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Abstract. The description and analysis of compound extremes affecting mid- and high latitudes in the winter
requires an accurate estimation of snowfall. This variable is often missing from in situ observations and biased in
climate model outputs, both in the magnitude and number of events. While climate models can be adjusted using
bias correction (BC), snowfall presents additional challenges compared to other variables, preventing one from
applying traditional univariate BC methods. We extend the existing literature on the estimation of the snowfall
fraction from near-surface temperature, which usually involves binary thresholds or nonlinear least square fit-
ting of sigmoidal functions. We show that, considering methods such as segmented and spline regressions and
nonlinear least squares fitting, it is possible to obtain accurate out-of-sample estimates of snowfall over Europe
in ERA5 reanalysis and to perform effective BC on the IPSL_WRF high-resolution EURO-CORDEX climate
model when only relying on bias-adjusted temperature and precipitation. In particular, we find that cubic spline
regression offers the best tradeoff as a feasible and accurate way to reconstruct or adjust snowfall observations,
without requiring multivariate or conditional bias correction and stochastic generation of unobserved events.

1 Introduction

Despite the expectations of less frequent snow events in a
warming climate, there are still several motivations to study
trends in future snowfall. First of all, snowfall extremes can
still have a great impact on economy and society. Recent
snowfall over large, populated areas of France in Febru-
ary 2018 and in Italy in January 2017 caused transport dis-
ruption, several casualties, and economic damage. Snow is
also an important hydrological quantity and crucial for the
tourism industry of some countries. Although climate mod-
els predict a general reduction in snowfall amounts due to
global warming, accurate estimates of this decline heavily
depend on the considered model. Moreover, while this pre-
diction is valid at the global scale, there may be regional ex-
ceptions, with northern areas receiving more snowfall during
the winter. Large discrepancies in snowfall amounts indeed
exist for observational or reanalysis datasets: in detecting re-

cent trends in extreme snowfall events, Faranda (2020) has
also investigated the agreement between the ERA5 reanalysis
and the E-OBSv20.0e gridded observations in representing
snowfall. Since direct snowfall measurements were not avail-
able for E-OBSv20.0e, all precipitation that occurred on days
where the average temperature was below 2 ◦C was consid-
ered as snowfall. Faranda (2020) found that observed trends
and the agreement in absolute value between the two datasets
largely depended on the considered region. Overall, the cli-
matologies of snowfall provided by the two datasets had sim-
ilar ranges, although ERA5 tended to overestimate snowfall
compared to E-OBSv20.0e. Even though such a binary sep-
aration of snowfall, using a temperature threshold, seemed a
good option to retrieve snowfall data from E-OBSv20.0e, it
has obvious limitations. For example, in an event character-
ized by abundant precipitation but a temperature associated
to a roughly 50 % snow fraction, snowfall would be either
strongly under- or overestimated. In this paper, we explore
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the possibility of reconstructing snowfall from bias-corrected
temperature and precipitation via adequate statistical meth-
ods to obtain an improved estimate compared to raw snowfall
simulation from climate models.

Climate models are the primary tool to simulate multi-
decadal climate dynamics and to generate and understand
global climate change projections under different future
emission scenarios. Both regional and global climate mod-
els have coarse resolution and contain several physical and
mathematical simplifications that make the simulation of the
climate system computationally feasible but also introduce a
certain level of approximation. This results in biases that can
be easily observed when comparing the simulated climate to
observations or reanalysis datasets. Therefore, they provide
limited actionable information at the regional and local spa-
tial scales. To circumvent this problem, it is of crucial impor-
tance to correct these biases for impact and adaptation studies
and for the assessment of meteorological extreme events in
a climate perspective (see, e.g., Ayar et al., 2016; Grouillet
et al., 2016).

In order to mitigate the aforementioned biases, a bias cor-
rection (BC) step is usually performed. This step usually con-
sists of a methodology designed to adjust specific statistical
properties of the simulated climate variables towards a val-
idated reference dataset in the historical period. The chosen
statistics can be very simple, e.g., mean and variance, or it
may include dynamical features in time, such as a certain
number of lags of the autocorrelation function for time se-
ries data, it can be constructed using a limited number of
moments or aim at correcting the entire probability distribu-
tion of the variable, and the correction can also be carried
out in the frequency domain so that the entire time depen-
dence structure is preserved. For an overview of various BC
methodologies applied to climate models see, for example,
Teutschbein and Seibert (2012, 2013) and Maraun (2016).
Key efforts have also been made to bias correct precipitation
(Vrac et al., 2016) and for multivariate (i.e., multi-sites and
variables) approaches, both in downscaling and BC contexts
(Vrac and Friederichs, 2015; Vrac, 2018).

