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Abstract. Climate models are critical tools for developing strategies to manage the risks posed by sea-level rise
to coastal communities. While these models are necessary for understanding climate risks, there is a level of
uncertainty inherent in each parameter in the models. This model parametric uncertainty leads to uncertainty in
future climate risks. Consequently, there is a need to understand how those parameter uncertainties impact our
assessment of future climate risks and the efficacy of strategies to manage them. Here, we use random forests to
examine the parametric drivers of future climate risk and how the relative importances of those drivers change
over time. In this work, we use the Building blocks for Relevant Ice and Climate Knowledge (BRICK) semi-
empirical model for sea-level rise. We selected this model because of its balance of computational efficiency
and representation of the many different processes that contribute to sea-level rise. We find that the equilibrium
climate sensitivity and a factor that scales the effect of aerosols on radiative forcing are consistently the most
important climate model parametric uncertainties throughout the 2020 to 2150 interval for both low and high
radiative forcing scenarios. The near-term hazards of high-end sea-level rise are driven primarily by thermal
expansion, while the longer-term hazards are associated with mass loss from the Antarctic and Greenland ice
sheets. Our results highlight the practical importance of considering time-evolving parametric uncertainties when
developing strategies to manage future climate risks.

1 Introduction

A rising sea level poses a threat to island and coastal regions
around the world. More than 3.1 billion people globally live
within 100 km of the coast (FAO, 2014). Due to high popu-
lations of people in these regions, the respective governing
bodies need to assess and manage risk (e.g., Exec. Order No.
14008, 2021; New Orleans Health Department, 2018; Hinkel
et al., 2014; Le Cozannet et al., 2015). Climate models pro-
vide a valuable tool to understanding future climate risks and
testing the efficacy of risk management strategies in a com-
putational experimental setting.

There are various modeling techniques that climate mod-
els are based on. Semi-empirical models (SEMs) are both
flexible and computationally efficient. Because of that, they
are appropriate for quantifying uncertainty, resolving the
high-risk upper tails of probability distributions, and inform-
ing decision analysis. Other, more detailed process-based
climate models (e.g., CLARA, Fischbach et al., 2012, or

SLOSH, Jelesnianski et al., 1992) are also useful because
they resolve more specific processes and have better geo-
graphical resolution. These models were not chosen, how-
ever, due to the computational expense required to run the
number of simulations needed for this work and because the
sea-level outputs are local as opposed to global. This work
uses a SEM called the Building blocks for Relevant Ice and
Climate Knowledge model (BRICK; Wong et al., 2017b).
Other choices of model are available and can be made (e.g.,
Nauels et al., 2017a). Here, we elect to use the BRICK model
because (i) the physically motivated parameterizations en-
able connecting uncertainties in individual model parameters
and components to uncertainties in future sea levels; (ii) there
are large ensembles of probabilistic projections available,
calibrated and validated in previous studies through Bayesian
inversion using observational data as opposed to model em-
ulation (e.g., Vega-Westhoff et al., 2020, 2019; Bakker et
al., 2017; Wong et al., 2017b); and (iii) the BRICK semi-
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empirical model accounts for the impacts of potential rapid
disintegration of the Antarctic ice sheet due to marine ice
sheet and ice cliff instabilities. A comparison between the re-
sults of this work, which is conditioned on our use of BRICK,
and results using other semi-empirical models would cer-
tainly be of scientific interest and value. However, as such a
study would require standardizing forcing scenarios, struc-
tural assumptions, parameter prior distributions, data em-
ployed for model calibration, and calibration methods, such
a comparison is indeed beyond the scope of this work.

However, climate models have numerous model parame-
ters, and multiple potentially conflicting data sets may be
used to calibrate them, which poses a challenge when in-
terpreting climate model outputs (Flato et al., 2013; Giorgi,
2019). All models are an approximation of reality. Para-
metric uncertainty arises due to imperfect knowledge of the
model parameters (Kennedy and O’Hagan, 2001). As a re-
sult, this parametric uncertainty contributes to uncertainty in
the coastal hazard estimates presented to risk managers and
decision makers.

With climate change comes changing risks, and there is a
need for methods to both assess these risks and attribute their
causes (Haasnoot et al., 2013; Walker et al., 2013; Ruck-
ert et al., 2019). To understand the impact on near-term and
long-term risks, it is important to consider how the contri-
bution of each parametric uncertainty to overall high-end
sea-level hazard changes over time, where we define “high-
end” as exceeding the 90th percentile of the data. In sup-
plemental experiments, we considered other percentiles as
the high-end threshold (Figs. A1 and A5). Understanding
how these uncertainties change over time will aid in risk-
averse decision-making related to adaptation to sea-level rise
(Dayan et al., 2021). While the impacts of high-end climate
risks have been studied, there has not been work done in-
vestigating the parametric drivers behind high-end scenar-
ios in climate models. Dayan et al. (2021) consider the im-
pacts of high-end sea-level scenarios to provide information
that can be used to determine sea-level rise risk aversion
strategies. Similarly, Thiéblemont et al. (2019) investigate
the impact of high-end sea-level rise on the sandy coastlines
of Europe. Addressing this research gap is relevant because
there is a need for a way to determine the causes of future
risk in order to assess and prepare for them (Haasnoot et
al., 2013; Walker et al., 2013; Ruckert et al., 2019). Haas-
noot et al. (2013) attempt to take into account uncertainties
caused by socioeconomic and climate changes in a proposed
method of decision-making called “Dynamic Adaptive Pol-
icy Pathways”. Similarly, Walker et al. (2013) explore an-
other adaptive planning technique, “Assumption-Based Plan-
ning”, which also makes use of uncertainties in future climate
change. Looking specifically at Norfolk, Virginia, Ruckert et
al. (2019) investigate the effect of model uncertainties in fu-
ture climate hazard aversion strategies. All of the work men-
tioned above shows that a better understanding of the drivers

of high-end global mean sea level (GMSL) is needed to cre-
ate effective climate risk aversion plans.

