
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, 2022
https://doi.org/10.5194/ascmo-8-135-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A multi-method framework for global real-time
climate attribution

Daniel M. Gilford1, Andrew Pershing1, Benjamin H. Strauss1, Karsten Haustein2, and
Friederike E. L. Otto3

1Climate Central, Princeton, NJ, USA
2Institute for Meteorology, Leipzig University, Leipzig, Germany

3Grantham Institute of Climate Change, Imperial College London, UK

Correspondence: Daniel M. Gilford (dgilford@climatecentral.org)

Received: 9 November 2021 – Revised: 9 May 2022 – Accepted: 11 May 2022 – Published: 13 June 2022

Abstract. Human-driven climate change has caused a wide range of extreme weather events to become more
frequent in recent decades. Although increased and intense periods of extreme weather are expected conse-
quences of anthropogenic climate warming, it remains challenging to rapidly and continuously assess the degree
to which human activity alters the probability of specific events. This study introduces a new framework to
enable the production and communication of global real-time estimates of how human-driven climate change
has changed the likelihood of daily weather events. The framework’s multi-method approach implements one
model-based and two observation-based methods to provide ensemble attribution estimates with accompanying
confidence levels. The framework is designed to be computationally lightweight to allow attributable probability
changes to be rapidly calculated using forecasts or the latest observations. The framework is particularly suited
for highlighting ordinary weather events that have been altered by human-caused climate change. An example
application using daily maximum temperature in Phoenix, AZ, USA, highlights the framework’s effectiveness
in estimating the attributable human influence on observed daily temperatures (and deriving associated con-
fidence levels). Global analyses show that the framework is capable of producing worldwide complementary
observational- and model-based assessments of how human-caused climate change changes the likelihood of
daily maximum temperatures. For instance, over 56 % of the Earth’s total land area, all three framework meth-
ods agree that maximum temperatures greater than the preindustrial 99th percentile have become at least twice as
likely in today’s human-influenced climate. Additionally, over 52 % of land in the tropics, human-caused climate
change is responsible for at least five-fold increases in the likelihood of preindustrial 99th percentile maximum
temperatures. By systematically applying this framework to near-term forecasts or daily observations, local at-
tribution analyses can be provided in real time worldwide. These new analyses create opportunities to enhance
communication and provide input and/or context for policy, adaptation, human health, and other ecosystem/hu-
man system impact studies.

1 Introduction

Many weather and climate events that were rare just a century
ago have become more frequent in recent decades (Senevi-
ratne et al., 2021). Though these changing extreme events
vary by definition, region, severity, and by their importance
for human systems and culture, they all occur on a warming
planet that is distinctly and prominently influenced by hu-
mans. The observed global mean temperature increase since

the preindustrial period is today – and has been for decades
(e.g., Hansen et al., 1981) – demonstrably attributable to hu-
man activity (Masson-Delmotte et al., 2021). But with the
growing influence of human-driven climate change, there is
also a growing need to help society recognize how climate
change is affecting not only extreme events but also every-
day, ordinary weather. Such a recognition would clarify the
kinds of conditions that are likely to become more common
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with climate change and could also help prioritize invest-
ments in adaptation.

Extreme event attribution is a relatively new and rapidly
growing field within climate science (National Academies of
Sciences and Medicine, 2016; Chen et al., 2021, see, e.g.,
their Cross-Working Group Box: Attribution). Climate attri-
bution studies have shown that a host of weather and climate-
related events, including heat waves (Stott et al., 2004),
flooding from rainfall and local sea level rise (Van Olden-
borgh et al., 2017; Strauss et al., 2021), droughts (Philip
et al., 2018b), wildfires (e.g., Abatzoglou and Williams,
2016), intense hurricanes (e.g., Knutson et al., 2019, and ref-
erences therein), and “compound events” (i.e., multiple cli-
mate hazards that combine to drive environmental or soci-
etal impacts, e.g., Zscheischler et al., 2018) have been in-
fluenced by anthropogenic climate change since the prein-
dustrial period. Beyond attributing physical changes to hu-
man influences on the climate system, there is a growing
and vital body of literature now attributing heat-related ill-
ness (Vicedo-Cabrera et al., 2021; Mitchell, 2021; Perkins-
Kirkpatrick et al., 2022) and economic damages from ex-
treme weather (Strauss et al., 2021).

The concept of “rapid attribution” (National Academies of
Sciences and Medicine, 2016) – i.e., the assessment and de-
livery of quantitative attribution analyses shortly after an ex-
treme event – has been developed to attribute specific events,
including regional drought (Otto et al., 2018), extreme heat
(Kew et al., 2019; Philip et al., 2021), and flooding from ex-
treme rainfall (Van Der Wiel et al., 2017; Philip et al., 2018a).
Pioneering projects such as World Weather Attribution initia-
tive (WWA; https://www.worldweatherattribution.org/, last
access: 2 June 2022) have made considerable progress in
reducing the time between an event and the release of an
attribution assessment. These assessments require a ready
and available research team working rapidly after an event
occurs. As of 2021, “rapidly” still means attribution infor-
mation is often not available for days to months after an
event (e.g., Philip et al., 2021). This delay constrains the
ability of media and policymakers to discuss the links be-
tween weather and climate. High-quality and hands-on attri-
bution approaches also require someone to select the events
that will be studied. Consequently, rapid attribution research
is most often applied to the most extreme events in the de-
veloped world rather than lesser-known (but nonetheless at-
tributable) events that are occurring across the planet (Sippel
et al., 2020; Callaghan et al., 2021). But climate change is in-
fluencing the odds of day-to-day observed weather events as
well. Our study focuses on attributing human-caused climate
influences on these relatively more common occurrences.

We have developed a global framework to quantify
whether and how much human-caused climate change has
changed the likelihood of daily local weather events from the
preindustrial climate to today. Our goal is to enable daily at-
tribution assessments that support and frame climate change
communication for a broad range of users and audiences

from the very start of an event. The approach is designed
to be (1) rigorously based on existing principles and meth-
ods in attribution science (as described primarily in National
Academies of Sciences and Medicine, 2016, and van Olden-
borgh et al., 2021), (2) adaptable to a range of environmental
state variables that are sensitive to global mean temperature
changes, and (3) computationally tractable, enabling same-
day local event attribution worldwide in support of daily op-
erational deployment. Our system can quickly calculate the
probabilities of an observation or forecast in both modern
and preindustrial/counterfactual climates. Climate attribution
remains underexplored. Historically, there are substantially
fewer attribution events studied than attributable events that
have occurred, particularly in the developing world (Otto
et al., 2020). The global scope of our framework’s design
enables the production and dissemination of daily attribution
estimates in these parts of the world, in addition to the better-
studied European and North American regions.

The framework is intended to complement existing attri-
bution approaches (i.e., WWA rapid attribution). Multiple
methods are employed to perform attribution calculations.
The framework also quantifies uncertainty for each method,
either directly through resampling or indirectly by taking ad-
vantage of the method’s underlying data structure (e.g., inter-
model uncertainties characterized by an ensemble). Synthe-
sis across results from multiple methods then informs a final
attribution assessment.

This study is meant as an illustrative introduction to
this new real-time-capable attribution system. Section 2 de-
scribes the framework methodology, exploring the assump-
tions, statistics, uncertainty quantification, and flow of the
approach. It also details the simulated and observed maxi-
mum daily temperatures we use to demonstrate the attribu-
tion framework. Real-world applications of our system to a
particular place and time (July 2016, Phoenix, AZ, USA),
a set of point locations from each continent, and a sample
broad global analysis, are presented in Sect. 3. Section 4
concludes with a discussion of the framework’s value, lim-
itations, opportunities for improvement, and potential future
applications.

2 Framework development

2.1 Overview

We construct a methodological framework to make compre-
hensive worldwide assessments of the role of human-driven
climate change in local daily weather events, at predefined
spatial scales and for predefined variables, and draw inspira-
tion and guidance from rapid and traditional attribution stud-
ies. This section provides a high-level overview of the attri-
bution framework; a glossary of key study terms is provided
in the Supplement (Table S3).

The approach streamlines existing, mature techniques de-
scribed in the National Academies of Sciences (NAS) re-
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port on the “Attribution of Extreme Weather Events in the
Context of Climate Change” (National Academies of Sci-
ences and Medicine, 2016) and in procedures outlined by the
WWA collaboration (van Oldenborgh et al., 2021). Specifi-
cally, we frame our attribution analyses around objective se-
lection criteria defining events using either percentile or ab-
solute value thresholds. This framing allows us to quantify
(and even discover) attribution estimates across a full range
of less extreme/less well-known events that have been made
more extreme by human activity and cause considerable im-
pacts on human systems (e.g., Wang et al., 2021). Attribution
estimates are defined with a hazard-based approach that fo-
cuses on how the probability of event occurrence responds
to human-caused climate change (this is called a “risk-based
approach” in Jézéquel et al., 2018)1.

