∼ 1.5 m for sedimentary data. Preci-
sion ranged from a 95 % CI width of ∼ 10–40 m, and bias
averaged more than ∼ 0.5 m in tests with only one point per
kiloyear. The increases in accuracy, bias, and precision from
1 point per kiloyear to 5 points are generally more significant
than those from 5 points to 10 points per kiloyear.

For reconstructing RSL with rates observed during the
early Holocene (∼ 10 m kyr−1), employing the nonparamet-
ric model with more than one point per kiloyear is gener-
ally necessary, even with the most precise data. However, ac-
curate (RMSE< 0.6 m) and precise (2σ < 2 m) predictions
can be made with almost any combination of sedimentary,
Acropora, and Orbicella data. In addition, fairly accurate
(RMSE< 1.5 m) and unbiased (magnitude of bias< 0.5 m)
results can be produced with 60 points of almost any combi-
nation of proxies, except for limiting data alone (see Fig. 9a
and b, bottom row). Conversely, precision of model estimates
only improves when the nonparametric model is employed
with high-precision data.

In sensitivity analysis of the second sea-level scenario,
SL2, which includes abrupt accelerations, results varied
(Fig. 10). We test the sensitivity of SL2 to determine whether
statistical models are able constrain large accelerations in
sea-level rise accurately and precisely. We found that includ-
ing more than 1 sedimentary or A. palmata data point per
kiloyear (12 points total) with age uncertainties of 75 years
produced a cross-model average 67 % CI for rates of RSL
change of ±∼ 3 m kyr−1 and a 67 % CI for RSL of ±<
2.5 m (Table D6, Fig. 12). The cross-model average rate bias
was <−0.3 m kyr−1, and the cross-model average bias for
RSL was < 0.2 m in these same tests. The precision of es-
timates generally decreased as the precision of the data de-
creased, as would be expected. Adding 4 or 9 points of data
per 1 kyr period (from 1 point to 5 or 10) decreased the
95 % CI width by an average of 43 %–56 % and the 67 % CI
width of rates by about 30 %–40 %. The only models with
significant bias (predictions averaging more than 2 m above
or below true sea level) were those with Orbicella spp. data
or limiting data; however, the model resulted in a very low
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Figure 7. Comparison of several metrics to validate the new nonparametric (NP) model against the Gaussian model with the same exact
data using sea-level curve SL1. The Gaussian model includes the same quantity of data as the nonparametric model but approximated with
normal distributions instead of with kernel densities for both Orbicella spp. (O) and Acropora palmata (A). The differences (a, c) represent
the Gaussian metric minus the nonparametric metric. The box colors represent the average metric value (also shown numerically), and each
dot represents the individual test, positioned to match the corresponding test run. (a) The difference in the average accuracy of the models,
measured by the root-mean-square error (RMSE). (b) Average bias for each model, measured by the mean error, where brown (green)
represents positive (negative) bias. (c) The difference in the precision of model predictions, measured by the width of the 95 % credible
interval (CI). (a, c) Brown (green) values are positive (negative), signifying that the nonparametric model had less (more) error or more (less)
precision. (d) Average accuracy of the uncertainty intervals, measured by the ratio of true values within the 95 % CI. Darker blues represent
more coverage (better performance). (b, d) The model type is shown at the bottom of each column. Individual test results for all metrics are
shown in Table D3.

bias when applied to all other datasets (cross-model average
error of all other tests of 0.4 m).

The sensitivity tests show that high-precision proxies (sed-
imentary or A. palmata) and dates are important for detect-
ing high rates of change. When data had more precise ages
(75-year standard deviation), the model estimated, on aver-
age, 2.5 m kyr−1 higher maximum rates (Table D6, Fig. 12),
indicating that increasing the precision in dates of indica-
tors can improve model results. However, some models that
predict the highest rates of RSL change within the 67 % or
95 % CIs are so imprecise that these predictions mean very

little (Fig. 12a, b, c, d). Models with the most bias were
those applied with Orbicella data alone or Orbicella in ad-
dition to limiting data. In cases where there are sedimentary
or A. palmata data to constrain the low-precision data or a
greater quantity of data, there was less bias in RSL predic-
tions (Fig. 11b, d, e). However, the bias in RSL did not al-
ways affect the ability of the models to predict the rates of
abrupt accelerations (e.g., Fig. 12e, f).