In this work we utilize machine learning techniques.
Among the techniques we use are decision trees and ran-
dom forests, which have previously been used in climate
change studies. For example, Rohmer et al. (2021) used ran-
dom forests to characterize the relative importance of uncer-
tainties in relation to flooding due to sea-level rise. Rohmer
et al. (2021) found that future coastal flood risk is driven by
the uncertainty of human activities. Similarly, Wang et al.
(2015) utilized random forests to assess regional flood risk.
When applied to the Dongjiang River basin, China, Wang et
al. (2015) determined that maximum 3 d precipitation, runoff
depth, typhoon frequency, digital elevation model, and topo-
graphic wetness index are the most important risk indices.
Gaál et al. (2012) used random forests to analyze the impact
of climate change on the wine regions of Hungary and found
that in the long term, only the northern region of Hungary
will be suitable for the current grape crops that are typically
grown in the country.

The goal of this work is to understand how parametric un-
certainties impact future climate risks. We focus in particu-
lar on characterizing uncertainty in future high-end coastal
hazards from mean sea-level rise. To do so, we will use ran-
dom forests to do the following: (i) highlight which param-
eters impact the climate model projections the most, (ii) ex-
amine how each parameter’s impact changes over time, and
(iii) examine what values of the model parameters are most
closely associated with high-end scenarios of sea-level rise.
We chose these machine learning methods due to their ability
to process large amounts of climate model output and climate
data to determine each parameter’s impact on future climate
hazards.

2 Methods

2.1 Models and data

We use the model output from the coupled Hector–BRICK
model (Vega-Westhoff et al., 2020). Hector is a simple cli-
mate carbon-cycle model (Hartin et al., 2015). Similarly,
the Building blocks for Relevant Ice and Climate Knowl-
edge (BRICK) model is a simple climate model for simulat-
ing global mean surface temperature and global mean sea-
level rise, as well as regional sea-level rise (Wong et al.,
2017b). BRICK uses the Diffusion Ocean Energy balance
CLIMate model (DOECLIM; Kriegler, 2005), the Glaciers
and Ice Caps portion of the MAGICC climate model (GIC-
MAGICC; Meinshausen et al., 2011), a thermal expansion
(TE) module based on the semi-empirical relationships used
by, e.g., Grinsted et al. (2010) and Mengel et al. (2016),
the Simple Ice-sheet Model for Projecting Large Ensembles
(SIMPLE; A. M. Bakker et al., 2016), the ANTarctic Ocean
temperature model (ANTO; Bakker et al., 2017), and the
Danish Center for Earth System Science Antarctic Ice Sheet
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model (DAIS; Shaffer, 2014). Since our main focus is on
changes in global mean sea level (GMSL), it is important
to note that BRICK determines this by summing the sea-
level change due to changes in land water storage (Church
et al., 2013), glaciers and ice caps, the Greenland ice sheet,
the Antarctic ice sheet, and thermal expansion.

We use the model output data from the Representative
Concentration Pathway (RCP; Moss et al., 2010) 2.6 and 8.5
scenarios from BRICK simulations of Vega-Westhoff et al.
(2020). RCP8.5 was chosen as proof of concept with high
climate forcing, and RCP2.6 was chosen as a supplemental
low-forcing case. These should be viewed roughly as bound-
ing the space of likely results under this set of scenarios.
Comprehensive discussions of the Hector model are given
in Hartin et al. (2015), of the BRICK model in Wong et al.
(2017b), and of the Hector–BRICK coupled model in Vega-
Westhoff et al. (2020). This work focuses on the BRICK
model for sea-level rise and how uncertainty in its param-
eters relates to uncertainty in future coastal hazards, so we
use only the BRICK model parameters and their relation to
the sea-level rise scenarios. A list of the 38 parameters of
the BRICK model are shown in Table A1. These model pa-
rameters include, but are not limited to, equilibrium climate
sensitivity (ECS), a factor that scales the effect of aerosols
on radiative forcing (αDOECLIM), thermal expansion (αTE),
the temperature associated with the onset of fast dynamical
disintegration of the Antarctic ice sheet (Tcrit), and the rate
of fast dynamical disintegration of the Antarctic ice sheet (λ)
(Wong et al., 2017a).

We use the model output from Vega-Westhoff et al. (2020)
that has been calibrated using observations of global mean
surface temperature and sea-level rise due to thermal expan-
sion, glaciers and ice caps, the Greenland ice sheet (GIS), and
the Antarctic ice sheet (AIS) to constrain model parameters
and projections of future sea levels and temperatures. We use
the 10 000 parameter sample values from the “TTEGICGI-
SAIS.csv” file along with projected GMSL values for the
2020 to 2150 time period (Vega-Westhoff, 2019). This corre-
sponds to the results presented in the main text of that work.
The original data from Vega-Westhoff (2019) were converted
from their original RData file format to CSV using R ver-
sion 3.6.1 (R Core Team, 2019). The subsequent analyses
and plots were done in Python (Python 3.7.4, 2019), using
the sklearn library to make the decision trees and random
forests (Pedregosa et al., 2011).

The aim of the present work is to explore high-end sea-
level rise scenarios and analyze how the factors driving sea-
level hazards change over time. Toward this end, we prepro-
cessed the data. The GMSL model output from every 5 years
between 2020 and 2150 was our output data of interest. We
went through each year of GMSL outputs in those 5-year in-
tervals from the different RCP scenarios and calculated the
90th percentile of the GMSL ensemble. We used the 90th
percentile as the threshold for classifying high-end scenarios
of sea-level rise as any state of the world (SOW, or ensem-

ble member) that meets or exceeds this value; a concomitant
set of model parameters, RCP forcing, and resultant temper-
ature change and GMSL change comprises a SOW. SOWs
with GMSL in each target year below this threshold are clas-
sified as “non-high-end”. It is possible for a SOW to have
non-high-end GMSL in one 5-year time period and later have
high-end GMSL. In addition to the 90th percentile thresh-
old, we considered the 80th percentile as the threshold in a
supplemental experiment and found that the results were not
sensitive to the selection of the percentile threshold (see Ap-
pendix).

Because we used the 90th percentile to classify the data,
our data set was necessarily unbalanced between the two
classes (high-end and non-high-end). To account for this,
we oversampled the high-end scenarios until the data were
evenly balanced between high-end and non-high-end. Over-
sampling is necessary because unbalanced data could lead to
our model being trained using exclusively or almost exclu-
sively data that resulted in non-high-end GMSL.