Despite the effort devoted to correcting precipitation bias,
only a few studies propose specific BC methods for snow-
fall data from climate projections. For instance, Frei et al.
(2018) propose a bias adjustment of snowfall in EURO-
CORDEX models specific to the Alpine region, involving
altitude-adjusted total precipitation and a single threshold
temperature to separate rain and snow. Krasting et al. (2013)
study snowfall in CMIP5 models at the northern hemispheric
level, highlighting biases but without suggesting any method-
ology to reduce them, while Lange (2019) proposes a quan-
tile mapping approach that can be used for univariate BC of
snowfall.

Indeed, snowfall presents additional challenges compared
to other variables, precluding the use of traditional univariate
BC methods. Besides the intermittent and non-smooth nature
of snowfall fields – a feature in common with total precipi-

tation – snowfall is the result of complex processes which
involve not only the formation of precipitation but also the
existence and persistence of thermal and hygrometric condi-
tions that allow the precipitation to reach the ground in the
solid state. As a result, snow is often observed in a mixed
phase with rain, especially when considering daily data. This
phase transition poses additional challenges to the bias cor-
rection of snowfall, namely the need of separating the snow
fraction, using the available meteorological information. Ide-
ally, methods to perform such a separation, also known as
precipitation-phase partitioning methods, should be based on
wet-bulb temperature, to which the snow fraction is particu-
larly sensitive (Ding et al., 2014). However, due to the diffi-
culty in estimating this parameter in the case of climate mod-
els, the task is usually performed by relying on temperature
data. These issues would require the application of multivari-
ate BC methodologies, which are significantly more complex
than their univariate counterparts and whose applicability is
not yet fully understood (François et al., 2020).

In the following, T denotes the mean daily near-surface
temperature, Ptot the total daily precipitation, SF the total
daily snowfall, fs denotes the snow fraction, and fr the rain
fraction of total precipitation.

The fact that T is an effective predictor of fs was first ob-
served by Murray (1952). This study tried to also link the
precipitation phase to other variables, such as the freezing
level and the thickness of pressure difference layers (1000–
700 and 1000–500 hPa), finding that the near-surface tem-
perature alone is as effective at predicting the snow fraction
as the others. Following this result, several authors suggest
the use of a binary separation of the snow fraction based
on a threshold temperature both in climatological (US Army
Corps of Engineers, 1956; de Vries et al., 2014; Zubler et al.,
2014; Schmucki et al., 2015) and hydrological (Bergström
and Singh, 1995; Kite, 1995) studies. In this setting, a thresh-
old temperature T ∗ is chosen, so that the fraction fs of total
precipitation falling as snow is 1 for T ≤ T ∗ below and 0 for
T > T ∗.

In a hydrological modeling context, Pipes and Quick
(1977) proposed a linear interpolation between two thresh-
old temperatures T ∗low T

∗

high. This method provides a simple,
yet more realistic, representation of the relationship between
the snow fraction and near-surface temperature, which often
resembles an inverse S-shaped curve. L’hôte et al. (2005) find
similar S-shaped relationships over the Alps and the Andes,
pointing to a broad validity of such an assumption; several
other instances of research finding evidence of such a rela-
tionship are also mentioned in the following paragraph. An
important limitation of this method is that the thresholds Tlow
and Thigh are fixed. As reported by Kienzle (2008), Pipes and
Quick (1977) use threshold values T ∗low = 0.6 ◦C and T ∗high =

3.6 ◦C to estimate snowfall in the U.S. Wen et al. (2013) point
out that a similar method had already been implemented
by US Army Corps of Engineers (1956), using three dif-
ferent threshold values; this adds parameters to the statisti-
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cal model, which then requires even more fine-tuning before
being applied to prediction. In more recent years, the dou-
ble threshold method has also been applied to climatological
analysis, for example in McCabe and Wolock (2008, 2009),
where the authors stress that the choice of the thresholds
require an important calibration procedure step. Still in the
class of threshold models, Kienzle (2008) uses a parameter-
ization considering a temperature TT at which the precipita-
tion is half rain and half snow and a temperature range TR
within which both phases co-exist. This method requires val-
idation, using reliable and sub-daily station data, making it
less suited for the characterization of gridded snowfall over
large domains in reanalysis or climate models.