Tests with different amounts of data varied greatly in their
ability to predict true RSL for SL2. For example, Fig. 11g
and h display the same type of data (limiting) with differ-
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Figure 8. Comparison of several metrics to validate the new nonparametric (NP) model against the Gaussian model with the same exact
data using sea-level curve SL2. The Gaussian model includes the same quantity of data as the nonparametric model but approximated with
normal distributions instead of with kernel densities for both Orbicella spp. (O) and Acropora palmata (A). The differences (a, c) represent
the Gaussian metric minus the nonparametric metric. The box colors represent the average metric value (also shown numerically), and each
dot represents the individual test, positioned to match the corresponding test run. (a) The difference in the average accuracy of the models,
measured by the root-mean-square error (RMSE). (b) Average bias for each model, measured by the mean error, where brown (green)
represents positive (negative) bias. (c) The difference in the precision of the model predictions, measured by the width of the 95 % credible
interval (CI). (a, c) Brown (green) values are positive (negative), signifying that the nonparametric model had less (more) error or more (less)
precision. (d) Average accuracy of the uncertainty intervals, measured by the ratio of true values within the 95 % CI. Darker blues represent
more coverage (better performance). (b, d) The model type is shown at the bottom of each column. Individual test results for all metrics are
shown in Table D4.

ent data density, showing that the precision and accuracy in-
crease as the quantity of data increases. It is important to
note, however, that including both terrestrial- and marine-
limiting data is essential to predictions. In other words, hav-
ing only lower bounds on sea level would not create accu-
rate results. Data density also influences the ability of the
model to accurately constrain sudden accelerations in sea
level. For example, the model in Fig. 11g did not predict the
timing of sudden changes around 3–4 ka, whereas the model

in Fig. 11h did. However, the former predicted the abrupt
change at about 7 ka, although with less precision.

The precision of the data also influences model results. For
example, the models in Fig. 11i and j, both include the same
amount of data. Although the plots appear somewhat similar,
the model with more precise Orbicella spp. data (Fig. 11i)
produces more precise (95 % CI ± 4.8 versus ± 12.0 m) and
accurate (RMSE of 3.5 versus 8.1 m) results. Interestingly,
applying the model to data with the same characteristics can
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Figure 9. SL1 sensitivity test results. The quantity of data is shown on the left, and the type of proxy is displayed on the bottom of each
panel. The numbers in the boxes represent the cross-model averages of each metric, and the circles represent each of the individual tests.
The specific values of these individual metrics are shown in Table D5. (a) Accuracy is represented by the root-mean-square error (RMSE),
where blue values indicate less accuracy; (b) bias is represented by the mean error, where green is negative bias and brown is positive bias;
(c) precision is measured by the width of the 95 % credible interval (CI), where blue signifies the least precise model runs; and (d) accuracy
of the uncertainty intervals (or coverage %) is measured by the ratio of true values within the 95 % CI, where blue represents the highest
coverage or greatest accuracy (Table D5).

result in different model performance. For example, the mod-
els in Fig. 12e and f have the same type, amount, and preci-
sion of data with the only difference being the random per-
turbation of the data; however, the model in Fig. 12e predicts
rates with more precision and accuracy, whereas the model
in Fig. 12f is unable to predict those highest rates with any
degree of precision.

In general, all of the models result in a smoothing effect,
but a large amount of the most precise data are required to
detect abrupt rates of change like MWPs. We find that em-
ploying the model with 5 to 10 high-precision data points
per kiloyear enables the constraint of rapid rates of RSL (like
those represented in SL2) to within±∼ 3 m kyr−1 with 67 %
confidence.

4 Discussion and conclusions

We develop a new technique for integrating nonparametric
likelihoods into a hierarchical statistical framework to allow
for a more realistic treatment of proxy uncertainties in prob-
abilistic models of past RSL change. It is more flexible than
past methods, with the ability to employ parametric, nonpara-
metric, and limiting distributions. The framework provides
a robust method for incorporating fitted empirical elevation
distributions of a variety of proxies into RSL models, which
we have illustrated with coral taxa.
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Figure 10. SL2 sensitivity test results. The quantity of data is shown on the left, and the type of proxy is displayed on the bottom of each
panel. The numbers in the boxes represent the cross-model averages of each metric, and the circles represent each of the individual tests. The
specific values of these individual metrics are shown in Table D6. (a) Accuracy is represented by the root-mean-square error (RMSE), where
blue values indicate less accuracy; (b) bias is represented by the mean error, where green is negative bias and brown is positive bias; (c)
precision is measured by the width of the 95 % credible interval (CI), where blue signifies the least precise model runs; and (d) accuracy of
the uncertainty intervals is measured by the ratio of true values within the 95 % CI or coverage percentage, where blue represents the highest
coverage or greatest accuracy (Table D6).