2.2 Decision trees

We are interested in examining how a given SOW’s model
parameters are related to whether that SOW is more/less
likely to be a high-end scenario of GMSL. Decision trees are
a supervised machine learning technique that successively
splits a set of input data into different outcome regions. They
can be used in both classification and regression applications
(James et al., 2013). We use decision trees to classify each
set of model parameters as leading to high-end or non-high-
end sea-level rise by successively splitting training outcomes
into different outcome regions.

As a running example, Fig. 1 shows a graphical repre-
sentation of a hypothetical decision tree. Figure 1 splits on
ECS and the parameters P0 and bSIMPLE. ECS is defined as
the equilibrium increase in global mean surface temperature
that results from doubling the atmospheric CO2 concentra-
tion relative to pre-industrial conditions and is related to the
climate component of the BRICK model. Meanwhile P0 and
bSIMPLE pertain to the major ice sheets’ components of the
model. P0 represents the Antarctic annual precipitation for
Antarctic surface temperature of 0 ◦C, and bSIMPLE is the
equilibrium Greenland ice sheet volume for a temperature
anomaly of 0 ◦C.

Once the levels of splits in a tree reach a specified depth or
another specified stopping criterion, the outcome from each
leaf node is determined. We employ the following decision
tree hyperparameters that can be used as stopping criteria in
the sklearn library:

– max_depth, the maximum allowed depth of a tree, and

– min_impurity_decrease, the minimum impurity de-
crease required for a node to be split (Pedregosa et al.,
2011).
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In the example depicted in Fig. 1, the maximum depth
(max_depth) we use is 3, so the tree splits on three levels
before creating leaf nodes. In our case, the leaf nodes would
be classified as non-high-end or high-end as described above
by a simple majority vote among the data points allocated
to that node. The values for the parent split nodes are deter-
mined by considering the information gain of each possible
split. Information gain quantifies the reduction in impurity,
such as entropy, that would occur as a result of that split. A
large value of information gain is desirable. Therefore, the
potential parameter choice and value for that parameter that
give the largest information gain will be selected as the split.

After this training procedure, in which data from the en-
sembles of Vega-Westhoff et al. (2020) are used to determine
the split node values and leaf outcome classifications, the de-
cision tree can predict outcomes based on input feature data.
For example, a feature data point x for which ECS equals
5 ◦C, P0 equals 0.2 myr−1, and bSIMPLE equals 9 m would be
classified as high-end. Starting at the top of the tree, we con-
sider the ECS value. Since x has an ECS greater than 3.25 ◦C,
we move down the right branch of the tree to the P0 node. x’s
P0 value, 0.2 myr−1, is less than 0.5 myr−1, so we continue
to the left child of the P0 node, which is the bSIMPLE node.
Because x has a bSIMPLE value greater than 7.9 m, we go to
the right child of the bSIMPLE node. This node is a high-end
leaf node, so we classify x as high-end.

2.3 Random forests

As can be the case with many machine learning algorithms,
decision trees can overfit the training data used to create the
tree (James et al., 2013). Random forests, which are an en-
semble method, are one way to reduce overfitting. Random
forests are a collection of many decision trees, created by us-
ing a random subset of the training data to build each tree
and by using a random subset of the features at each split.
Taking a random subset of the training data when creating
a tree is called bootstrapped aggregation, or bagging. When
bagging, the random subset of the training data is taken with
replacement. In addition to bootstrap subsets of training data,
random forests take a random subset of features from which
to split the data. This further helps to address the issue of
overfitting the training data. In this work, the features of the
random forests are the parameters of the BRICK model, and
the response to be classified is whether or not the time se-
ries of GMSL associated with those parameters is a high-end
GMSL scenario (above the 90th percentile).

The following general process outlines how we construct
each random forest. We repeat this process to classify the
high-end GMSL scenarios in 5-year increments from 2020
through 2150 for each of RCP2.6 and RCP8.5. This leads to a
total of 27 random forests for each of the two RCP scenarios.

To create a random forest of decision trees, we first
split the data (after replication to balance the data between
classes) into the parameters and the output for the given year.

We then created training, validation, and test subsets of those
data. The training set is used to train the model, the validation
set is used to tune the model’s hyperparameters, and the test
set is used to test the model’s performance. In this work, the
training subset comprises 60 % of the original data, the vali-
dation subset is another 20 %, and the test is also 20 % of the
original full data set. This follows the convention that train-
ing data should comprise 50 % to 75 % of the data (Hack-
eling, 2017). We use the RandomForestClassifier from the
sklearn.ensemble library to make a forest of decision trees
using entropy as the criterion to determine the splits of each
tree (Pedregosa et al., 2011).

Prior to fitting the model, we tune the hyperparameters of
the RandomForestClassifier by performing a grid search. For
each hyperparameter combination in the grid, a random for-
est is constructed using the training data and evaluated us-
ing the validation data. The performance on the validation
data determines the best values of the hyperparameters to
use when constructing our forest. In addition to the three
decision-tree-specific hyperparameters noted in Sect. 2.2, we
explored values for the following parameters in our grid
search:

– max_features, the number of features a tree can consider
at each split, and

– n_estimators, the numbers of trees in the forest (Pe-
dregosa et al., 2011).

We performed grid searches using the ranges shown in
Table 1 on RCP2.6 and RCP8.5 in the year 2100. These
cases were chosen to simplify the hyperparameter tuning
and because sea-level rise (SLR) literature focuses on the
projections in the year 2100. While the default value for
max_features is “sqrt” (which equals a value of 6 for our fea-
tures), we elected to search over values up to the maximum
features of 38. A higher value of max_features could improve
our model performance, but a lower value creates trees that
are less correlated, hence decreasing the testing error (Probst
et al., 2019; James et al., 2013). Likewise, a lower value is
useful when there are many correlated features, which is the
case with the BRICK model (James et al., 2013). We hold
min_impurity_decrease at a value of 0.001 to reduce the op-
portunity for the decision trees to have node splits that do not
appreciably improve the quality of the tree.