Slightly more complex methods aim at reproducing the
quasi-smooth shape of the precipitation-phase transition by
fitting S-shaped functions to the relationship between T

and fs (or fr). For example, Dai (2008) proposes a hy-
perbolic tangent fs = a[tanh(b(T − c))− d], while McAfee
et al. (2014) choose a logistic function fs = (1+ e−a+bT )−1,
both fitted via nonlinear least squares (NLSs). Harder and
Pomeroy (2013) propose a similar procedure, adopted also
by Pan et al. (2016), based on a sigmoidal function fr =

(1+ b · cTi )−1, where b and c are parameters calibrated us-
ing data from a single location, and Ti is the so-called hy-
drometeor temperature, i.e., the temperature at the surface
of a falling hydrometeor, which is defined by Harder and
Pomeroy (2013) as a function of air temperature and humid-
ity. While Harder and Pomeroy (2013) find that this method
provides more accurate results compared to simple and dou-
ble thresholds, the estimation of Ti requires reliable measure-
ments or predictions of relative humidity, making this tech-
nique more suited to treating observational data.

Wen et al. (2013) present a comparison of some of
these methods. In particular, this study examined the model-
generated snowfall using different models (namely a regional
model with no atmosphere–surface coupling forced by obser-
vations and a coupled regional circulation model with land
interaction) and assumed forms of fs. The methods put to the
test are single threshold (with T ∗ taken to be 0 and 2.5 ◦C),
double threshold, both with the parameter values fixed by
US Army Corps of Engineers (1956) and Pipes and Quick
(1977), and the method proposed by Kienzle (2008) and the
nonlinear relationship specified by Dai (2008). Results are
mixed, with different methods performing differently in the
two models. It is worth stressing that Wen et al. (2013) do
not tune the parameterizations, nor do they assess whether
the chosen single threshold is optimal for the considered
datasets.

We stress that other studies highlight a dependency of the
snow fraction on additional variables. For example, Jennings
et al. (2018) find a strong sensitivity of fs to relative humid-
ity, which is already included in the partitioning method by
Harder and Pomeroy (2013). Dai (2008) and Jennings et al.
(2018) also find a dependency on air pressure, pointing out
the role of elevation in determining the optimal threshold

temperature. Behrangi et al. (2018) find that the accuracy
of phase partitioning models is increased by including wet-
bulb and dew point temperature, pressure, and wind speed.
We are not concerned by the role of elevation, since we es-
timate grid-point-specific statistical models, which automat-
ically account for this effect. Concerning relative humidity
and other thermodynamic quantities such as dew point and
wet-bulb temperatures, we are aware of their role in deter-
mining the precipitation phase. However, our goal is to com-
pare methods suitable for application to climate projection
datasets. The inclusion of further variables would require ob-
taining and performing an effective bias correction on a much
larger volume of data. We limit our analysis to a minimal set
of variables that can significantly increase the accuracy of
climate models, compared to unadjusted snowfall output.

We aim at finding a feasible method that allows for the
accurate estimation of fs as a function of T and then of
SF = fs ·Ptot in gridded time series datasets, overcoming the
drawbacks of the methodologies applied so far in the litera-
ture. We do so, first, by proposing a method to detect candi-
date values for the threshold temperature(s) in an automated
and computationally feasible way, and second, by fitting non-
linear functions that can incorporate the threshold value(s)
with or without parametric assumptions (such as hyperbolic
tangent or logistic functions). In this way, we aim at ensur-
ing sufficient flexibility to apply results from these methods
to out-of-sample data, while adopting very simple statistical
specifications. Our goal is to find one or more methodolo-
gies that allow us to reconstruct snowfall over large domains,
including regions where this phenomenon is relatively rare,
and occasional extremes can cause service disruption, dam-
age, economic loss, and loss of life.

The rest of the paper is organized as follows: in Sect. 2, we
describe the datasets used for statistical model specification
and assessment of the snowfall reconstruction performance.
In Sect. 3, we illustrate the statistical modeling of the snow
fraction, and in Sect. 4, we discuss methods to evaluate and
compare statistical methods. In Sect. 5, we present the results
obtained on the considered datasets, including case studies
on four regions characterized by different snowfall mecha-
nisms and climatologies. In Sect. 6, we discuss the main re-
sults, and in Sect. 7, we report our conclusions.