We quantify attribution estimates by contrasting event
likelihoods from an observed or modeled “forced” distribu-
tion (which has been influenced by human activity since the
late 19th century) of a single Earth system state variable of
interest (temperature, soil moisture, humidity, etc.) to a de-
fined “counterfactual” distribution of that variable (which is
assumed to have not been significantly influenced by human
activity, e.g., Otto, 2017). To arrive at these forced and coun-
terfactual distributions, our system uses three complemen-
tary methods – two that use observations and a third that
uses climate model simulations – described in more detail
in Sect. 2.3. Briefly, the three methods are as follows:

– Method no. 1 – observation-based median-scaling
method. Forced and counterfactual distributions are
found by scaling the observed climatological distribu-
tions of the state variable, based on the relationship be-
tween their monthly medians and annual global mean
surface temperature (GMST).

– Method no. 2 – observation-based quantile-scaling
method. Forced and counterfactual distributions are
found by scaling and aggregating individual distribu-
tions of monthly calculated quantiles from the state vari-
able’s observed climatology. Scaling is based on the in-
dividual relationships between each monthly quantile
and annual GMST.

– Method no. 3 – model-based attribution method. Histor-
ical plus projected and natural distributions of the state
variable are drawn from an ensemble of bias-adjusted
climate models to form forced and counterfactual dis-
tributions, respectively.

Each method offers different lines of evidence for the ex-
tent to which changes in a state variable are attributable to

1Note that we only compute attribution estimates for events that
are exhibiting a statistical response to global mean temperature
changes; physical (i.e., meteorological and climatological) condi-
tions during an event are not explicitly considered in our methods
(Sect. 4).

anthropogenic climate change (consistent with the approach
of several modern attribution studies, e.g., Eden et al., 2016;
Philip et al., 2020; van Oldenborgh et al., 2021). Through-
out this study, we use the change in GMST as an indicator of
global warming due to anthropogenic greenhouse gas emis-
sions (as described in Sect. 2.3.1).

The observation-based methods begin by characterizing
how the variable of interest (in this study we consider the
daily maximum temperature) changes as a function of GMST
(Fig. 1; arrow 1). GMST is first aligned relative to a preindus-
trial reference period (1850–1900, as defined by the Inter-
governmental Panel on Climate Change; Masson-Delmotte
et al., 2018; Sect. 2.2.1) approximating the climate system
before significant human influence on global surface tem-
peratures. We then use the relationship between the vari-
able and GMST to translate an observed climatological dis-
tribution (Fig. 1, arrow 2) into two different distributions
representing the forced and counterfactual climates (Ap-
pendix B), respectively. In our case, we contrast a coun-
terfactual representing a preindustrial past climate with the
current human-driven climate that is globally about 1.1 ◦C
warmer (Fig. 1; arrow 3; Fig. S1 in the Supplement). We
note that this method could, in principle, be extended to
consider the attribution of future warming outcomes (e.g.,
with a target such as the well-known+1.5 ◦C); this approach
has been used with models in Seneviratne et al. (2016), ap-
plied in recent WWA studies, and was explicitly discussed
in Otto et al. (2018). Because our study goal is to calculate
attribution estimates for current daily events, we focus here
on historical human-induced warming. The median-scaling
observation-based method (method no. 1 above) uses the re-
lationship between GMST and the local state variable’s me-
dian to shift the distributions. The more complex quantile-
scaling method (method no. 2 above) allows state variable
quantiles to shift at different rates with GMST, enabling the
distribution to stretch or compress as it is translated. The third
model-based method contrasts the state variable distribution
in greenhouse-gas-forced climate model simulations with a
counterfactual distribution derived from the unforced natural
model runs (Fig. 1; arrow 4). Note that while these meth-
ods are not fully independent, they offer distinct perspectives
and assumptions to determine the historical and counterfac-
tual distributions used in attribution calculations.

The state variable we use to illustrate the application of the
new framework is the daily maximum temperature (Tmax).
We focus on Tmax for four key reasons. First, there is ample
evidence that attributable climate change has already affected
historical daily Tmax (e.g., Seneviratne et al., 2021). Sec-
ond, the connections between human-caused climate change
and Tmax, idealized by a linear shift in temperature distri-
butions as the climate system warms, are relatively straight-
forward to explore and explain with thermodynamic argu-
ments (Trenberth et al., 2015). Third, extreme heat is a ma-
jor driver of human health impacts, and these effects are ex-
pected to worsen in the near- and long-term as the climate
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Figure 1. Diagram of this study’s multi-method approach to quantifying local climate attribution estimates. The two observation-based
methods begin by (1) relating the local temperature (orange) to GMST (gray) to obtain β, which is the change in local mean temperature with
a change in GMST. This includes an error estimate from the linear regression. (2) Observational data are used to characterize a climatological
(1985–2015) distribution of temperatures (black curve). (3) Then, the median-scaling method uses β to shift the climatological distribution
backward to a preindustrial counterfactual climate (blue curve and shading) and either backward or (typically) forward to a forced distribution
of temperatures contemporary with the events being attributed (red curve and shading). Shifts based on GMST are assumed to be completely
driven by historical, human-emitted greenhouse gases. The quantile-scaling method uses the same procedure, but models separate β values
across 30 specified distribution quantiles. The model-based method uses climate model simulations to characterize the local temperature
under natural forcing (blue lines) or in a climate forced by human-emitted greenhouse gases (red lines). (4) The forced and counterfactual
distributions of temperatures used to quantify attribution estimates are then inferred directly from the three methods.

warms (Ranasinghe et al., 2021, and references therein). Ac-
cordingly, it is advantageous to quantify and communicate
attribution estimates of extreme heat on short timescales for
the public and decision-makers. Finally, Tmax is a fundamen-
tal climate variable with a long observational history, and
temperature trends are generally well-represented by global
climate model simulations (e.g., Zwiers et al., 2011; Sill-
mann et al., 2013; Tebaldi and Wehner, 2018)2. Although
substantial regional uncertainties from internal climate fluc-
tuations may still affect regional trends and hamper the cli-
mate signal’s emergence (especially at higher latitudes, e.g.,
Deser et al., 2012), ongoing attributable climate warming
should progressively overwhelm this natural variability. Tmax
will thus become a better simulated state variable for attri-
bution analyses over time. In cases or regions where histori-
cal climate-modeled temperature trends are inconsistent with
observations, our framework’s incorporation of observation-
based estimates safeguards against overconfidence (or blind
acceptance of model results) when making attribution assess-
ments (Sect. 2.4).

2We note that state variables that are strongly affected re-
gionally by dynamics, such as precipitation, are inappropriate for
study with this method without further modification to account for
non-linearity and dynamical variability (Shepherd, 2014; Trenberth
et al., 2015; Pfahl et al., 2017).

2.2 Data

2.2.1 Observations

Observed Tmax data are drawn from the Berkeley Earth daily
land gridded product (Muller et al., 2013; Rohde et al., 2013)
over 1880–2017. Tmax data are provided at 1× 1◦ native res-
olution over all land locations and are regridded to N96 spa-
tial resolution (1.875× 1.25◦) to compare with model simu-
lations. We remove leap days to directly compare with 365 d
model simulations. Though the Berkeley Earth dataset nom-
inally has data since 1850, the first available year of analysis
varies by location; global land coverage (excluding Antarc-
tica) is fully maintained starting in 1955 (Fig. S2). Because
GMST trends can now be robustly detected since 1980 (with
an extremely likely attributable fraction of ∼85 %, as shown
by Sippel et al., 2021), we consider this ≥ 65-year period
a sufficient basis for analyzing attributable changes in Tmax
probabilities.

We take the monthly GMST time series from the Met Of-
fice Hadley Centre/Climatic Research Unit Temperature data
set, version 5 (HadCRUT5; Morice et al., 2021). HadCRUT5
GMST anomalies are calculated relative to 1850–1900, i.e.,
the IPCC reference period for defining global warming with
respect to preindustrial conditions (e.g., Masson-Delmotte
et al., 2018), enabling the straightforward attribution of
human-driven GMST changes (Sect. 2.3) and preserving the
temporal reference between observations and climate mod-
els (Sect. 2.2.2). We smooth the GMST anomaly time se-
ries (hereafter, annual GMST) with a 36-month boxcar filter
to dampen noise from internal variability in the climate sys-
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tem (Fig. S1). Note that we recomputed our analysis through
2016 with the Cowtan and Way (2014) GMST dataset and
found that our results are qualitatively insensitive to this
choice.