Both grid searches in the year 2100 yielded the same hy-
perparameter values as the best set of hyperparameter val-
ues (see Table 1). The performance on the validation data
sets of the other high ranking hyperparameter combinations
produced similar results to these best hyperparameter values.
Thus, our model is not sensitive to changing the hyperparam-
eters over the year 2100.

Using the random forest hyperparameters settings from
the “Best value” row of Table 1, we fit random forests us-
ing the training data for each of the 5-year intervals for each
of RCP2.6 and 8.5. We input the corresponding testing pa-
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Figure 1. Hypothetical decision tree demonstrating the general decision tree structure using BRICK model parameters and our high-end and
non-high-end classification outcomes. Since we used a maximum depth of 3 as the stopping criterion, the tree made three levels of splits
before stopping to create leaf nodes.

Table 1. Hyperparameter values of the best estimator from the grid search.

Hyperparameter max_depth max_features min_impurity_decrease n_estimators

Values searched over 10, 15, 20, 25, 30 3, 6, 12, 24, 30, 38 0.001 25, 50, 100, 150, 200, 250
Best value 15 24 0.001 100

rameter values into the random forest models for them to
predict output values. We then compare the predicted values
to the actual output values from the testing data and calcu-
late the percentage of the testing values that the model cor-
rectly predicted. The same process is done for the training
subset that was used to create the forest. The training, val-
idation, and testing accuracies for the forests can be found
in Table A2. Likewise, the confusion matrices for the years
2050, 2100, and 2150 for both RCP scenarios can be found
in Figs. A2 and A3, which show that both the negative pre-
dictive power and positive predictive power are strong. Us-
ing the test data, the positive predictive power ranges from
99.37 % to 100 % in RCP2.6 and ranges from 99.83 % to
100 % in RCP8.5. Meanwhile, the negative predictive value
ranges from 94.53 % to 97.38 % in RCP2.6 and 93.6 % to
95.61 % in RCP8.5.

Given the initial hypothesis that the ECS parameter is an
important indicator of future sea-level rise (Vega-Westhoff et
al., 2020), we examine the set of all split values for the ECS
parameter for each tree in the forest. Likewise, we examine
the distribution of the maximum ECS value of each tree in
the forest. The maximum split values are informative because
they differentiate the highest cases of sea-level rise when the
trees are branching. Hence, the maximum splits help quantify

the threshold of ECS that separates the high-risk situations
from the non-high-risk (lower) ECS splits.

2.4 Feature importances

We use feature importances to assess which parameters play
the largest role in determining whether or not a given SOW is
a high-end GMSL scenario. We compute the importances for
each feature (i.e., BRICK model parameter) using our forests
fit for each year from 2020 to 2150 in 5-year increments. We
use Gini importances as the feature importances, which are
the normalized reductions of node impurity by each feature
chosen for splitting the tree (Pedregosa et al., 2011). While
other importance measures, such as Sobol’ sensitivity indices
(Sobol’, 2001), are based on a decomposition of variance in
a distribution of model outcomes, the Gini importances de-
pend on the prediction ability of random forests. The random
forest model is trained to be able to predict the outcomes
associated with potential parameter values. The Gini impor-
tances, in turn, are determined based on the trained random
forest model and the roles played by each parameter (in this
case, the features).
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We calculate the Gini importance of each node in a tree
using Eq. (1).

nij = wjCj −wleft,jCleft,j −wright,jCright,j (1)

nij is the node importance of node j , wj is the weighted
number of samples at node j , Cj is the impurity of node j ,
the “left” subscript represents the left child from the split on
node j , and the “right” subscript represents the right child
from the split on node j . The weighted number of samples is
used as a coefficient of the different impurity calculations be-
cause the impurities of nodes address the proportion of data
points that belong to that node’s left and right children but do
not address the total number of data points associated with
that node. The calculation of nij in Eq. (1) addresses this by
giving greater weight to nodes with a large proportion of the
samples than nodes that split small numbers of samples.

For example, in Fig. 1, the root node is the ECS split with a
value of 3.25 ◦C. Considering that node, the node importance
is described by the equation below.

niECS,3.25 = 1000CECS,3.25− 600Cleft;ECS,3.25

− 400Cright;ECS,3.25

The impurity of a node is a measure of the efficacy of the
feature used for splitting the data set at that node for subdi-
viding the data set. We use entropy as the impurity criterion
in our forests, which ranges in value from 0 to 1. If the data
at a given node are split evenly among that node’s left and
right children, then the node impurity is maximized at 1. The
more asymmetrically the data at that node are split between
the node’s children, the lower the node’s entropy will be. The
closer the entropy is to 1, the more difficult it is to draw con-
clusions from the data split by that node. We calculate en-
tropy using Eq. (2), where pc is the fraction of examples in
class c (where c here is either high-end GMSL or non-high-
end GMSL).

Cj = entropy=−
∑
c

pclog2(pc) (2)

In the example using Fig. 1, the entropies would be the
following:

CECS,3.25 = − (phigh-endlog2(phigh-end)

+pnon-high-endlog2(pnon-high-end))

= −

(
130
1000

log2

(
130

1000

)
+

870
1000

log2

(
870
1000

))
≈ 0.5574

Cleft;ECS,3.25 = − (phigh-endlog2(phigh-end)

+pnon-high-endlog2(pnon-high-end))

= −

(
0

600
log2

(
0

600

)
+

600
600

log2

(
600
600

))
= 0

Cright;ECS,3.25 = − (phigh-endlog2(phigh-end)

+pnon-high-endlog2(pnon-high-end))

= −

(
130
400

log2

(
130
400

)
+

270
400

log2

(
270
400

))
≈ 0.9097.

With these, the node impurity of the ECS split with a value
of 3.25 ◦C can be fully calculated as shown in the equations
below.

niECS,3.25 = 1000CECS,3.25− 600Cleft;ECS,3.25

− 400Cright;ECS,3.25

= 1000(0.5574)− 600(0)− 400(0.9097)
= 193.52

Once the node importances of a tree are calculated, we use
them to calculate feature importances in Eq. (3).

fii =

∑
j : node j splits on feature inij∑

n∈ all nodesnin
(3)

In Eq. (3), fii is the feature importance of feature i. The
feature importances are normalized so they sum to 1. Equa-
tion (4) demonstrates normalizing the previously calculated
feature importances.

fii,normalized =
fii∑

k∈ all featuresfik
(4)

Since we are constructing forests of trees, the feature im-
portances that we present for a given forest are the mean fea-
ture importances over all the trees in the forest.