Validation tests of the new framework show that it per-
formed better than previous (Gaussian and uncorrelated)
models based on model fit, accuracy, precision, bias, and
overall error, although some of the differences in the model
results were small (Fig. 5). Compared with Gaussian and
uncorrelated models, the new nonparametric framework had
higher likelihoods in all cases, achieved smaller errors (av-
erage RMSE of 0.1, 0.2, and 1.3 m, respectively), and had
less bias (−0.01, −0.02, and 0.11 m, respectively; Fig. 5)
for three reasons. First, assuming Gaussian distributions for
RSL proxies when the modern elevations of those proxies
are poorly approximated by a Gaussian distribution resulted
in less accurate predictions of RSL and poorer model fit than
when the kernel densities were applied. Second, employing
a model that can handle nonparametric distributions enables
the use of more data as input. Third, applying models that
do not take advantage of known temporal correlations in sea
level (i.e., the uncorrelated model) prevented any statistical

prediction of RSL for times with no data and biased RSL
predictions when the data fell into the lower-likelihood areas
of the kernel densities of low-precision corals (Tables D5,
D6).

Although the new model outperformed the previous mod-
els when applied to time-series data, its utility for large spa-
tiotemporal datasets may be limited. The flexible, new frame-
work can be adapted to spatial datasets and uses geographic
correlations among data, but the computational expense of
running fully Bayesian models may be time-prohibitive with
large amounts of data (>∼ 250 points). For example, the
time to invert a covariance matrix in a GP model scales with
the cube of the number of data points, which also prevents
the Gaussian model from running with>∼ 1500 data points.
Improvements in high-performance computing, parallelizing
code, and more advanced estimation methods for covariances
may lessen the differences in implementation times in the fu-
ture (Ashe et al., 2019). State-of-the art MCMC sampling
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Figure 11. Twelve examples of sensitivity tests performed on “true” synthetic relative sea-level (RSL) curves: panels (a)–(e) show sea-level
curve 1 (SL1), which represents rates of RSL change similar to the Holocene; panels (g)–(l) show sea-level curve 2 (SL2), which represents
abrupt rates of RSL change and maximum rates of up to ∼ 40 m kyr−1, similar to meltwater pulses. For both curves, the red line in each
plot represents the synthetic truth. Each of these tests uses various combinations, quantities, and precision of data, which are labeled in each
panel.
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Figure 12. Eight examples of sensitivity tests showing various precision and error in rates for sea-level curve 2 (SL2). The red line in each
plot shows the true rate, and the black and gray plots show the median and the 67 % and 95 % credible intervals (CIs), respectively. The
quantity, precision, and age error of each dataset is labeled above the corresponding plot. Note that panels (e) and (f) have the same data
characteristics, but the randomness (i.e., how the data are perturbed for the different seeds) produces different model results.

strategies from off-the-shelf tools in many programming lan-
guages (e.g., R, Python) have the potential to make the non-
parametric model more useful even with large amounts data.
There are also several approximation and estimation tech-
niques, which could speed up performance, that have not yet
been applied in a sea-level context, such as variational infer-
ence (Blei et al., 2017). We find minimal gains over the Gaus-
sian model when many precise proxies (sedimentary and A.
palmata) are included in model runs; therefore, we gener-
ally recommend using the Gaussian model for the analysis
of larger datasets for which precise data are available.

The quantity, precision, and temporal resolution of the data
used in the model were important factors in the accuracy
and precision of RSL reconstructions in validation experi-
ments and sensitivity tests. Although including some data
(5 or 10 points per kiloyear – 60 or 120 points total) with
high precision assisted in creating the most accurate mod-
els of RSL change, there was generally a trade-off between
the quality (precision or uncertainty) and quantity of data.
Using the most data possible, from a variety of RSL proxies
with well-characterized likelihood distributions, provided the
most accurate and precise estimates of past RSL variability
as shown in sensitivity tests (Tables D5, D6). These results
could be used by researchers to optimize sampling strategies
by providing a priori targets of sample densities and types
based on the precision needed for reconstructing sea level
for a particular time period and locality.

Our results also have implications for how low-precision
data should be interpreted and used in the new framework.
We found that models that used precise, sedimentary data
and the low-precision kernel distributions of Orbicella spp.
tended to produce more accurate and precise results than
models using sedimentary and limiting data. Thus, it is bet-
ter to have known fitted distributions to interpret data, rather
than using terrestrial- or marine-limiting bounds. Moreover,
when incorporating low-precision, massive coral data (Orbi-
cella spp.) into the new framework, efforts should also be
made, if possible, to refine the empirical distributions by
further evaluating characteristics of their depositional envi-
ronment and the taphonomy and morphology of the coral
samples (e.g., Stathakopoulos et al., 2020; Blanchon and
Perry, 2004; Perry and Hepburn, 2008) to increase their pre-
cision and improve model performance. The depth distribu-
tions of corals also have the potential to vary by location
(Hibbert et al., 2018), so the empirical distributions could
be further refined in areas where location-specific modern
data are available. Therefore, we recommend using empirical
distributions when no other information (e.g., reef facies or
epibionts indicative of shallow-water environments to refine
coral indicative meaning) or no additional, more precise data
(e.g., sedimentary or A. palmata) are available at a location
or for a time period of interest.