2.2.2 Models and bias adjustment

Daily surface maximum temperatures and mean tempera-
tures are drawn from the global climate model output of the
Coupled Model Intercomparison Project phase 5 (CMIP5;
Taylor et al., 2012) over the following three experiments: a
historical simulation including both natural and human forc-
ing over 1860–2005 (historical), a historical simulation with
only natural forcing over 1860–2005 (historicalNat, hereafter
referred to as the natural experiment), and a future high emis-
sions forcing scenario (rcp85; Riahi et al., 2011). All CMIP5
data are regridded to a common global N96 grid (shared
with regridded observations; see above) and GMST anoma-
lies are shifted uniformly over time to set each model’s base-
line average GMST anomaly to 0 ◦C across the IPCC 1850–
1900 preindustrial reference period (to mirror observed an-
nual GMST). Historical and RCP8.5 experiments are con-
catenated to form an uninterrupted time series of Tmax and
GMST for each model over 1860–2050 (hereafter, historical
plus projected), which are used to define the forced distri-
butions in attribution analyses (see below). We use 35 sim-
ulations in total. There are 11 models with paired histori-
cal plus projected and natural forcing experiments and 13
models with a historical plus projected forcing experiment
only (i.e., simulations without a paired natural experiment;
Table S1).

Before model simulations can be used in attribution analy-
ses – especially when evaluating the probabilities of specific
absolute temperatures – they must be bias adjusted. We ap-
ply a trend-preserving bias adjustment method developed by
Lange (2019). It is a modified parametric quantile-mapping
approach that is designed to adjust biases while preserving
trends across the full range of a distribution’s quantiles. Be-
cause we are concerned with a single variable of interest in
this study, Tmax (so that our application does not require pre-
serving diurnal temperature range or skew; e.g., Piani et al.,
2010), we may directly apply the methodology for bias ad-
justing near-surface air temperature (tas) to bias adjust Tmax.
The method, detailed in Appendix A, produces bias-adjusted
historical plus projected and natural simulated time series of
Tmax. These time series are used to define the modeled forced
and counterfactual distributions for attribution analyses, as
described in Sect. 2.3.2.

2.3 Methods

2.3.1 Observation-based attribution analysis

The observation-based methods first determine the relation-
ship between the state variable of interest and GMST (arrow
1 in Fig. 1). This involves a key assumption that 100 % of the

observed GMST mean change since the preindustrial period
is attributable to factors from human-caused climate change
(Fig. S1). Following directly from the IPCC AR6, median es-
timates of human-caused warming and GMST changes since
1850 are approximately the same (1.07 and 1.06 ◦C, respec-
tively; Eyring et al., 2021). The assumption of 100 % at-
tributable warming may also be conservative, i.e., in the ab-
sence of human-induced warming, modeling and paleocli-
mate evidence suggests that GMST might have exhibited a
cooling trend over the last 170 years, offering a potential
alternative counterfactual (e.g., Jones et al., 2012; Kaufman
et al., 2020).

In the median-scaling method, a set of scale factors, β (in
units of ◦C [Tmax] per ◦C [GMST]; Appendix B), are cal-
culated separately for each month from the regression be-
tween a yearly time series of each month’s median Tmax (de-
rived from each individual month’s daily data), Tmax,q50 , and
the smoothed time series of annual GMST; the regression is
performed over all years of available Tmax data at each in-
dividual grid point (Fig. S2), resulting in 12 median-derived
monthly scale factors per location (Fig. S3).

The quantile-scaling method mirrors the median-scaling
method, except that monthly scale factors are calculated and
distributions are scaled over a set of quantiles derived from
the daily data. We find temperatures associated with each
of 30 quantiles – chosen to be analogous to the number of
days in an average month – roughly equally spaced between
0.01 and 0.99 (the full set of quantiles is in Sect. S1 in the
Supplement), resulting in 30 annual quantile time series of
maximum temperature, Tmax,qi , per location and month, and
spanning the range of available years of data at that individ-
ual grid point. Next, scale factors are calculated by regressing
each quantile time series against annual GMST, producing
12× 30= 360 total scale factors per location (Fig. S4).

In each method, as described in Appendix B, the result-
ing scale factors for a given month and location are used to
translate a monthly climatological distribution according to
the difference between the climatological mean GMST and
a target GMST. The target GMST for the forced distribu-
tion is 1.07 ◦C, equal to the contemporary (2010–2019) mean
global warming relative to the 1850–1900 preindustrial ref-
erence period (Fig. S1; Masson-Delmotte et al., 2021). The
target temperature for the counterfactual distribution, repre-
senting a preindustrial period without significant attributable
human influence on GMST, is the 1885–1915 GMST mean
(1.13 ◦C cooler than the contemporary forced distribution;
Fig. S1). For the mean-scaling method, daily data are shifted
based on the month in which they are recorded. For the quan-
tile method, each quantile time series is shifted to a forced
or counterfactual distribution by multiplying that quantile’s
monthly scale factor by the target’s GMST mean difference
from the climatology. The resulting temperatures (30 per
month, i.e., one for each quantile) are pooled across the quan-
tiles to form translated forced and counterfactual temperature
distributions.
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Median- and quantile-scaling methods have different as-
sumptions and tradeoffs. Median-scaling follows a tradi-
tional perspective of climate change’s influence on temper-
ature in that GMST warming will cause a linear shift in
the state variable distribution while its shape remains fixed
(e.g., Hansen et al., 1988, Rahmstorf and Coumou, 2011,
Hansen et al., 2012, and National Academies of Sciences
and Medicine, 2016 (their Fig. 1.1)). Median-scaling thus
explicitly assumes that shifts correlated with human-driven
GMST changes are trend stationary; this approach is elegant
(because changes in tail probabilities are easily interpretable)
and produces stable signal-to-noise estimates, but it may be
too simplistic under some situations. For example, it could
fail in humid maritime climates where an upper limit on daily
Tmax is set by local convection (e.g., Emanuel et al., 1994;
Williams et al., 2009; Sherwood and Huber, 2010, note that
this bound shifts with sea surface temperature warming), or
in the midlatitudes where soil–moisture feedbacks can drive
increases in temperature variance with warming (e.g., Vo-
gel et al., 2017, see Sect. 3.1.1). In contrast, the quantile-
scaling method enables the implicit quantification of these
features by assuming that the rate of the variance shift in the
local temperature distribution (as determined by the collec-
tive set of linear scalings between each individual quantile
and GMST at a given location and month) is fixed. This ap-
proach models a more physically consistent and historically
realistic shift of the state variable’s distribution in exchange
for increased computational and interpretational complexity.
Furthermore, because there are fewer historical observations
providing information in the distribution tails, we would ex-
pect each individual quantile in the tail to have lower pre-
cision (and potentially lower accuracy) than those estimated
from the central part of the distribution, possibly resulting in
noisier attribution estimates. We therefore use both median-
scaling and quantile-scaling estimates in this study to strike
a balance between historical realism and robustness. Note
that the temperature values associated with each quantile (de-
fined from the climatological distribution) could cross each
other during the scaling process. Since we treat each set of
30 quantiles as a monthly distribution for attribution analy-
sis (from which we calculate a new set of quantiles during
assessment; Sect. 2.4), the results from our method are unaf-
fected by such crossings.

For our demonstration in this study, we use the median-
and quantile-scaling methods to translate 31-year climato-
logical distributions of observed daily Tmax values from
1985–2015 (arrow 2 in Fig. 1) into a set of forced and coun-
terfactual distributions for use in attribution analyses (ar-
row 3 in Fig. 1). Each monthly climatological distribution
(containing 31 years and 28→ 31 d, composing a total of
868→ 961 individual temperatures) is translated separately
according to their monthly scale factors. After scaling, the re-
sulting forced and counterfactual distributions are composed
of 31 years of daily (or quantile) Tmax values. A 31-year time
interval is advantageous because it is closely tied to the clas-

sical definition of climate (e.g., the 30-year intervals defined
by Organization, 2017) and because it balances two compet-
ing interests, namely the relevance of the climate mean state
for recently observed events versus the statistical robustness
of results. While a shorter averaging window (e.g., 5 years)
might more precisely describe the warming that is being ex-
perienced during a given event, the observed changes will
have broader uncertainty due to internal variability. Likewise,
a longer integration window (e.g., 50 years) could potentially
have unrepresentative and outdated warming relative to re-
cent extreme events, which would underestimate the modern
attributable human influence.

In each method, we implement uncertainty analyses to
produce distributions of attribution estimates. This allows the
attribution framework to provide not only median attribution
estimates but also confidence intervals quantifying the ro-
bustness of attribution estimates and enabling inter-method
statistical comparisons (Sect. 2.4). Spatially resolved uncer-
tainty analyses are an important component in the antici-
pated operational deployment of this system because they
enable communication on the degree of confidence associ-
ated with each individual attribution estimate. Note that our
analysis does not quantify structural/intrinsic uncertainties in
our methods (such as the assumption of linearity, which may
not correctly represent every historical relationship between
Tmax and GMST; Chen et al., 2019). Potential improvements
addressing these are discussed in Sect. 4.