We compute the feature importances for each feature for
each forest that we fit, in 5-year intervals from 2020 to 2150.
With these importances, we construct a stacked bar graph
from 2020 to 2150 in 5-year increments. The bar for each
year shows the breakdown of the feature importances for that
specific year. Hence, all of the individual feature importances
bars for a given year will add up to 1. We define an “other”
category such that model parameters with an importance less
than 4 % are grouped into “other”. There are 38 model pa-
rameters, so if the importances were uniform across all the
parameters, each importance would be about 2.6 %. Hence,
any “other” category threshold of 3 % or less would show im-
portances that were not substantially different from the av-
erage. Because of that, we use 4 % as the threshold for the
“other” category.

It is important to note that when parameters are grouped
into the “other” category, it does not necessarily mean that
the values of those parameters can be fixed at any value. It
may mean, however, that the GMSL output that we are us-
ing in this work, which is just one of the multiple outputs of
the BRICK model, is not sensitive to that specific parameter.
A parameter could also be grouped into the “other” category
because it is well constrained with relatively low uncertainty
in addition to the GMSL output uncertainty not greatly de-
pending on the uncertainty of that input parameter.
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3 Results

3.1 Feature importances

Based on Fig. 2, ECS (darkest stippled blue boxes) and
the aerosol scaling factor (αDOECLIM) (solid blue boxes) are
consistently associated with the greatest high-end sea-level
hazard throughout both RCP2.6 and RCP8.5. Both of these
model parameters are associated with the climate component
of the BRICK model. In RCP2.6, ECS accounts for 15.1 %
of the overall feature importance in the year 2020 and in-
creases to 44.4 % by the year 2150 (Fig. 2a). Likewise, the
aerosol scaling factor (αDOECLIM) accounts for 5.0 % of the
overall feature importance in 2025 and increases to 11.5 %
by the year 2150 (Fig. 2a). In the higher-forcing RCP8.5
scenario, ECS accounts for 14.0 % and αDOECLIM accounts
for 4.6 % of the overall feature importance in 2020. By
2150 in RCP8.5, they increase to 21.7 % and 12.1 % respec-
tively (Fig. 2b). The importance of the aerosol scaling fac-
tor (αDOECLIM) is perhaps unsurprising, given that the un-
certainty range in this parameter in previous work (e.g., Ur-
ban and Keller, 2010; Wong et al., 2017b) encompasses both
positive and negative effects on net total radiative forcing.
This parameter accounts for feedbacks from aerosol–cloud
interactions and indirect effects from aerosols on radiative
forcing (Hegerl et al., 2006; Lohmann and Feichter, 2005).
These effects can vary widely and can depend on the specific
representation of the cloud feedback processes incorporated
into more detailed global climate models (Wang et al., 2021).
The relatively higher importance associated with these cli-
mate module parameters in the lower-forcing RCP2.6 sce-
nario is indicative of the large influence exerted by those pa-
rameters on the severity of the resulting sea-level rise. The
only parameter in RCP2.6 that has an importance noticeably
greater than 4 % and belongs to a non-climate component
of BRICK is the temperature associated with AIS fast disin-
tegration, Tcrit (Fig. 2a). This suggests that in the high-end
SOW of sea-level rise, even in the low-forcing RCP2.6 sce-
nario, by the middle of the 21st century and beyond, the AIS
dynamics can still drive severe risks to coastal areas.

In a supplemental experiment, we used 80th percentile
of GMSL to classify the high-end and non-high-end cases.
We find that the patterns emerging from the feature impor-
tances using the random forests fitted using the 80th per-
centile of the data are comparable to that of the 90th per-
centile (Fig. A1). Hence, our results are not sensitive to our
choice to use the 90th percentile.

3.2 Characterization of risk over time

In contrast to high-end sea-level rise being driven primarily
by climate uncertainties under RCP2.6, in the higher-forcing
RCP8.5 scenario, the importances of the ECS and aerosol
scaling factor are relatively lower. This is indicative of the

transition to uncertainty in sea-level processes driving high-
end risks under the higher-forcing scenario.

The near-term risk in both RCP2.6 and RCP8.5 is driven
by sea-level rise from thermal expansion (αTE) (solid black
boxes) and mass loss from glaciers and ice caps (β0) (stip-
pled light blue boxes). Figure 2 shows that the parameters re-
lated to thermal expansion are important from 2020 until the
middle of the century, becoming less important as time goes
on. In RCP2.6, αTE comprises 13.5 % of the overall feature
importance in 2020, which then decreases to 4.9 % in 2055.
Likewise in RCP8.5, αTE accounts for 12.3 % in 2020 and
decreases to 7.2 % in 2040. Thermal expansion will even oc-
cur in low-emission scenarios such as RCP2.6 due to inertia.
Mengel et al. (2018) find that “thermal expansion, mountain
glaciers, and the Greenland ice sheet continue to add to sea-
level rise under temperature stabilization”. The importance
of thermal expansion decreases over time because there are
much more sizable contributions to sea-level rise from the
ice sheets. This increase in contribution from the ice sheets
is due to them being triggered. The ice sheets are triggered
once we surpass the tipping point for them (Lenton et al.,
2019).

Similar to thermal expansion, mass loss from glaciers and
ice caps is important starting in 2020 and decreases in im-
portance over time. In RCP2.6, β0 accounts for 6.2 % of the
overall feature importance in 2020 and decreases to 4.2 % in
2040. Meanwhile in RCP8.5, β0 comprises of 6.8 % in 2020,
which decreases to 4.3 % in 2035.

As for the long-term risks, ice loss from AIS is a driver
in both emissions scenarios. In particular, the Tcrit and λ pa-
rameters within the AIS component of BRICK are important
(Fig. 2, solid dark brown boxes and solid taupe respectively).
Within the BRICK model, Tcrit is the temperature associated
with the onset of fast dynamical disintegration of AIS. In
RCP8.5, Tcrit is significantly important from 2040 to 2060.
This is consistent with predictions that major AIS disinte-
gration will occur between 2040 and 2070 in high radiative
forcing scenarios (Kopp et al., 2017; DeConto et al., 2021;
Wong et al., 2017a; Nauels et al., 2017b).