2 Data

2.1 The ERA5 reanalysis dataset

Most of the hydrological and climatological studies cited in
Sect. 1 are focused on limited areas where snowfall is a re-
current phenomenon. In general, it is possible to find high-
quality snowfall data for areas heavily affected by frequent
snowfall, such as Scandinavian countries and the Alpine re-
gion (Auer et al., 2005; Scherrer and Appenzeller, 2006;
Isotta et al., 2014), which, however, can still suffer from the
lack of reliable data at high altitudes (Beaumet et al., 2020).
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On the other hand, good quality snow data at the synop-
tic scale are in general difficult to obtain (Rasmussen et al.,
2012).

To match the goals defined in the previous section, we de-
cide to rely on a gridded reanalysis dataset at the European
scale to specify and validate our snowfall method, rather than
on observational data from limited areas.

In particular, we use the fifth generation reanalysis prod-
uct (ERA5) provided by the European Centre for Medium-
Range Weather Forecast (ECMWF). This dataset has a high
(0.25◦) horizontal resolution over Europe and state-of-the-art
physical parameterizations (Copernicus Climate Change Ser-
vice, 2017) over the period 1979–2005. We consider daily
data over a domain covering the area between 26 and 70◦ N
and between −22 to 46◦ E, consisting of a lat–long grid of
273× 177 points covering Europe, part of the eastern At-
lantic, and parts of Russia and northern Africa. We only in-
clude days from December, January, and February (DJF) in
our analysis.

In most reanalysis and climate simulation models, snow-
fall is represented as snowfall flux (SF) in kgm−2 s−1

(Copernicus Climate Change Service, 2017, see also https:
//esgf-node.ipsl.upmc.fr, last access: 22 August 2022, for
CMIP5, CMIP6, and EURO-CORDEX variable lists), from
which it is easy to retrieve total snowfall through time inte-
gration. Here we consider SF expressed in md−1 of equiv-
alent water depth, considering that 1 kgm−2 corresponds to
10−3 m of water equivalent. This quantity is relevant for hy-
drologists, as it is closely related to runoff and river dis-
charge, but also for climatologists, since it represents the in-
tensity of the phenomenon well.

Snowfall in ERA5 consists of snow produced by both
large-scale atmospheric flow and convective precipitations. It
measures the total amount of water accumulated during the
considered time step as the depth of the water resulting if all
the snow melted and was spread evenly over the grid box.

We aggregate the hourly ERA5 data into daily values to
match the time step of the climate simulations described in
the following. We choose ERA5 as the dataset for our study
because of its physical consistency and the use of advanced
assimilation techniques for its compilation (Faranda, 2020).

2.2 Historical climate simulation

In this paper, we use outputs of a climate projection model
from the EURO-CORDEX project obtained by nesting the
regional circulation model (RCM) IPSL-WRF381P within
the r1i1p1 variant of the IPSL-IPSL-CM5A-MR global cir-
culation model (GCM) from CMIP5. The RCM results are
presented at a 0.11◦ regular grid, while the GCM is given at
a resolution of 2◦ for the period 1950–2100. However, model
outputs considered in our analysis are presented at a 0.25◦

resolution, matching the ERA5 grid. Models are run under
different Representative Concentration Pathway (RCP) sce-
narios (namely RCP2.6, 4.5, and 8.5); in our analysis, we will

only include DJF data for the historical sub-period of 1979–
2005. See Vautard et al. (2020) and Coppola et al. (2021) for
more details about the EURO-CORDEX ensemble.

The relevant variables are T , Ptot, and SF, sampled at a
daily time step. The datasets are freely available via the Earth
System Grid Federation (ESGF) nodes (https://esgf.llnl.gov/
nodes.html, last access: 22 August 2022). Both T and Ptot
are available in a bias-adjusted version based on ERA5, us-
ing the cumulative distribution function transform (CDF-t)
introduced by Vrac et al. (2012) and further developed by
Vrac et al. (2016) to improve the adjustment of precipita-
tion frequency. CDF-t is a distribution mapping method, fre-
quently chosen in studies that involve climate projections, as
they perform better than methods based on linear transforma-
tions in case of changing future conditions (Teutschbein and
Seibert, 2013).

In the following, we show how statistical modeling of SF
based on bias-adjusted Ptot and T can replace the direct BC
of the snowfall, markedly improving model SF statistics with
respect to the reference data. For both ERA5 and IPSL_WRF,
we apply a binary land–sea mask to only consider snowfall
over the continents.