The new framework developed in this study has broad ap-
plicability to the analysis of past RSL. Many previous stud-
ies do not appropriately incorporate data uncertainties nor
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do they estimate rates in a statistically robust way. As dis-
cussed above, the flexibility of the new framework enables
integration of proxies previously unused in Gaussian mod-
els (e.g., massive corals, limiting data). This provides an im-
portant improvement over previous RSL models, particularly
in places or for periods of time where sedimentary indica-
tors may not accumulate or preserve (e.g., Woodroffe et al.,
2015). In addition, the new framework could be applied to
assess rates of change during MWPs recorded in deglacial
datasets. For example, while Deschamps et al. (2012) relied
primarily on a handful of corals with narrower and shallow
paleowater depth estimates to define the timing and magni-
tude of MWP-1A (between 13 500 and 14 700 years ago),
inclusion of all of the coral data across this interval – even
those with larger paleowater depth ranges – may help to
better constrain the MWP according to our assessment of
the model performance. Although the new framework pro-
duced some biased RSL height results compared with true
RSL in sensitivity tests, the estimated rates of RSL change
were less biased, even in sea-level scenarios with high rates
of sea-level rise (∼ 40 m kyr−1). Average errors in the rates
of RSL change were reduced by one-half when a sufficient
amount of data (> five points per kiloyear) were included
(∼ 0.3 m kyr−1 versus ∼ 0.6 m kyr−1). In fact, the synthetic
tests performed in this study may call the validity of previ-
ously estimated rates of change during deglacial periods or
MWPs into question, as the sensitivity tests have shown that
more data are necessary to accurately and precisely constrain
rates, even in the new nonparametric model. The new frame-
work may also be used to evaluate the timing and magni-
tude of sea-level highstands in Holocene and Last Interglacial
records. For example, the amplitude of highstands inferred in
previous models (e.g., the Gaussian model used in Khan et
al., 2017) may prove inaccurate or be overestimated. Based
on results of the validation tests, the Gaussian model can be
positively biased by more than 1 m, suggesting that further
analyses are required to evaluate highstand timing and mag-
nitudes.

Application of the new framework to sea-level datasets
from a variety of locations and time periods has the potential
to reveal more precise and accurate estimates of rates of RSL
because the new framework has less bias, especially in rates.
The nonparametric framework also allows the incorporation
of limiting data, which could be valuable when there are
long hiatuses of other data. In addition, the framework can
statistically incorporate information that refines coral indica-
tive meaning (e.g., by incorporating location-specific proxy
depth distributions) that produce nonparametric likelihoods.
At a minimum, this new framework could serve as a check
on previous results when models similar to the Gaussian
and uncorrelated models have been used. Although we have
demonstrated the model’s potential using synthetic datasets,
the future application of the new framework to real datasets
could include previously unincorporated data to better esti-
mate past RSL and rates of RSL change.

Appendix A: Model implementation

A1 Noisy input Gaussian process – NIGP

Age uncertainties are incorporated using the NIGP method
of McHutchon and Rasmussen (2011), which uses the first-
order Taylor-series approximation (a linear expansion about
each input point) to translate errors in the independent vari-
able (time) into equivalent errors in the dependent variable
(RSL), such that age error is recast as sea-level error pro-
portional to the squared gradient of the GP posterior mean
(McHutchon and Rasmussen, 2011).

f
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∂f
(
t̂i
)
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, (A1)

where f (t∗i ) is the sea-level process at time, t∗i , γi is the
age error, and ∂f (t̂i)/∂t̂ is the partial derivative of f with
respect to t̂ . Age uncertainties are assumed to be normally
distributed, such that γi ∼N (0,λ2

i ). The approximation of
f is
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where ε is the normally distributed elevation measurement
uncertainty in Sect. 2.1.1, such that εi ∼N (0,δ2

i ) (from
Eq. 2). The predictive posterior distribution is a GP with
mean, f ∗, and variance V[f ∗]:
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where ε2 is the vector of all ε2
i , 6t is the age noise matrix,

0 is the matrix of derivatives, M is the original training co-
variance matrix, M∗ is the covariance between test t∗ and
training points t̂ , and 0f6t0

T

f
is the corrective variance term

added to output noise, so that inputs (ages) can be treated
as deterministic. See McHutchon and Rasmussen (2011) for
more details.