In addition to AIS, ice loss from GIS also poses a risk in
the long term. In the case of GIS, the sea-level rise associated
with its ice loss only has significant importance in RCP8.5.
The specific model parameters associated with the Green-
land ice sheet are the following: bSIMPLE, αSIMPLE, βSIMPLE,
and aSIMPLE (Fig. 2b; stippled green boxes, solid light green
boxes, stippled yellow boxes, and solid tan boxes respec-
tively).

This follows with the work of Wahl et al. (2017) that found
uncertainty stemming from GIS is greater in higher-forcing
RCP scenarios. In Fig. 2, the importance of GIS is much
more prominent in RCP8.5 than RCP2.6. While the impor-
tance decreases over time in RCP2.6, it increases over time
in RCP8.5. By 2100 in RCP8.5, it comprises 33.5 % of the
overall feature importances, and by 2150, it grows to 43.3 %
of the overall importance. This is likely attributable to the
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Figure 2. Relative feature importances of the BRICK model parameters calculated based on the fitted random forests. Shown are the
importances of the BRICK model parameters using (a) the RCP2.6 radiative forcing scenario and (b) the RCP8.5 forcing scenario. All model
parameters with an importance less than 4 % were grouped into an “other” category, which is shown with hatch marks to denote its difference
from the parameters. Stippling was added to alternating parameters in the legend to aid in telling the difference between similar colors. An
“other” threshold of 4 % was chosen because uniform importance across the parameters is 2.6 % importance for each parameter. Using a
threshold close to 2.6 % would show parameters that were not substantially different than the average importance.

fact that the Greenland ice sheet mass balance may cross
tipping points related to surface ice melt as early as 2030
under higher forcing (Lenton et al., 2019). Additionally, un-
certainty in the magnitude of, the timing of, and the degree
to which we surpass these tipping points compound, leading
to greater uncertainty in ice sheet contributions to sea-level
rise this century (Robinson et al., 2012). The sizable uncer-
tainties attributable to the Greenland and Antarctic ice sheet
contributions to global sea-level change are in line with pre-
vious assessments that compared the uncertainties in differ-
ent components of sea-level rise (Wahl et al., 2017; Mengel et
al., 2016). Specifically, higher uncertainties in higher-forcing
scenarios are broadly consistent with the projections by other
semi-empirical models for sea-level rise (e.g., Mengel et al.,
2016).

Overall, it is expected that the uncertainty in GIS im-
pacts future GMSL. P. Bakker et al. (2016) noted that un-
certainty in GIS is a key driver of uncertainty in future At-
lantic Meridional Overturning Circulation (AMOC) strength.
AMOC strength, in turn, is critically linked to transport of
heat meridionally across the Atlantic Ocean. Similarly, Wong
and Keller (2017) performed a case study for New Orleans,
Louisiana, which found that GIS may be of second-order
importance for local flood hazard behind uncertainties from
AIS and the storm surge. In this study, GIS only showed im-

portance in the variance-based sensitivity analysis when the
storm surge parameters were removed from the analysis.

For both GIS and AIS, the uncertainty in future GMSL
contributions from these ice sheets dynamics compounds
with uncertainty in future temperatures on which these dy-
namics rely (Jevrejeva et al., 2018; Robinson et al., 2012).

3.3 ECS threshold of high-end sea-level rise

Previous work by Vega-Westhoff et al. (2020) used 5 ◦C
as the value of ECS that separates high-end and non-high-
end climate risk scenarios. Using our collection of random
forests, we select the highest ECS split value that each de-
cision tree in the forest split on. These split values should
separate the highest-risk scenarios of GMSL in each time in-
terval. Figure 3 shows the distribution of the maximum ECS
splits for every 5 years in the 2020 to 2150 time period.

There is a considerable number of outliers of the maxi-
mum ECS split value in RCP2.6, particularly in the high-
risk upper tail (Fig. 3a). However, the interquartile ranges are
quite small. In most cases, the interquartile range for RCP2.6
falls between approximately 6 and 7 ◦C (Fig. 3a). The great-
est interquartile range width is 1.3 ◦C in 2020, and the small-
est width is 0.2 ◦C in 2100, with an average of 0.5 ◦C (Ta-
ble A3). Likewise, the median is consistently between 6.25
and 6.5 ◦C. In RCP2.6, the median of the maximum ECS split
over the given years ranges from 6.3 to 7.0 ◦C (Table A3).
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Figure 3. Distributions of the maximum equilibrium climate sensi-
tivity (ECS) split value from each decision tree in the fitted random
forests. Panel (a) depicts the maximum ECS split distributions in
the RCP2.6 forests, and panel (b) depicts the maximum ECS split
distributions in the RCP8.5 forests. The outliers are the data points
less than Q1− 1.5 · IQR or greater than Q3+ 1.5 · IQR, where Q1
is quartile 1, Q3 is quartile 3, and IQR is the interquartile range
(Q3−Q1). The blue boxes show the IQR, and the line within the
IQR is the median.

There are fewer outliers in RCP8.5 than in RCP2.6, but
RCP8.5 has wider uncertain ranges. The interquartile ranges
of the maximum ECS split value in RCP8.5 span a larger
length than those of RCP2.6. Here, the interquartile ranges
are mostly contained between 5.75 and 7.5 ◦C (Fig. 3b). The
interquartile range width in RCP8.5 is between 0.6 ◦C (in
2050) and 1.9 ◦C (in 2080), with an average of 1.2 ◦C (Ta-
ble A3). However, the median is consistently between 6.25
and 7 ◦C. In RCP8.5, the median of the maximum ECS split
over the given years ranges from 6.2 to 6.9 ◦C (Table A3).