Trends and correlations in local Tmax and GMST – form-
ing the basis of these observational-based approaches – may
be sensitive to local internal variability. For instance, a sin-
gle particularly warm year near the end of the record (or
cold year at the beginning of the record) could increase both
the GMST and Tmax trends, resulting in a higher scale fac-
tor and potentially overestimated attribution estimates. Like-
wise, there are regression uncertainties between GMST and
the state variable arising from weather noise. Accordingly,
we use a bootstrapping technique (e.g., Efron and Gong,
1983) to quantify the scale factor uncertainty from variabil-
ity in both observation-based methods. Using the median-
scaling approach as an example, the Monte Carlo resampling
recipe is as follows:

1. At each month and location, find the median
time series (as described above), Tmax,q50 =

(T1,T2, . . .,Ti, . . .,Tn−1,Tn), where n is the total
number of years in the annual time series.

2. Where N is the number of samples to collect, repeat N
times as follows:

(a) For each ith year, randomly draw a year k with
equal probability from a 3-year window3 around i,

3A 3-year resampling window is chosen as a balance between
retaining the year-over-year autocorrelation represented in the cli-
mate trend while still capturing a representative range of interannual
variability.
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i.e., from U{i− 1, i, i+ 1}. End points, i = 1 and
i = n, are resampled identically to their neighbor-
ing year (i.e., i = 2 and i = n− 1). Then, Ti is re-
placed with Tk in the time series.

(b) Compute the associated scale factor by regressing
the resulting time series against annual GMST (Ap-
pendix B).

3. Pool each of the N scale factors to form a distribution
from which we derive scale factor confidence intervals.

Resampled quantile-scaling distributions are found with
the same sequence, replacing the median annual time series
with each quantile annual time series, Tmax,qi . In this study,
we take N = 1000. The resulting scale factor confidence in-
tervals are carried through attribution implementation to pro-
duce confidence intervals of attribution estimates, which in
turn inform the final assessments of attribution (Sect. 2.4).

2.3.2 Model-based attribution

The model-based method defines the forced and counter-
factual distributions (arrow 4 in Fig. 1) from the ensemble
of bias-adjusted climate model simulations. We first extract
the final 31-year period of the natural CMIP5 runs (i.e., the
1975–2005 climate which evolved in the absence of human-
forcing by greenhouse gas emissions). After bias-adjustment
(Sect. 2.2.2; Appendix A), Tmax distributions from each of
the 11 natural simulations are pooled into a single distri-
bution. This pooled distribution, composed (on average) of
∼ 10400 Tmax values at each location and in each month, de-
fines the final model-based counterfactual distribution. Note
that we use pooling to define the counterfactual to make use
of the full ensemble of forced distributions (24 CMIP5 mod-
els in total) following a technique from recent attribution
work (Strauss et al., 2021). An alternative is to define individ-
ual counterfactual distributions from each natural simulation
(which are paired to a historical plus projected simulation;
Table S1). Although this would considerably decrease the
sample size (from 24 forced distributions to 11 model pairs),
it could more accurately portray model attribution results.

Next, we find the calendar year when each model’s histor-
ical plus projected 31-year centered-running-mean of GMST
exceeds 1.07 ◦C (relative to the preindustrial reference pe-
riod). This year is taken to be the midpoint of a 31-year time
series making up that model’s defined simulated forced dis-
tribution of Tmax at each location (31-year intervals for each
model are provided in Table S1; cf. Fig. S1). An uncertainty
analysis to assess the statistical robustness of model-based at-
tribution considers the ensemble spread among these forced
distributions.

2.4 Implementation and assessment

Following a hazard-based framing, the attribution framework
uses coupled changes in GMST and maximum temperature
exceedance probabilities to determine the extent and con-
fidence level of attributable human-influence on daily tem-
perature events. At a given absolute temperature or quantile,
the ratio of exceedance probabilities between the forced and
counterfactual distributions provides an estimate of how that
quantile or temperature has shifted because of human-caused
climate change. We quantify this shift using the (exceedance)
probability ratio (e.g., Fischer and Knutti, 2015; Sippel et al.,
2016; Otto et al., 2018; Philip et al., 2020; van Oldenborgh
et al., 2021), PR≡ pforced

pcf
, where pforced is the probability of

exceeding a specific temperature threshold (in the context of
a given temporal unit of analysis, e.g., monthly, seasonal, or
annual) from the forced distribution, and pcf is the corre-
sponding probability of exceedance from the counterfactual
distribution.

At each global location and for each of the forced and
counterfactual distributions, these probabilities can be cal-
culated by integrating daily exceedances of an absolute tem-
perature threshold. We either prescribe this temperature di-
rectly or infer it from a prescribed quantile. Integration is per-
formed using the counterfactual climatology of each distribu-
tion set (i.e., via median-scaling, quantile-scaling, and mod-
eling methods) and can be done in the context of monthly,
seasonal, and annual units of analysis. For each given thresh-
old and context, we calculate PR over the 31 years of the
paired forced/counterfactual distributions. Because we seek
the climatological PR of any given year (rather than a spe-
cific year), our final attribution estimate for each method is
given by the mean over the 31 individual-year PR values. We
fully describe our calculations that quantify PR based on dis-
crete exceedance counts in Appendix C.

PR uncertainties are determined by calculating PR val-
ues using the full distributions of either resampled scale
factors and their paired forced/counterfactual distributions
(observation-based methods) or each individual forced cli-
mate model distribution against the pooled counterfactual
distribution (model-based method). To determine the statis-
tical significance of attribution from the resulting PR dis-
tributions, we compare 95 % confidence intervals of each
method against a null hypothesis that exceedance probabil-
ities should be the same between the forced and counterfac-
tual climates, i.e., H0 : PR= 1. In the case of model-based
estimates, attribution is determined to be statistically signifi-
cant if 23 out of the 24 simulated PR> 1 at 96 % confidence
with a one-sided interval (the same logic can also be applied
to test PR< 1).

Discrete exceedance count calculations (Appendix C) can-
not appropriately quantify probability changes in the extreme
tails of the 31-year forced and counterfactual temperature
distributions. This is because there are too few temperature
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observations exceeding4 far-tail quantiles to accurately rep-
resent the unknown true underlying distribution of extreme
values. Extreme value theory is typically applied in these
cases to more accurately represent tail probabilities (Coles,
2001, see below). To account for this limitation in our ap-
proach, we define an upper-tail “critical quantile” as being
the point where the number observations in the climato-
logical distribution that are expected to exceed the quantile
equals one per year (within the unit of analysis). The value
of the critical quantile follows directly from the definition of
the quantile (Table S2; Appendix C). Upper-tail critical quan-
tiles for the monthly, seasonal, and annual units of analysis
are 0.967, 0.989, and 0.997, respectively. For any distribu-
tion being analyzed, an absolute temperature threshold may
be found using the critical quantile. Herein we do not cal-
culate PR values at temperatures that are higher than the ab-
solute temperature thresholds derived from the climatology
(see Sect. 3). Instead, we assert that PR values calculated at
the critical quantile are a lower bound on PRs associated with
Tmax values above the critical quantile; this is a conservative
choice, assuming that PR values grow monotonically with
temperature increases (Sect. 3).

Attribution of temperatures above the critical quantile
could be performed using generalized extreme value distri-
butions, as is often done in traditional attribution studies of
extreme events (e.g., Huang et al., 2016; Diffenbaugh et al.,
2017; Van Oldenborgh et al., 2017; Otto et al., 2018; Wehner
et al., 2018; Kew et al., 2019; Philip et al., 2021, and many
others). However, events which require the use of extreme
value theory could benefit from more in-depth study than
our lightweight hazard-based approach affords. Our method
provides a way of making an initial statement about climate
change’s influence on these events and objectively identify-
ing events that might warrant deeper analysis. We therefore
omit extreme value attribution estimates in our current im-
plementation of the framework in favor of the computational
efficiency and communication expediency supplied by lower
bound estimates from critical quantiles.

3 Results

We use three examples to illustrate the temporal and spatial
performance of our attribution framework. We first present
an example from Phoenix, AZ, USA, that shows how our
three methods work in practice over a month of daily data and
how their results can be combined to make a final attribution
assessment. We then extend our case study to include attri-
bution estimates at various locations around the world on a
single day. Finally, we consider the global spatial fingerprint
of human-caused climate change by looking at worldwide
probability ratios for each location’s 99th percentile maxi-
mum temperature.

4or subceeding (i.e., the antonym of “exceed”; see Baynton et
al., 1964).

3.1 Real-world application: results from Phoenix, AZ,
USA

As an example application of our real-time attribu-
tion system, we use each method to assess the at-
tribution of Phoenix Tmax in July 2016. Phoenix has
recently experienced deadly extreme heat events (as
has much of the western United States, e.g., June
2021; https://www.climate.gov/news-features/event-tracker/
record-breaking-june-2021-heatwave-impacts-us-west, last
access: 2 June 2022), but how attributable are Phoenix days
with less extreme maximum temperatures? To briefly explore
this question, we examine the month of July 2016 because
it exhibits a relatively calm period of warm weather, exem-
plifying a set of “lesser extreme” moderately high temper-
atures that are nevertheless made more frequent by climate
change. Daily July 2016 Tmax observations are taken from the
Berkeley Earth dataset at the grid point containing Phoenix
(33.75◦ N, 112.5◦W; the city center is approximately 52 km
from the containing grid cell’s center). Note that we are using
a coarse analysis grid to illustrate the attribution framework;
gridded data could be downscaled and combined with point-
based (e.g., station) data to produce more accurate estimates
at a specific point (see the discussion in Sect. 4).