A2 Markov chain Monte Carlo sampling – MCMC

The MCMC samples of f̂ and 2p, conditional on y, t̂ ,
and 2d , are generated using a Metropolis-within-Gibbs
algorithm based on the following derivation. Assuming
all parameters of 2p take a uniform prior distribution,
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p(f̂i |f̂−i, t̂i,2d ,2p) (Eq. 7) can be estimated analytically
from the NIGP predictive equations of McHutchon and
Rasmussen (2011) (Sect. A1) using t̂i as the test point
and all other data as the training data. Thus, samples of
p(f̂ ,2p|y, t̂,2d ) are created according to the likelihood
of each randomly generated f̂ ′i by calculating and multiply-
ing p(f̂ ′i |f̂−i, t̂i,2d ,2p)×p(yi |f̂ ′i ,2d ) and accepting or
rejecting proposed samples based on the ratio A:

A=min

1,
p
(
f̂ ′
i
|f̂−i , t̂i ,2d ,2p

)
×p

(
yi |f̂

′
i
,2d

)
p
(
f̂i |f̂−i , t̂i ,2d ,2p

)
×p

(
yi |f̂i ,2d

)
 . (A5)

Here, the numerator represents the likelihood of the newly
proposed sample f̂ ′i , and the denominator represents the like-
lihood of the last sample accepted f̂i , both conditional on the
previously accepted samples for all other variables.

Proposed samples of 2p are equivalently accepted or re-
jected based on the ratio A′:

A′ =min

1,
p
(
θ ′h|f̂ ,θ−h

)
p
(
θh|f̂ ,θ−h

)
 , (A6)

where θh represents the hth hyperparameter in 2p.
The whole model is summarized in three modules:

1. Distribution-fitting module. Each coral taxa assumes a
fixed modern coral distribution, based on the modern
coral elevations with respect to MSL from OBIS or
its indicative meanings. These distributions are used as
likelihoods in step 2.

2. Sampling module. This step generates samples of RSL
(f̂ ) and process hyperparameters (2p). Inputs comprise
y, t̂ , 2d , and f (t) (Eqs. 5, 6). The step proceeds by

a. initializing f̂ 0 and2p,0 (the vector of sea-level hy-
perparameters {αc,βc,αw}) and all step sizes;

b. sequentially sampling new f̂ ′i , based on NIGP pre-
dictions and the likelihood, with acceptance prob-
ability= A (Eq. A5) and each θ ′p with acceptance
probability = A′ (Eq. A6);

c. every 40th iteration, step size is reassigned (pro-
posals are randomly sampled from a normal distri-
bution with standard deviation of the initialized or
recalculated step size) to optimize acceptance ratio
(Gelman et al., 2013) according to two conditions,

– if a ratio > 0.3 or count < 5, the step size stan-
dard deviation is increased, or

– if a ratio < 0.2 is accepted, the step size stan-
dard deviation is decreased.

3. Sample-wise prediction module. This step combines
thinned samples of f̂ k and 2p,k , the samples of RSL,

and the process hyperparameters through the NIGP pre-
dictive equations of McHutchon and Rasmussen (2011)
(Sect. A1). In this step, accepted samples are thinned
based on sample autocorrelations. For each sample k, a
pair represents a prior GP, conditioned on a set of data,
which creates a posterior GP that can be used for predic-
tions. A total of 10 samples of predictions over time are
drawn from the thinned sample pairs. All 10× nk sam-
ple predictions are pooled to estimate the final posterior
distribution p(f (t)|2p,y, t̂,2d ). Each estimate is con-
sistent (and equally likely) given the observed data and
data parameters.

Appendix B: Methods used for comparison in the
validation tests

B1 Uncorrelated method

The published uncorrelated method samples in both age and
elevation measurement uncertainty, whereas the age is as-
sumed to be constant in our approximation of that method. In
this way, the log likelihood of the method achieves a higher
value than it would if we assumed a bivariate distribution of
uncertainties for each data point.

There is no correlation assumed between the data. Instead
each nonparametric distribution is directly applied to each in-
dicator, which individually determines the “posterior” prob-
ability of RSL at each point.

B2 Gaussian implementation

The Gaussian model is similar to the implementation in Khan
et al. (2017). The published method implements a spatially
correlated component by adding terms to the process level.
These terms employ covariance functions that allow the cor-
relation of data in both time and space to add information
from other sites. See Khan et al. (2017) for more details.