Since the median is consistently between 6.25 and 6.5 ◦C
in the low radiative forcing scenario and between 6.25
and 7 ◦C in the high radiative forcing scenario, our ran-
dom forests suggest that an ECS value of approximately
6.5 ◦C could be used as a threshold for high-end scenarios
of global mean sea-level rise to reconcile the differences be-
tween RCPs. In a supplemental experiment, we reproduced
the same experiment using the 80th percentile of the global
mean sea level to denote the high-end cases (as opposed to
the 90th percentile in the main experiments). We find that
the distribution of the maximum ECS split value from each
decision tree in the random forests fitted using the 80th per-

centile of the data is very similar to that of the 90th percentile
(Fig. A5). Hence, our results are not sensitive to our choice
to use the 90th percentile.

4 Conclusions

In this work, we present an approach to classify global mean
sea level from the BRICK semi-empirical model as either
high-end or non-high-end. We use a previously published
model output data set to construct random forests for 5-year
increments from 2020 to 2150 for RCP2.6 and RCP8.5. We
explore the parametric drivers of risk by examining the fea-
ture importances of random forests. Results show that cli-
mate components of the BRICK model, specifically equilib-
rium climate sensitivity (ECS) and the aerosol scaling factor
(αDOECLIM), are consistently the most important parametric
uncertainties in both radiative forcing scenarios (Fig. 2). Our
results also show that thermal expansion and glacier and ice
cap mass loss both pose a risk in the near-term and that long-
term risks are driven by mass loss from the Greenland and
Antarctic ice sheets (Fig. 2). Nicodemus et al. (2010) found
that random forests are more likely to select correlated fea-
tures as the first split in the tree. We performed an experi-
ment using permutation importance, a suggested alternative
by Strobl et al. (2007), as the measure of feature importance
and found similar results to the Gini importances (Fig. A6).

In addition to the feature importances, we find that an ECS
value greater than 6.25 to 6.5 ◦C indicates a high-end sea-
level rise scenario based on the maximum ECS split values
that each decision tree in a forest splits on (Fig. 3). This result
is consistent for both RCP2.6 and RCP8.5, as well as when
using the 80th or 90th percentile to characterize the sea-level
data as high-end.

These results demonstrate the nonstationary risks posed by
climate change and the related hazards driven by sea-level
change. In turn, climate risk management strategies must ad-
dress near-term actions to mitigate near-term risks such as
sea-level rise from thermal expansion and glaciers and ice
caps. At the same time, risk management strategies must also
guard against the long-term risks driven by mass loss from
the major ice sheets. While this work was centered around the
impact of model parametric uncertainties on sea-level haz-
ards, the same machine learning approaches can be general-
ized to incorporate the socioeconomic uncertainties that re-
late future climate hazards (e.g., changes in temperatures and
sea levels) to financial and human risks. These approaches
offer promise to provide a more holistic view of uncertain-
ties affecting future climate risk and the efficacy of human
strategies to mitigate and manage these risks.
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Appendix A

Table A1. Hector–BRICK model parameter names, units, and descriptions (Vega-Westhoff et al., 2019).

Model Parameter Units Description

DOECLIM ECS ◦C Equilibrium climate sensitivity
DOECLIM κDOECLIM cm2 s−1 Ocean vertical diffusivity
DOECLIM αDOECLIM – Aerosol scaling factor
DOECLIM T0 K Global mean surface temperature initial condition
DOECLIM σT K Global mean surface temperature AR1 innovation standard deviation
DOECLIM ρT – Global mean surface temperature autocorrelation
DOECLIM H0 1022 J Ocean heat uptake initial condition
DOECLIM σH 1022 J Ocean heat uptake AR1 innovation standard deviation
DOECLIM ρH – Ocean heat uptake autocorrelation
GSIC β0 myr−1 Initial GSIC (glacier and ice cap) mass balance sensitivity
GSIC V0,GSIC m Initial GSIC volume
GSIC n – GSIC exponent for area-volume scaling
GSIC Gs,0 m Sea-level rise from GSIC in the first model year
GSIC σGSIC m GSIC AR1 innovation standard deviation
GSIC ρGSIC – GSIC autocorrelation
TE αTE kgm−3 K−1 Thermal expansion coefficient
SIMPLE aSIMPLE mK−1 Temperature sensitivity of equilibrium GIS volume
SIMPLE bSIMPLE m Equilibrium GIS volume for temperature anomaly of 0 ◦C
SIMPLE αSIMPLE yr−1 K−1 Temperature sensitivity of GIS exponential decay rate
SIMPLE βSIMPLE yr−1 GIS exponential decay rate for temperature anomaly of 0 ◦C
SIMPLE V0,SIMPLE m Initial GIS volume
SIMPLE σGIS m GIS AR1 innovation standard deviation
SIMPLE ρGIS – GIS autocorrelation
DAIS aANTO

◦C◦C−1 Sensitivity of Antarctic Ocean temperature to surface temperature
DAIS bANTO

◦C Antarctic Ocean temperature for surface temperature anomaly of 0 ◦C
DAIS γ – Power for the relation of ice flow speed to water depth
DAIS αDAIS – Partition parameter for effect of ocean subsurface temperature on ice flux
DAIS µ m1/2 Profile parameter for parabolic Antarctic ice sheet surface (related to ice stress)
DAIS ν m−1/2 yr−1/2 Proportionality constant relating runoff decrease with height to precipitation
DAIS P0 myr−1 Antarctic annual precipitation for Antarctic surface temperature of 0 ◦C
DAIS κDAIS

◦C−1 Coefficient for exponential dependency of precipitation on Antarctic temperature
DAIS f0 myr−1 Proportionality constant for ice flow at grounding line
DAIS h0 m Height of runoff line at Antarctic surface temperature of 0 ◦C
DAIS C m◦C−1 Sensitivity of height of runoff line
DAIS b0 m Undisturbed bed height at the Antarctic continent center
DAIS slope – Slope of ice sheet bed before loading
DAIS λ mmyr−1 Rate of fast dynamical disintegration of the Antarctic ice sheet
DAIS Tcrit

◦C Temperature associated with onset of fast dynamical disintegration of the Antarctic ice
sheet
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Figure A1. Relative feature importances of the BRICK model parameters calculated based on the random forests fitted when defining the
high-end threshold as the 80th percentile of the data. Shown are the importances of the BRICK model parameters using (a) the RCP2.6
radiative forcing scenario and (b) the RCP8.5 forcing scenario. All model parameters with an importance less than 4 % were grouped into an
“other” category, which is shown with hatch marks to denote its difference from the parameters. Stippling was added to alternating parameters
in the legend to aid in telling the difference between similar colors.