For each daily observation, we use each of the three frame-
work methods to calculate probability ratios from July forced
and counterfactual distributions (i.e., over the July monthly
unit of analysis). Daily PR values illustrate how the probabil-
ity of meeting or exceeding Phoenix’s daily observed Tmax
has changed across the month of July because of human-
caused climate change.

3.1.1 Seasonal cycle analysis

We first analyze Phoenix PR values calculated from each
method over each monthly unit of analysis (January through
December) at the 95th percentile of each counterfactual dis-
tribution. Seasonal cycles of PR medians and 95 % confi-
dence intervals (from the observation-based method PR dis-
tributions) and individual-model PRs are plotted in Fig. 2.
The influence of human-driven climate change is clear, ro-
bust, and strongly attributable across the upper tails of
monthly Phoenix Tmax. Out of 36 total estimates (12 months
and 3 methods), 33 have PR> 1.0 and are statistically sig-
nificant at 95 % confidence. The rare insignificant values –
a single observation-based PR (December; median scaling)
and two model-based estimates totaling five individual model
runs (in February and March) – fall in winter months.

The model-based PR seasonal cycle exhibits a pattern
consistent with other model attribution studies, showing an
increasing seasonal temperature amplitude as the climate
warms (Santer et al., 2018). Median- and quantile-scaling
PRs show a less consistent seasonal pattern. Quantile-scaled
monthly PRs are always ≥ 1.5 and have a limited seasonal
amplitude (∼ 1.6 across the median estimates). The seasonal
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Figure 2. Seasonal cycles of probability ratios at the 95th percentile
in Phoenix, calculated with the observation-based median-scaling
(purple) and quantile-scaling (orange) methods and the model-
based method (black). Purple and orange dots and bars show the
median and 95 % confidence intervals for the observation methods,
respectively; each black dot shows the PR of an individual model
from the CMIP5 ensemble. The black dashed line at PR= 1 is the
boundary above which the probability of occurrence is greater in the
human-forced climate than the counterfactual climate. Distributions
with confidence intervals (or model ensemble estimates with all but
one member) greater than PR= 1 are statistically significant.

range of median-scaled PRs is twice as broad (∼ 3.2) and
exhibits no coherent seasonal pattern. At times, the widths
of PR confidence intervals calculated with the observation-
based methods differ, with median-scaling confidence inter-
vals often wider than those from quantile scaling. This dis-
tinction arises from a combination of physical and method-
ological factors. By design, the quantile-scaling method en-
ables the variance in scaled distributions to shift with GMST.
This variance shift – especially if the quantile-scale factors
encourage broadening or narrowing in the tails – can become
pronounced with large GMST mean changes (Appendix B;
Eq. B2). Whereas the overland temperature variance (and
hence of the upper-tail of temperature extremes) has ostensi-
bly increased in recent decades (Seneviratne et al., 2016), the
pattern of historical Tmax variance change is spatially hetero-
geneous and often insignificant (Shen et al., 2011; Donat and
Alexander, 2012; Lewis and King, 2017). Increases in the
temperature variance are important for attribution assessment
(they are the key feature captured by the quantile-scaling
method), but they are not necessarily surprising. Temper-
ature variance increases have theoretical grounding in at-
mospheric dynamics in the tropics (Byrne, 2021), and soil
moisture feedbacks or vegetation changes in the extratropics
(Schär et al., 2004; Diffenbaugh and Ashfaq, 2010; Senevi-
ratne et al., 2013; Vogel et al., 2017; Vargas Zeppetello and
Battisti, 2020). There is a clear trend of increasing Tmax vari-
ance at the Phoenix-containing grid point, such that the scale
factors of higher quantiles largely outpace those of lower

quantiles. When this quantile pattern shifts the climatolog-
ical distribution, it stretches the forced distribution and nar-
rows the counterfactual distribution. The sharper counterfac-
tual distribution results in a narrower distribution of abso-
lute temperature thresholds across the quantile-scaled dis-
tributions associated with the 95th percentile (not shown),
which limits the range of quantile-scaled PR values. In con-
trast, median-scaling preserves the shape of the underlying
climatology, resulting in a broader range (i.e., more uncer-
tain set) of possible PR values across most months, due to the
range of uncertain scale factors. Note that, in July, Phoenix’s
quantile-scaling uncertainties are broader than those from
median scaling, indicating that trends in the upper quantiles
of Phoenix’s July Tmax distribution are noisier than in other
months.

3.1.2 Application to July 2016

We now explore our framework’s attribution assessment of
daily Tmax in Phoenix in July 2016 (Fig. 3). Maximum tem-
peratures in this particular month were above average, but
not extreme, ranging between 34.2 and 41.9 ◦C (Fig. 3b–c;
blue histogram/time series). All 31 d of July 2016 have Tmax
observations that fall below the absolute temperature thresh-
old (42.7 ◦C) defined from the climatological distribution at
the monthly critical quantile (0.967). Median PR estimates
calculated at this critical quantile from each method serve as
a lower bound on the PR of July Tmax values observed above
42.7 ◦C. These lower bounds are 2.7, 5.1, and 3.3 from the
median-scaling, quantile-scaling, and model-based methods,
respectively.

Empirical cumulative distribution functions (CDFs) from
the observation-based (orange and purple curves) and model-
based (black/gray curves) methods illustrate the attribution
framework as it relates to Phoenix temperatures in July
(Fig. 3a). Although there is a noticeable spread across each
method’s distribution – especially among CMIP5-forced
CDFs – CDFs exhibit a clear shift in the probabilities be-
tween the counterfactual climate and the forced climate. Ev-
ery method shows that the maximum temperatures increase
across nearly the full range of quantiles in July. For instance,
about 20 % of Tmax values (i.e., a CDF value of 0.2) were
35 ◦C or less in the counterfactual climate, which drops to
∼ 10 % in the forced distribution. The cumulative density
of Tmax at 35 ◦C is about 0.55 in the counterfactual com-
pared with 0.4 in the forced distribution. This translates to
exceedance probabilities (i.e., 1−CDF) of 0.45 and 0.6 in the
counterfactual and forced distributions, respectively. The re-
sult indicates that, in our current climate warmed by human-
caused climate change, on average, observed July Phoenix
maximum temperatures are attributively more likely to ex-
ceed 35 ◦C 15 % more frequently than they would in the
cooler counterfactual climate.

July 2016 probability ratios (Fig. 3b) are significant across
the full range of observed Tmax values (binned every 0.5 ◦C),
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Figure 3. Application of the attribution framework to July 2016 in Phoenix, Arizona, USA. (a) Counterfactual (left curves) and forced (right
curves) empirical cumulative distributions functions of Tmax; distributions are derived from the median-scaling (purple dashed curves),
quantile-scaling (orange dashed curves), and CMIP5 model-based methods (black and gray curves). (b) July probability ratios calculated
with each method, along with the observed July 2016 histogram of Phoenix Tmax. (c) Daily probability ratios (unitless) calculated with each
method and observed Tmax (◦C; blue curve) for each day in Phoenix during July 2016. Purple and orange dots and bars in panels (b) and
(c) show the median and 95 % confidence intervals for the observation-methods, respectively. Each black dot shows the PR of an individual
model from the CMIP5 ensemble. Light-black shading in panels (a) and (b) represents the region of maximum temperatures above which PRs
are not assessed with our framework (see the text). The black dashed line at 1.0 is the boundary above which the probability of exceedance
is greater in the human-forced climate than the counterfactual climate.

rendering the increase in likelihood of Tmax for the whole
month of July attributable to human-induced climate change.
PR values increase monotonically with increasing tempera-
ture (except at the highest Tmax values with the model-based
method). A Tmax ≥ 42 ◦C observation is on average > 3.1×
more likely in the human-warmed climate than it would be
in the counterfactual climate, whereas Tmax ≥ 40 ◦C is about
2× more likely across the methods. Likewise, PR uncer-
tainties for each method increase into the upper tail of the
Tmax distribution, arising from increased sensitivity to the tail
shapes and densities of the individual forced and counterfac-
tual distributions.

There is good agreement on the magnitude – and perfect
agreement on the sign – of July Phoenix PR values from the
framework’s multiple methods. This leads to a consistent and
statistically significant result of increasing frequency associ-
ated with every daily Tmax observation in July 2016 (Fig. 3c).
When Tmax > 40 ◦C, the quantile-scaling method constantly
produces higher median PR than the median-scaling method,
which is broadly consistent with our finding that higher quan-
tile temperatures increase more than lower quantile temper-

atures in Phoenix over the historical period – though the
increased uncertainty from the quantile-based method casts
doubt on the exact magnitude of the attribution estimate, par-
ticularly skewing towards the high end of PR values. Model-
based PRs are strongly dependent on the individual model
used to assess attribution, supporting the use of an ensem-
ble of models in our attribution framework. In general, the
model-based method has lower PRs in the far-right tail than
the observation-based methods (Tmax > 42 ◦C in Figs. 3c, 4,
and S5–S7).