Appendix C: Hyperparameter analysis

We analyzed the results of various combinations of hyper-
parameters in order to restrict the bounds within the model
framework. Figure C1 shows some examples of these com-
binations. When the ratio between the amplitude and the tem-
poral scale of the covariance function is too high, the model
predicts high-frequency wiggles that are unfounded in the
known processes that affect relative sea level. When this ra-
tio is too low, the model resorts to the prior distribution (in
most cases the zero-mean prior) instead of gaining informa-
tion from the data. The results of high white-noise amplitudes
are wide bounds on all estimates of RSL (Fig. C1a, bottom
plot).
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Figure C1. Examples of various hyperparameter combinations and the way they influence how the same data are interpreted and reflect the
predicted relative sea level (RSL).
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Appendix D: Additional results

The average results of the analyses are shown in Tables D5
and D6, and the full results of the individual sensitivity and
validation tests are available with the code and data at https:
//github.com/ericaashe/Nonparametric.

Monte Carlo Markov chains are strongly autocorrelated,
which produces clumps of samples that may not be represen-
tative of the true underlying posterior distribution. Analyz-
ing these autocorrelation plots leads us to accept every 20th
MCMC sample (thinning by discarding the other 19 sam-
ples) so that samples are approximately independent of one
another (Fig. D1a). We check convergence of a model or pa-
rameters in a model by looking at the progression of values.
The number of samples to throw out is determined by how
long (how many samples) it took for the model to converge.
For example, in Fig. D1e, the first ∼ 50–75 samples must be
“burned” or thrown out to achieve a representative posterior
sample.

Table D1. Temporal data density, age uncertainty, and proxy distributions used to create synthetic data to perform the sensitivity tests of the
nonparametric model. Runs 1–12 are also applied in the validation tests comparing the nonparametric and Gaussian models (Sect. 2.3.1).

Run Data density Age error Proxy Run Data density Age error Proxy
(points per (SD, years) distribution(s) (points per (SD, years) distribution(s)

kiloyear) kiloyear)

1 1 75 A. palmata 25 1 75 A. palmata and Orbicella
2 5 75 A. palmata 26 5 75 A. palmata and Orbicella
3 10 75 A. palmata 27 10 75 A. palmata and Orbicella
4 1 250 A. palmata 28 1 250 A. palmata and Orbicella
5 5 250 A. palmata 29 5 250 A. palmata and Orbicella
6 10 250 A. palmata 30 10 250 A. palmata and Orbicella
7 1 75 Orbicella 31 1 75 Limiting data
8 5 75 Orbicella 32 5 75 Limiting data
9 10 75 Orbicella 33 10 75 Limiting data
10 1 250 Orbicella 34 1 250 Limiting data
11 5 250 Orbicella 35 5 250 Limiting data
12 10 250 Orbicella 36 10 250 Limiting data
13 1 75 Sedimentary 37 1 75 Limiting and Orbicella
14 5 75 Sedimentary 38 5 75 Limiting and Orbicella
15 10 75 Sedimentary 39 10 75 Limiting and Orbicella
16 1 250 Sedimentary 40 1 250 Limiting and Orbicella
17 5 250 Sedimentary 41 5 250 Limiting and Orbicella
18 10 250 Sedimentary 42 10 250 Limiting and Orbicella
19 1 75 A. palmata and sedimentary 43 1 75 Limiting and sedimentary
20 5 75 A. palmata and sedimentary 44 5 75 Limiting and sedimentary
21 10 75 A. palmata and sedimentary 45 10 75 Limiting and sedimentary
22 1 250 A. palmata and sedimentary 46 1 250 Limiting and sedimentary
23 5 250 A. palmata and sedimentary 47 5 250 Limiting and sedimentary
24 10 250 A. palmata and sedimentary 48 10 250 Limiting and sedimentary
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Table D2. Validation tests results: model comparison of nonparametric, Gaussian, and uncorrelated models.