3 Methods

In this section, we describe a set of candidate statistical mod-
els for the snow fraction fs as a function of the near-surface
temperature T and how we compare their performance in
terms of accurate reconstruction of the snowfall in an out-
of-sample test set.

First, we consider the single threshold method (STM) as
our baseline method. Given the spatial extent of our dataset
and the relatively fine grid resolution, we anticipate that more
refined methods could be better suited to the purpose of cli-
matological analysis of snowfall. In particular, we aim at
finding parsimonious models that can be easily fitted, point-
wise, on the grid, producing location-specific parameter esti-
mates that we may exploit to obtain an accurate approxima-
tion of snowfall using T and Ptot.

In order to do so, we explore different statistical models.
We extend the STM to a more flexible framework, consisting
of two steps. First, for each grid point we analyze the rela-
tionship between T and fs, and we exploit a breakpoint (or
change-point) search algorithm to assess whether two, one,
or no thresholds should be assumed to describe the rain–
snow transition as a function of near-surface temperature.
Then, we rely on regression to fit grid-point-specific statis-
tical models of the snow fraction, incorporating the informa-
tion about threshold temperatures. Furthermore, we explore
spline regression with knots, based on the local probability
distribution of T , which makes it possible to fit any nonlinear
function without the initial breakpoint search step. Finally,
we consider a method based on directly fitting a parametric
S-shaped function to the data, as in Dai (2008). This statisti-
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cal model can be fitted pointwise, carrying out the parameter
estimation using NLS.

As a final remark, given their ready availability in bias-
adjusted form, we estimated the presented regression mod-
els including also 850 hPa air temperature and total precip-
itation as explanatory variables of the snow fraction. How-
ever, including these additional explanatory variables did not
significantly improve the goodness of fit or prediction skills
of the regression models. For this reason, we only present
and discuss results of one-dimensional methods considering
near-surface temperature.

3.1 Single threshold model (STM)

First of all, we assess the results obtained applying the STM,
introduced by Murray (1952), as follows:

for T ≤ T ∗ : fs = 1
for T > T ∗ : fs = 0.

As already discussed in Sect. 1, this method has been used
in both hydrological and climatological contexts for almost
70 years, until the present. The most difficult step of this
specification, and the greatest drawback of the method, is the
choice of the threshold temperature itself.

Despite its simplicity, this technique presents some advan-
tages. First, if T ∗ is accurately chosen to preserve long-run
snow totals in the reference dataset, snow totals in the climate
model are also not expected to be severely biased. Moreover,
this method can potentially represent extreme DJF snowfall
in cold climates better than more complex methods, since it
is very likely that important snowfall episodes happen below
the threshold daily temperature and correspond to events dur-
ing which the totality of daily precipitation falls as snow. On
the other hand, heavy wet-snowfall with disruptive effects is
a well-known phenomenon in temperate climates (Nikolov
and Wichura, 2009; Bonelli et al., 2011; Llasat et al., 2014;
Ducloux and Nygaard, 2014).

However, this method is also naive, as it gives a binary
representation of a quantity continuously varying in [0, 1].
This makes it impossible for the results to provide insights
on snowfall features in case of more in-depth climatological
analysis or more refined hydrological models. Furthermore,
the search for the optimal threshold should not be complex
or computationally expensive, otherwise it invalidates the ad-
vantage of using such simplified assumptions. This does not
prevent us from detecting a representative value of T ∗ when
conducing a site-specific or local-scale study, but a single
value of the threshold extracted from the literature or esti-
mated, considering the whole aggregated dataset, can be a
gross approximation in case of gridded high-resolution data
on a wide domain such as the EURO-CORDEX one.

Estimates reported in the literature for the single thresh-
old range across quite different values. For example, Auer Jr.
(1974) finds the optimal temperature to give a binary repre-
sentation of the snowfall to be 2.5◦C after analyzing station

data in the U.S., but values as low as 0◦C are reported by
Wen et al. (2013), while Jennings et al. (2018) find a mean
threshold of 1◦C for the northern hemisphere over the period
1978–2007. In a recent analysis of snowfall trends over Eu-
rope in the last few decades, based on ERA5 and E-OBS data,
Faranda (2020) suggests a threshold of T ∗ = 2◦C, also find-
ing that any threshold between 0 and 2.5◦C does not signifi-
cantly change the overall results in that specific study, which
focused on observed trends in snowfalls during the last few
decades.