A final cohesive assessment of these framework results
depends on the particular desired application. For example,
the percentage of days with significantly attributable Tmax is
100 % across all three methods, suggesting that the influence
of human-driven climate change in July 2016 was robust and
expansive in scope. Alternatively, the median July 2016 Tmax
was, across our methods, about 1.9×more likely to occur on
average because of attributable human-driven climate warm-
ing. Or, on average across our methods, Phoenix’s 90th per-
centile Tmax in July under the forced climate is about 1.2 ◦C
warmer than it would be in the counterfactual climate. Re-
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gardless of the framing, our results shows a distinct robust
signal of attribution across these above-average Tmax values,
highlighting the framework’s capacity to identify and quan-
tify daily attributable events, enabling timely climate com-
munication.

3.2 Additional real-world examples: climate attribution
on 27 July 2016

We further explore the framework results by examining the
attribution estimates at multiple locations on a single day.
Using Berkeley Earth gridded observations on 27 July 2016,
we compare the Phoenix attribution calculations (Figs. 2–3)
with estimates from the following six additional locations:
Asunción (Paraguay), Bengaluru (India), Cape Town (South
Africa), Mildura (Australia), Nairobi (Kenya), and Warsaw
(Poland; Fig. S8). These locations span both hemispheres and
each continent (except Antarctica), tropical and extratropical
climates, and both developing and developed countries.

Table 1 shows each location’s monthly (July) probability
ratios (from each method) calculated at the 95th percentile
(cf. July in Fig. 2) and PRs calculated with the observed
nearest grid point maximum temperature on 27 July 2016
(see Fig. 3). July results show strong agreement on the sign
of attributable change, where the probability of observing a
daily Tmax higher than the counterfactual distribution 95th
percentile has significantly increased at each location. Large
PR values in Bengaluru show the locally observed high sen-
sitivity (PR≥ 9) of maximum temperature to anthropogenic
global warming. At the other sites, observed maximum tem-
peratures exceeding the counterfactual 95th percentile have
increased by a factor of 1.5× to 8.0×.

In Asunción and Bengaluru, the three methods signifi-
cantly disagree on the magnitude of attributable changes,
with smaller model-based estimates than those from the
observation-based methods. This lack of multi-method con-
sensus (values marked with the superscript a in Table 1) in-
dicates reduced confidence in the magnitude of attributable
changes at these sites. A conservative operational applica-
tion of these results might frame the lowest median estimate
(i.e., model-based PRs in each case) as the basis for a final
assessment, for further impact studies, or for communication
with the public (see the discussion in Sect. 3.1.2).

PR values on 27 July 2016 show the wide variation of
results that can arise from daily attribution calculations.
Weather noise drives much of this local observed temperature
variability, while the signal of anthropogenic warming acts
to increase the baseline maximum temperatures and change
the likelihoods of each daily temperature being observed. For
instance, relatively high local temperatures in Bengaluru and
Nairobi are associated with PR values ranging from 2.2 to
173, whereas relatively common local temperatures in Asun-
ción, Cape Town, and Mildura are associated with attribution
estimates that are either barely significant or insignificant,
indicating little to no human influence on the likelihood of

their maximum temperature on 27 July 2016. Warsaw and
Phoenix attribution estimates are modest, indicating a clear
and attributable human-driven increase in the probabilities
of their warmer-than-average local temperatures on 27 July
2016 (Sect. 3.1.2).

Though not exhaustive, these examples illustrate the
framework’s capacity to provide a broad range of location-
specific estimates of daily climate attribution, given a grid
of observed or forecast maximum temperatures. When com-
bined with environmental conditions from global forecasting
models, future framework applications will use this capabil-
ity to support concurrent and immediate worldwide opera-
tional estimates of attributable daily weather events.

3.3 Global attribution estimates

Moving on from these to location-specific examples to a
complete global scale, we now demonstrate results from the
attribution framework by mapping the probability ratios cal-
culated at the annual 99th percentile of each counterfac-
tual distribution. Probability ratios ≥ 2 occur across much of
North America, Europe, central and southern Asia, Green-
land, South America, parts of Australia, and even portions of
Antarctica in each of the methods (Fig. 4a–c). By combin-
ing results from the framework’s multiple methods, we are
able to identify regions were we have strong confidence (in-
dicated by consensus across methods) that extreme tempera-
tures have become more likely due to human-caused climate
change. We also determine which regions have attribution es-
timates that are sensitive to the methodologies or where the
climate change signal is weaker. All three methods agree that
the 99th percentile Tmax has become at least twice as likely
(compared with the counterfactual) over 56 % of the Earth’s
total land area (Fig. 4d). Over 80 % of the Earth’s land area,
at least two out of three methods agree that PR≥ 2 at these
uncommon high-tail temperatures.

We find a coherent pattern of much higher probability ra-
tios in the tropics that is consistent with time-of-emergence
studies. In tropical regions, the anthropogenic signal of cli-
mate change dominates over small-amplitude weather noise,
allowing human-influenced temperature trends to be detected
earlier than in mid- and high latitudes (Mahlstein et al.,
2011, 2012; Hawkins and Sutton, 2012; Frame et al., 2017).
Observation-based PRs exceed 10 across the northern half of
the South American continent, central Africa, the southern
Arabian Peninsula, and Southeast Asia and Oceania. While
multi-model mean PRs are smaller and less spatially coher-
ent than observation-based estimates, they generally exhibit
a similar pattern that appears to be shifted slightly northward
(individual model results are presented for January and July
in Figs. S9–S10). Taken together, our three methods agree
that, across 52 % of tropical land (20◦ S–20◦ N), the proba-
bility of exceeding the 99th percentile of maximum temper-
atures has increased fivefold, while these probabilities have
increased 10-fold over 9 % of tropical land. These findings
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Table 1. Median and 95 % confidence intervals (CI) of probability ratios (PRs) associated with (a) the local July monthly mean daily
exceedances of the 95th percentile (calculated from the monthly counterfactual distribution; see the text) or (b) the local observed Tmax on
27 July 2016. Distributions with confidence intervals greater than PR= 1 are statistically significant.

(a) July Climatology, qi = 0.95

Location Median-scaling Quantile-scaling Model-based
(Coordinates) PRs (95 % CI) PRs (95 % CI) PRs (95 % CI)

Phoenix (112.5◦W, 33.75◦ N) 2.79 [2.12–3.64] 2.96 [2.14–4.10] 2.99 [1.64–5.08]
Asunción (58.2◦W, 25◦ S) 4.37 [2.52–6.24] 7.03 [6.10–7.95]a 2.36 [0.94–3.48]
Bengaluru (76.88◦ E, 12.5◦ N) 10.7 [9.11–12.2] 11.6 [10.2–12.7] 3.34 [2.05–7.01]a

Cape Town (28.13◦ E, 26.25◦ S) 2.77 [1.14–5.29] 3.54 [2.16–5.43] 3.27 [2.05–4.97]
Mildura (142.5◦ E, 33.75◦ S) 1.56 [1.16–1.91] 2.62 [1.98–3.50] 2.19 [1.40–3.70]
Nairobi (37.5◦ E, 1.25◦ S) 3.91 [2.35–5.62] 5.95 [4.14–8.31] 4.75 [2.99–7.57]
Warsaw (20.63◦ E, 52.5◦ N) 1.96 [1.39–2.64] 3.23 [2.48–4.39] 1.65 [1.10–3.76]

(b) 27 July 2016, local Tmax

Phoenix, Tmax = 41.8 ◦C 3.18 [2.10–4.07] 3.7 [2.21–5.89] 3.65 [1.86–6.14]
Asunción, Tmax = 22.4 ◦C 1.31 [1.15–1.47] 1.21 [1.00–1.45] 1.12 [1.03–1.24]
Bengaluru, Tmax = 29.0 ◦C 12.9 [8.57–20.1] 27.9 [13.5–93.2] 2.39 [1.77–3.92]a

Cape Town, Tmax = 15.3 ◦C 1.04 [1.00–1.10] 1.02 [0.99–1.09] 1.09 [1.05–1.11]
Mildura, Tmax = 14.9 ◦C 1.19 [1.06–1.34] 1.13 [1.01–1.28] 1.29 [1.21–1.45]
Nairobi, Tmax = 25.9 ◦C 6.73 [2.57–21.0] 87.0 [24.3–173b]a 7.42 [2.24–16.2]
Warsaw, Tmax = 33.7 ◦C 1.74 [1.27–2.21] 3.00 [1.91–4.97] 1.52 [1.19–2.55]

a Indicates that the CI of a method’s PR estimate differs significantly from the other two methods. b Indicates that the
observed 27 July 2016 maximum temperature exceeded the local monthly critical quantile (0.967; see the text). In these cases,
the reported PR is the value calculated at the critical quantile (Appendix C).