Nonparametric Log likelihood 95 % CI 67 % CI Mean error MAE RMSE 95 % CI coverage 67 % CI coverage
(±m) (±m) (m) (m) (m) (%) (%)

Seed 1 −663.4 0.11 0.50 −0.04 0.07 0.08 100 % 96.7 %
Seed 2 −631.6 0.68 0.31 0.01 0.05 0.09 90.9 % 83.5 %
Seed 3 −660.3 0.89 0.42 −0.06 0.07 0.08 100 % 92.6 %
Seed 4 −657.8 0.98 0.46 0.02 0.07 0.09 100 % 82.6 %
Seed 5 −632.5 0.74 0.35 0.01 0.06 0.16 85.1 % 64.5 %

Gaussian Log likelihood 95 % CI 67 % CI Mean error MAE RMSE 95 % CI coverage 67 % CI coverage
(±m) (±m) (m) (m) (m) (%) (%)

Seed 1 −733.8 0.94 0.42 −0.01 0.09 0.16 87.6 % 52.1 %
Seed 2 −680.9 0.77 0.36 0.02 0.06 0.15 91.7 % 67.8 %
Seed 3 −799.9 0.73 0.35 −0.01 0.13 0.25 75.2 % 16.5 %
Seed 4 −725.1 1.00 0.47 0.08 0.09 0.21 88.4 % 57 %
Seed 5 −686.9 0.79 0.36 0.02 0.08 0.22 79.3 % 47.9 %

Uncorrelated Log likelihood 95 % CI 67 % CI Mean error MAE RMSE 95 % CI coverage 67 % CI coverage
(±m) (±m) (m) (m) (m) (%) (%)

Seed 1 −136753.805 0.20 0.10 0.21 0.75 1.20 39 % 31.7 %
Seed 2 −127618.439 0.23 0.12 0.33 0.68 1.14 52.4 % 35.4 %
Seed 3 −128010.486 0.18 0.09 −0.07 0.79 1.24 43.9 % 28 %
Seed 4 −136027.125 0.21 0.11 0.00 0.75 1.20 42.7 % 29.3 %
Seed 5 −128113.106 0.19 0.10 0.07 0.75 1.19 53.7 % 35.4 %

Table D3. Summary of validation test results for the Gaussian model, which are compared to the nonparametric model results (Table D5,
select test parameters) with same exact data for sea-level scenario 1 (SL1) to determine the portion of improvement from more precise
empirical distributions versus the inclusion of more data in the nonparametric model. See Fig. 7 for a visual representation of the comparison.

95 % CI 95 % CI coverage Median error 67 % CI for rate 67 % rate CI coverage RMSE
Test parameters (±m) (%) (m) (±m kyr−1) (%) (m)

A. palmata 3.9 99.8 % 1.8 2.4 91.1 % 1.4
Orbicella spp. 5.7 99.7 % 2.6 3.0 91.1 % 3.5

A. palmata, 75-year age error 3.3 99.5 % 1.5 2.3 87.7 % 1.4
A. palmata, 250-year age error 4.4 100.0 % 2.1 2.6 94.5 % 1.3
Orbicella spp., 75-year age error 5.6 99.4 % 2.5 3.0 87.7 % 3.8
Orbicella spp., 250-year age error 5.7 100.0 % 2.7 3.0 94.5 % 3.3
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Table D4. Summary of validation test results for the Gaussian model, which are compared to the nonparametric model results (Table D6,
select test parameters) with same exact data for sea-level scenario 2 (SL2) to determine the portion of improvement due to the empirical
distributions versus due to the inclusion of more data in the nonparametric model. See Fig. 8 for a visual representation of the comparison.

95 % CI 95 % CI coverage Median error 67 % CI for rate 67 % rate CI coverage RMSE
Test parameters (±m) (%) (m) (±m kyr−1) (%) (m)

A. palmata 5.3 89.7 % 3.4 3.9 60.7 % 3.3
Orbicella spp. 7.4 88.2 % 4.1 4.7 61.8 % 4.8

A. palmata, 75-year age error 4.6 89.3 % 3.0 3.8 62.0 % 2.9
A. palmata, 250-year age error 6.1 90.2 % 3.9 3.9 59.5 % 3.7
Orbicella spp., 75-year age error 7.1 85.3 % 3.9 4.4 62.7 % 4.9
Orbicella spp., 250-year age error 7.7 91.1 % 4.3 4.9 60.9 % 4.7

Table D5. Sensitivity test results for sea-level curve 1 (SL1).

95 % CI 95 % CI coverage Median error 67 % CI for rate 67 % rate CI coverage RMSE
Test parameters (±m) (%) (m) (±m kyr−1) (%) (m)

1 point per kiloyear 10.5 88.7 % −2.1 6.6 87.3 % 6.0
5 points per kiloyear 5.2 94.7 % −0.1 4.3 86.4 % 2.9
10 points per kiloyear 3.9 97.1 % −0.1 2.9 90.2 % 1.8