Table A2. Random forests’ accuracy on the training, validation, and testing subsets.

RCP2.6 RCP8.5

Year Training accuracy Validation accuracy Test accuracy Training accuracy Validation accuracy Test accuracy

2020 0.994907 0.955833 0.955833 0.992407 0.955556 0.955556
2025 0.993704 0.959722 0.959722 0.993426 0.955278 0.955278
2030 0.994259 0.953056 0.953056 0.994352 0.956111 0.956111
2035 0.993796 0.956667 0.956667 0.995000 0.954167 0.954167
2040 0.995833 0.960556 0.960556 0.995463 0.964444 0.964444
2045 0.996574 0.969444 0.969444 0.994907 0.972222 0.972222
2050 0.994722 0.963889 0.968611 0.995833 0.964167 0.964722
2055 0.996389 0.976389 0.976389 0.995556 0.969444 0.969444
2060 0.995278 0.975000 0.975000 0.996481 0.965833 0.965833
2065 0.995833 0.974722 0.974722 0.996481 0.971944 0.971944
2070 0.995741 0.971389 0.971389 0.996759 0.965278 0.965278
2075 0.996759 0.976389 0.975000 0.996204 0.967500 0.964722
2080 0.996481 0.979444 0.979444 0.996944 0.971389 0.971389
2085 0.997037 0.977222 0.977222 0.997130 0.973889 0.973889
2090 0.996019 0.978056 0.978056 0.996852 0.969722 0.969722
2095 0.996019 0.985833 0.985833 0.996759 0.975556 0.975556
2100 0.996667 0.978889 0.986111 0.995556 0.974444 0.976111
2105 0.996759 0.983333 0.983333 0.997037 0.970000 0.970000
2110 0.996667 0.979444 0.979444 0.996850 0.974715 0.974715
2115 0.996759 0.980556 0.980556 0.996480 0.972492 0.972492
2120 0.996852 0.983056 0.983056 0.997220 0.974979 0.974979
2125 0.996111 0.980278 0.980278 0.996940 0.977197 0.977197
2130 0.995926 0.978056 0.978056 0.996660 0.974958 0.974958
2135 0.995926 0.979444 0.979444 0.996659 0.974944 0.974944
2140 0.996389 0.980556 0.980556 0.995453 0.973831 0.973831
2145 0.995648 0.984167 0.984167 0.996656 0.979939 0.979939
2150 0.996481 0.980556 0.980556 0.997398 0.977146 0.977146
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Figure A2. Random forests’ confusion matrices on the RCP2.6 training, validation, and testing subsets.
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Figure A3. Random forests’ confusion matrices on the RCP8.5 training, validation, and testing subsets.

Table A3. Quartile descriptions of the distributions of the maximum equilibrium climate sensitivity (ECS) split value from each decision
tree in the fitted forests. Q1 denotes quartile 1, which is the 25th percentile of the data. The median is the 50th percentile of the data. Q3
denotes quartile 3, which is the 75th percentile of the data. IQR stands for the interquartile range, which is calculated as Q3−Q1.

RCP2.6 RCP8.5

Year Q1 Median Q3 IQR Q1 Median Q3 IQR

2020 5.8092 6.6984 7.0963 1.2871 6.0222 6.8081 7.3244 1.3022
2030 5.8982 6.4883 7.0801 1.1819 5.8029 6.1718 7.1325 1.3296
2040 6.3316 6.9718 7.0213 0.6897 5.8268 6.3098 6.8886 1.0618
2050 6.0334 6.3324 6.7457 0.7123 6.3465 6.5820 6.9359 0.5895
2060 5.9174 6.3313 7.0215 1.1041 5.9504 6.1762 6.8055 0.8551
2070 6.2834 6.3806 6.5820 0.2987 5.9790 6.5186 7.1376 1.1586
2080 6.2408 6.3685 6.5710 0.3302 5.8812 6.7045 7.7726 1.8914
2090 6.3923 6.4621 6.5651 0.1728 5.8457 6.3714 7.1050 1.2593
2100 6.3864 6.4621 6.5535 0.1671 5.8888 6.3222 7.1017 1.2129
2110 6.3445 6.3587 6.5520 0.2075 5.7621 6.5039 7.5102 1.7481
2120 6.1388 6.3665 6.4846 0.3458 6.0912 6.5214 7.2261 1.1350
2130 6.3337 6.3908 6.5144 0.1807 5.9383 6.4363 7.0380 1.0997
2140 6.1834 6.3330 6.5161 0.3327 6.1017 6.7793 7.2785 1.1767
2150 6.2302 6.3650 6.5492 0.3190 6.0282 6.8953 7.3931 1.3649
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Figure A4. Distributions of the maximum equilibrium climate sen-
sitivity (ECS) split value from each decision tree in the fitted ran-
dom forests. The left column of plots depicts the maximum ECS
split distributions in the RCP2.6 forests, and the right column de-
picts the maximum ECS split distributions in the RCP8.5 forests.

Figure A5. Distributions of the maximum equilibrium climate
sensitivity (ECS) split value from each decision tree in the ran-
dom forests fitted using the 80th percentile to classify the GMSL
data. Panel (a) depicts the maximum ECS split distributions in the
RCP2.6 forests, and panel (b) depicts the maximum ECS split dis-
tributions in the RCP8.5 forests. The outliers are the data points less
than Q1−1.5·IQR or greater than Q3+1.5·IQR, where Q1 is quar-
tile 1, Q3 is quartile 3, and IQR is the interquartile range (Q3–Q1).
The blue boxes show the IQR, and the line within the IQR is the
median.
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Figure A6. Relative feature importances of the BRICK model parameters calculated based on the fitted random forests using different feature
importance measures. Shown are the importances of the BRICK model parameters using (a) the RCP8.5 radiative forcing scenario with Gini
importances and (b) the RCP8.5 forcing scenario with permutation importances. All model parameters with an importance less than 4 %
were grouped into an “other” category, which is shown with hatch marks to denote its difference from the parameters. Stippling was added
to alternating parameters in the legend to aid in telling the difference between similar colors.
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