Figure 4. Globally resolved probability ratios (unitless) calculated with the observation-based (a) median-scaling approach, (b) quantile-
scaling approach, and from (c) the ensemble mean of the model-based attribution approach. Analyses with PR< 2 are grayed out to em-
phasize regions where human influence is most clearly found. (d) Map of the total number of the framework’s attribution methods (derived
from panels a–c) that have PR≥ 2 at each overland location (total between 0 and 3). PRs are found by comparing mean daily exceedances
of the 99th percentile (calculated from the annual counterfactual distribution; see the text) between the full 31-year forced and counterfactual
distributions from each method.
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illustrate our framework’s ability to identify key global pat-
terns of human-attributable influences in the climate system.
It also underscores the framework’s capacity to provide rele-
vant global daily attribution estimates, with important impli-
cations for climate change communication, which we discuss
below.

4 Summary and discussion

This study has detailed the development of a joint
observational- and model-based (i.e., multi-method) frame-
work to generate real-time estimates of the role that human-
caused climate change plays in producing local daily tem-
peratures around the globe. The framework is designed to be
flexible across data sources and climatological state variables
(especially those tied to climate warming through thermody-
namics, e.g., temperature, sea level, and soil moisture; Tren-
berth et al., 2015), enabling its adaptation and expansion to a
broad range of extremes and even relatively common weather
characteristics. A key strength of our system is that it is com-
putationally efficient, meaning that attributable changes in
probability can be computed on the fly, using observations
or forecasts. There are known regional and temporal gaps
in the understanding and documentation of event attribution
(Callaghan et al., 2021), yet lesser extreme daily events are
nevertheless being altered by human-caused climate change.
To this end, the framework developed here has focused pri-
marily on these more common events which would be sig-
nificantly rarer in a world without human-induced warming.
In the future, this framework will support daily estimates of
how human-caused climate change has influenced the likeli-
hood of weather conditions at any location around the world,
with immediate value for climate change communication.

Our methods are informed by state-of-the-art attribution
guidelines from National Academies of Sciences report (Na-
tional Academies of Sciences and Medicine, 2016) and the
World Weather Attribution (van Oldenborgh et al., 2021)
initiative. Specifically, the framework uses a hazard-based
approach, framing attribution as the change in event prob-
abilities responding to human-driven climate change (e.g.,
Jézéquel et al., 2018). Furthermore, the framework adopts
objective selection criteria (based on exceedance thresholds
defined by quantiles or absolute values of the state vari-
able), relies on global mean surface temperature to define
attributable human-influence on the climate system, uses
a multi-method approach (including observations and bias-
adjusted models) to generate multiple lines of evidence that
may be combined for a consensus attribution analysis, em-
ploys resampling and model ensembles to assess estimate
uncertainties, and is designed to be followed by clear and
timely communication with the scientific community and the
public.

Some procedural concessions have been made in this im-
plementation. The framework is strictly statistical and is not

able to consider the physical environment (e.g., synoptic con-
ditions) during an event. It is currently unable to compute at-
tribution estimates for dynamically driven extremes (such as
extreme precipitation; Pfahl et al., 2017), although improved
modeling and reconstruction of these events could eventually
enable statistical historical attribution (Klein et al., 2021).
Furthermore, this attribution framework is not intended to
replace in-depth attribution studies for major extreme events.
These events, including large-scale heat waves (e.g., Philip
et al., 2021) and hurricane-driven heavy precipitation (Van
Oldenborgh et al., 2017), not only involve complex event def-
initions (related to large-scale atmospheric conditions) but
also often require extreme value statistics not implemented
here (Coles, 2001). Our system also omits vulnerability and
exposure analyses (e.g., Stone et al., 2021; van Oldenborgh
et al., 2021). Instead, the framework is designed to be com-
plementary and supportive to these studies. We see our sys-
tem’s potential to serve as an objective screening tool to iden-
tify events that warrant more complex analysis. Because our
tool is focused on day-to-day weather conditions rather con-
ditions that require extreme value theory, it serves as a lower
bound on the attributable human influence on the observed
conditions. After immediate assessment and identification
with our framework, attribution estimates for an event could
then be refined using more complex attribution approaches
(e.g., Philip et al., 2021).

Several limitations warrant future investigation and im-
provement. The framework’s observation-based attribution
methods assume a historical linear-scaling relationship be-
tween the state variable and global mean surface tempera-
ture. Some research studies have shown that this relation-
ship can be nonlinear, especially for high temperature ex-
tremes in the tropics (e.g., Chen et al., 2019). Our frame-
work could be updated to model this complexity, allow-
ing a more dynamic relationship between attributable global
mean temperature changes and the associated state variable
changes. Furthermore, because of the linear extrapolation
involved in the observation-based scaling methods, histor-
ical and modern-day aerosols potentially mask attributable
greenhouse-gas-driven warming (e.g., Van Oldenborgh et al.,
2018; Seneviratne et al., 2021). Likewise, crop expansion,
irrigation, and other land use practice have been shown to
either amplify or (more often) mask regional heat extremes
(e.g., Mueller et al., 2016a, b; Thiery et al., 2017; Find-
ell et al., 2017; Thiery et al., 2020). Our current methods
do not disentangle aerosol and land use masking from at-
tributable greenhouse gas forcing. This could be addressed
by screening observation-based estimates with model-based
results (which can control for these forcings) – in cases where
their patterns agree, nonlinearities from these processes are
unlikely to be substantially affecting attribution assessments.

This study used a single state variable, the daily maxi-
mum temperature, to illustrate the attribution framework in
action and a single set of observations and models – Berkeley
Earth and CMIP5 – on a shared coarse grid. Because of this
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coarse grid, small-scale climate events in some regions may
not be well represented. To limit biases arising from this scale
discrepancy, extending this approach to a finer-scale grid or
point-based observations may be required – particularly in
operational contexts requiring location specificity. By design,
the framework is agnostic of data sources and may be flexibly
extended or adapted with different model ensembles (e.g.,
CMIP6; Eyring et al., 2016) and/or observational data sets.
Point-based observations such as station data could be used
to make highly localized estimates of how human-driven cli-
mate change is affecting the likelihood of certain events. In
these cases, downscaling could be applied to gridded data
during the bias-adjustment step (e.g., Lange, 2019) to enable
harmonious interpretations across gridded and point-based
estimates.

The multi-method approach herein could be applied to
estimate attributable probability changes for other well-
observed and well-modeled climatological state variables
(e.g., precipitation), providing appropriate adaptations (e.g.,
variable-specific bias adjustment). Extending our framework
to integrate other environmental state variables, particularly
those that may exhibit weak or nonlinear relationships with
global mean temperature changes, could require future work
that differs from variable to variable.

Global climate attribution studies remain underdeveloped
and underexplored. While projects like the World Weather
Attribution initiative have provided prominent rapid assess-
ments of the influence of human-induced climate change on
daily weather characteristics, these studies are often ad hoc
and geographically biased towards Europe or North America.
A recent study (Callaghan et al., 2021) estimates that while
80 % of the global land area containing 85 % of the global
population have partially attributable temperature and/or pre-
cipitation trends, there remain large regions of Earth (∼
33 %; supporting 11 % of the global population) with rela-
tively little study of attributable impacts; this is especially
true in parts of Asia and western Africa. While a few studies
have explored global attribution as is done herein (e.g., Hu-
ber and Knutti, 2012; Diffenbaugh et al., 2017; Sippel et al.,
2020), there remain important gaps in both scientific investi-
gation and public understanding of how climate change reg-
ularly affects local communities across the globe, which our
method is designed to address.

Our sample global attribution analyses show a consistent
pattern of strongly attributable human influences on max-
imum temperatures across the tropics. These results high-
light important links between global inequities, climate data,
and attribution of extreme temperatures. Although the trop-
ical time series from Berkeley Earth are sufficiently long –
65+ years (Fig. S2) – for accurate estimates of attributable
probability distributions changes (Sippel et al., 2021), histor-
ically poor quality data and limited ground-truthing of cli-
mate models makes the attribution more challenging in low-
latitude regions (Otto et al., 2020). Additionally, these low-
latitude regions of high climate signal-to-noise contain many

developing populous countries that can be highly vulnerable
to climate impacts (e.g., Frame et al., 2017; King and Har-
rington, 2018; Otto et al., 2020). Despite data limitations,
consensus results among the methods from our framework
show that more than half (52 %) of the tropical land area is
5 times more likely to high-tail probabilities of maximum
temperature today because of human-caused climate change
than it would have been in preindustrial times. Such explo-
rations with our framework, coupled with impacts studies in
the future, could provide ongoing and rapid insight into how
human-driven climate change is inordinately influencing vul-
nerable tropical regions.