Sedimentary 2.9 98.6 % 0.0 2.0 92.8 % 0.9
Sedimentary and A. palmata 2.7 99.2 % −0.1 1.8 93.3 % 0.9
A. palmata 3.2 98.2 % −0.4 2.1 91.7 % 1.1
Orbicella spp., 5.6 90.2 % −2.6 3.0 92.6 % 3.5
Orbicella spp. and sedimentary, 4.1 93.9 % −1.5 2.3 87.7 % 2.4
Limiting 14.7 83.2 % −0.1 13.4 74.2 % 9.8
Limiting and sedimentary 10.4 92.0 % 0.5 7.6 83.1 % 5.5
Limiting and Orbicella spp. 8.5 92.8 % −1.7 4.6 88.3 % 4.4

Sedimentary, 75-year age error 2.3 97.5 % −0.1 1.7 89.8 % 0.8
Sedimentary, 250-year age error 3.5 99.6 % 0.0 2.3 95.8 % 1.1
A. palmata, 75-year age error 2.5 98.0 % −0.5 1.8 87.3 % 1.0
A. palmata, 250-year age error 4.0 98.3 % −0.4 2.4 96.0 % 1.1
Orbicella spp., 75-year age error 5.5 87.3 % −2.9 3.0 90.3 % 3.7
Orbicella spp., 250-year age error 5.7 93.0 % −2.4 3.0 94.8 % 3.3
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Table D6. Sensitivity test results for sea-level curve 2 (SL2).

RSL Rate of RSL change

95 % CI 95 % CI coverage Median error RMSE Mean error MAE 67 % CI 67 % CI coverage
Test parameters (±m) (%) (m) (m) (m kyr−1) (m kyr−1) (±m kyr−1) (%)

1 point per kiloyear (12 total points) 12.3 86.5 % −0.9 7.7 −1.0 6.9 7.4 62.3 %
5 points per kiloyear (60 total points) 6.8 90.0 % 0.3 4.2 −0.4 5.9 6.0 63.2 %
10 points per kiloyear (120 total points) 5.5 91.2 % −0.3 3.3 −0.3 4.6 4.9 65.9 %

Sedimentary 5.4 95.0 % 0.0 2.5 −0.4 3.8 4.1 70.4 %
Sedimentary and A. palmata 5.2 93.4 % 0.1 2.9 −0.4 3.9 4.0 68.4 %
A. palmata 5.2 92.0 % −0.1 3.1 −0.5 4.1 3.9 64.5 %
Orbicella spp., 7.5 84.9 % −2.5 5.1 −0.2 5.2 4.7 59.9 %
Orbicella spp. and sedimentary, 6.4 91.6 % −1.0 3.7 −0.4 4.6 4.4 63.3 %
Limiting 15.6 83.7 % 0.6 10.1 −0.7 11.7 14.8 66.0 %
Limiting and sedimentary 10.9 86.8 % 1.1 7.0 −1.1 7.1 7.6 59.5 %
Limiting and Orbicella spp. 9.4 86.7 % −0.5 6.2 −1.0 6.1 5.4 58.6 %

Sedimentary, 75-year age error 4.4 94.8 % 4.1 2.0 −0.3 3.2 3.7 72.4 %
Sedimentary, 250-year age error 6.4 95.2 % 6.0 3.1 −0.5 4.3 4.4 68.5 %
A. palmata, 75-year age error 4.3 92.5 % 3.9 2.4 −0.4 3.5 3.7 67.3 %
A. palmata, 250-year age error 6.2 91.4 % 5.9 3.7 −0.6 4.7 4.1 61.7 %
Orbicella spp., 75-year age error 7.1 80.6 % 6.7 5.4 −0.2 5.2 4.6 58.3 %
Orbicella spp., 250-year age error 7.9 89.2 % 7.4 4.7 −0.3 5.2 4.8 61.4 %
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Figure D1. Model diagnostics. (a) Autocorrelation plots show the autocorrelation between one sample and the following sample in order
to determine the number of samples to discard to result in independent samples of the posterior distribution. (b) Two examples of prior
likelihoods of proxy data (red line) and a tan histogram representing the (thinned) posterior sample distribution after going through the sam-
pling module. This posterior distribution of samples (similar to the samples in Fig. 1d and e) may be significantly different from the prior
likelihood because of the correlation with other data points that are close in age, such that other data may have influenced the posterior like-
lihoods. (c) Plots of posterior distributions (diagonal plots) of marine- and terrestrial-limiting data show that the data samples are correlated
(off-diagonal plots). (d) Examples of posterior distributions of the hyperparameters of the model for sea-level curve 1 (SL1) and sea-level
curve 2 (SL2), where the distributions are colored to match the hyperparameter that they represent, shown in the legend. The bounds on each
parameter’s uniform prior are also shown in the legend. (e) The trace plot shows the progression of values to check for convergence.
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