Public perceptions of climate risk are strongly tied to the
effects of extreme weather (e.g., Berry et al., 2010; Sullivan
and White, 2019, and references therein), but typically, the
links between the observed weather and climate change are
not quantified or are not available until weeks or months af-
ter an event occurs. Our new global attribution framework
enables the careful study, documentation, and prompt com-
munication of how climate change is altering the likelihood
of both extreme and ordinary weather events. By providing
an objective way of attributing changes to human influences
on the climate system, our framework will put immediate at-
tribution estimates into the hands of media and policymakers
while an event is underway or even before it occurs. In those
critical moments, our approach enables confident and timely
discussions of climate change causes and impacts, in order to
facilitate and strengthen public understanding.

Appendix A: Bias-adjustment methodology

Following Lange (2019), let xsim
cal be the model’s simulated

time series (sim) of the state variable of interest (x) over a
defined calibration period (cal). Then xobs

cal is the observed
time series (obs) of the state variable over the same calibra-
tion period, and likewise, xsim

adj is the simulated time series
over the bias adjustment period (adj). The target distribution
is a bias-adjusted distribution of the simulated state variable
of interest over the adjustment period, x̃sim

adj . The bias adjust-
ment method is as follows:

1. Detrend xobs
cal , xsim

cal , and xsim
adj . Linear trends are com-

puted and removed on an annual timescale from each
daily value of x.

2. Transfer the simulated climate change signal for ev-
ery distribution quantile from xsim

cal and xsim
adj to xobs

cal .
Then define xobs

adj as the resulting time series of pseudo-
observations over the adjustment period. Note that these
are “pseudo-observations” because they extend into pe-
riods of record or climate pathways that have not been
observed. This step follows an quantile-mapping pro-
cess with additive trend preservation:

(a) Given a single daily observation, X from the time
series xobs

cal , we seek the corresponding pseudo-
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observation over the adjustment period, Y , to com-
prise part of xobs

adj . Then we define p = F obs
cal (X) as

the cumulative probability of X. Likewise, Q is the
quantile function (i.e., the inverse CDF) of each dis-
tribution.

(b) For each X in xobs
cal , we solve the following:

Y =X+Qsim
adj (p)−Qsim

cal (p) , (A1)

such that a corresponding time series xobs
adj is com-

prised of each Y , which is translated from xobs
cal via

the difference between the simulated distributions
of the adjusted and calibration periods.

3. Use parametric quantile mapping to adjust the distribu-
tion of values in xsim

adj , using the distribution of pseudo-
observations in xobs

adj . This is performed via the following
quantile mapping equation:

X̃sim
adj = F̂

obs
adj
−1
(
F̂ sim

adj

(
Xsim

adj

))
, (A2)

which bias adjusts each simulated daily value from the
adjustment period time series (Xsim

adj ) using a transform
function consisting of parametrically fit observed and
simulated distributions, F̂ obs

adj and F̂ sim
adj , respectively. In

this study, the parametric distributions of xobs
adj and xsim

adj
are fit to Tmax values, assuming that they are normal5.
The resulting full time series of bias-adjusted data val-
ues (X̃sim

adj ) over the adjustment period comprise x̃sim
adj .

4. Restore the trend subtracted from xsim
adj to the bias-

adjusted time series x̃sim
adj .

In this study, bias adjustment is applied to each model’s
GMST time series and monthly Tmax time series at each over-
land grid point. Berkeley Earth Tmax observations over a cali-
bration period of 1985–2015 are used to inform the Tmax bias
adjustment over the full time series at each overland location
of each model and experiment. The adjustment periods are
over 1975–2005 for natural experiment simulations and over
1880–2050 for forced experiment simulations, respectively.
Note that, for each the 11 natural simulations, the trained
quantile-mapping relationship between its paired historical
plus projected time series (Table S1) and the observed time
series is used to translate the natural simulations, i.e., xsim

adj
is given by the natural distribution over 1975–2005, while
xsim

cal and xobs
cal are still defined over the 1985–2015 calibration

period. Illustrative comparisons between the raw and bias-
adjusted simulated distributions in Phoenix (with an example
model, GFDL CM3) are shown in Fig. S11. Global maps of

5Comparing over the calibration period, the estimated root mean
square error between F obs

cal (X) and F̃ sim
cal (X) arising from this as-

sumption about distribution shape is ∼ 1.6 % averaged across the
forced model simulations in Phoenix.

bias adjustments demonstrating their range across individual
models are provided at two quantiles in July in Fig. S12–
S13. Note that this statistical bias-adjustment approach is
univariate and inherently violates each model’s physical con-
sistency. Because of this drawback, the method should not
be used as a precursor to conducting multivariate attribution
analyses (e.g., heat stress indicators that rely on both temper-
ature and humidity fields or coupled Tmin/Tmax analysis).

Appendix B: Scale factors

Following Philip et al. (2020), the scale factor, β, is equal to
the slope of the linear least squares regression between the
full time series of x (at a fixed longitude/latitude location; λ,
φ) and annual GMST:

β = r ×
sx

sGMST
, (B1)

where r is the correlation coefficient between x and GMST,
and s are their respective standard deviations.

An observed climatological distribution of the state vari-
able over an arbitrary time period (taken herein to be 1985–
2015) is given by x(ti→ii), and the temporal mean GMST
over that same time period is GMST(ti→ii). To translate
this distribution to a different time period, the distribution
is shifted by the scaled GMST mean difference between the
climatology, and the new period is as follows:

x(tj→jj )= x(ti→ii)+β ×1GMST, (B2)

where x(tj→jj ) is the scaled distribution of the state variable
and where

1GMST= GMST(tj→jj )−GMST(ti→ii).

Note that the scaling approach retains the full range of in-
terannual variability present in the underlying climatology.

Appendix C: Discrete probability ratio calculations

At a given quantile in the counterfactual distribution, qi , the
discrete calculation of the probability ratio is as follows:

PRt ≡
pforced

pcf
=

Nt∑
d=1

H (Tmax(d)− Tqi )

NE,t
, (C1)

where H (·) is the Heaviside step function, Tmax(d) is a daily
maximum temperature sampled from a forced distribution,
Tqi is an absolute temperature threshold defined by the quan-
tile from the counterfactual distribution, d is the day in-
dex, and Nt is the number of days over the timescale we
are considering. The expected value of the (E[·]) number of
days that will exceed the temperature threshold over a given
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timescale comes directly from the definition of the percentile,
as follows:

NE,t ≡ E

[
Nt∑
d=1

H
(
Tmax(d)− Tqi

)]
=Nt × (1− qi) . (C2)

For example, the expected number of days exceeding the
95th percentile (qi = 0.95) on a yearly timescale (Nyear =

365 d) is NE,year = 18.25 d (Table S2). Likewise, the thresh-
old subceedance is given by Nt −NE,t . This estimate is used
to define the critical quantile for appropriate assessment with
our discrete counts methodology; it is given by NE,t = 1
(Sect. 2.4). Note that, when PRt > 1, then pforced is increased
relative to pcf by a factor of PRt . The absolute temperature
threshold at a specific quantile, Tqi , may also be calculated
from the climatology rather than the counterfactual distribu-

tion. In this case, pcf becomes
Nt∑
d=1

H (Tmax,cf(d)−Tqi ), where

Tmax,cf is the counterfactual distribution of daily maximum
temperatures.

Our final estimate of the attributable probability ratio is
given by the mean over every year’s individual probability
ratio values, i.e., ηt = E[ηt1→31 ]. The mean change in the
number of days between the forced distribution and coun-
terfactual is δt = ηt ×NE,t −NE,t .

Code and data availability. Scripts and code to recreate our
analyses are available for direct download from GitHub (https:
//github.com/climatecentral/gilford22_attframework, last access: 3
June 2022), and the most up-to-date published code is avail-
able on Zenodo (https://doi.org/10.5281/zenodo.6624712, Gil-
ford, 2022). The code to perform the bias adjustment is
drawn from the original archive of Lange (2017) on Zenodo
(https://doi.org/10.5281/zenodo.1069050). The gridded Berkeley
Earth Surface Maximum Temperature Anomaly Field was retrieved
via the WMO Climate Explorer tool (https://climexp.knmi.nl/select.
cgi?id=someone@somewhere&field=berkeley_tmax_daily, last ac-
cess: 1 March 2019, Rohde and Hausfather, 2020). The Met Of-
fice Hadley Centre/Climatic Research Unit global surface temper-
ature data set, HadCRUT5 version 5.0.1.0, was retrieved from the
Met Office Hadley Centre website (https://www.metoffice.gov.uk/
hadobs/hadcrut5/data/current/download.html, last access: 17 Au-
gust 2021, Morice et al., 2021). Coupled Model Intercomparison
Project phase 5 records were retrieved from the Centre for Environ-
mental Analysis (https://help.ceda.ac.uk/article/4465-cmip5-data,
last access: 1 November 2018, Taylor et al., 2012).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/ascmo-8-135-2022-supplement.
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