However, it is worth mentioning that the results by Faranda
(2020) refer to snowfall over Europe where spatial averag-
ing is applied at regional or country level. It is possible that
different thresholds in the interval 0–2.5◦C are more suited
for different parts of the domain, but the errors cancel out in
the spatial averaging, thus not showing the sensitivity to the
threshold value in terms of long run statistics. This condition
does not hold if the reconstruction of the snowfall must be
carried out to preserve spatial structures, and in general, we
do not expect to be able to obtain an accurate representation
of the snow fraction using a single value for the threshold
over the whole domain. On the other hand, we can still expect
this method to perform conveniently when considering long-
term spatially averaged statistics but also right-tail extremes
in cold climates or elevated locations. Here, extreme snow-
fall leading to important snow accumulation on the ground is
expected to be concurrent with large daily precipitation and
low temperature and then with high values of fs. Choosing a
threshold above the freezing point and considering any pre-
cipitation happening with any daily mean temperature lower
than such thresholds is conservative in terms of the estima-
tion of extreme events, despite its inadequacy in terms of re-
producing more complex features of snowfall.

In the following, we discuss a methodology that encom-
passes the case of a locally selected threshold temperature,
while enabling us to determine the optimal number of thresh-
olds and their respective values for each point of the consid-
ered domain.

3.2 Segmented logit-linear regression

In order to overcome the limitations of the STM of fs, we aim
at reproducing the potentially nonlinear relationship between
T and fs. We propose a way to extend the method by Pipes
and Quick (1977), using the following two-step approach:

i. determine the optimal number m of thresholds temper-
atures for each grid point and their value, using a break-
point search algorithm, and

ii. in each of the m+ 1 regimes corresponding to the es-
timated m thresholds, we describe the relationship be-
tween T and fs using a logit-linear regression.

In Appendix A, we describe the search algorithm used to de-
termine the optimal number of threshold temperatures at each
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grid point. It is worth mentioning that we also considered a
segmented beta regression with a logit link function, which
would be the most theoretically sound way of modeling a
[0,1] bounded variable. However, this algorithm showed sev-
eral convergence problems, which ultimately made it unfea-
sible.

3.3 Cubic spline regression

While segmented logit-linear regression allows for more
flexible functional forms compared to a STM, it is based on
the specific assumption of a piecewise logit-linear relation-
ship between T and fs. In order to try and catch such nonlin-
earity without imposing possibly unrealistic assumptions, we
consider cubic spline regression. The procedure, described in
Appendix A, relies on piece-wise polynomials; the deciles of
the point-specific temperature distribution are taken as the
knots defining the partition, making this procedure able to
capture nonlinearity and, thus, avoiding the need for a break-
point search as in segmented regression.

3.4 Sigmoid function fit

Finally, following Dai (2008) and Jennings et al. (2018), we
consider an inverse S-shaped or sigmoid function to directly
fit the transition. This method links snow fraction and near-
surface temperature through a hyperbolic tangent and fea-
tures the following four parameters:

fs = a[tanh(b(T − c))− d]. (1)

At each grid point, we estimate the parameter values using
the R function nls(), based on the NL2SOL port algo-
rithm (Gay, 1990). We consider two versions of this statis-
tical model. In one, we estimate the value of all four parame-
ters, using as initial values a =−0.5, b = 0.5, c = d = 1. In
the other, hereinafter named the constrained sigmoid, we fix
a =−0.5, d = 1 prior to the estimation, and we only esti-
mate b and c. This choice followed the observation that es-
timating all four parameters results in unphysical behaviors
for extremely low and high temperatures, where the sigmoid
should approach 1 and 0, respectively.

4 Design of the experiment and statistical method
evaluation

We assess the performance of each method in recovering fs
as a function of T and then SF= fs ·Ptot, using a test set
from ERA5 for statistical method evaluation. Then, we se-
lect the best method, if any is found, as the one providing the
out-of-sample best prediction of snowfall in ERA5, and we
use parameter estimates to approximate SF in the IPSL_WRF
model, assessing its performance in terms of bias correction
with respect to the original model output. In the following,
the superscripts E5 and IW denote ERA5 and IPSL_WRF

variables, respectively. Moreover, the hat superscript denotes
estimations obtained from the regression models. For exam-
ple, P E5

tot denotes the total precipitation in ERA5, and f̂ IW
s de-

notes the snow fraction estimated from T in the IPSL_WRF
climate simulations. If no superscript is shown, we refer to
the indicated variable in general. Furthermore, as already
mentioned, T ∗(low,high) denote the threshold temperatures ob-
tained estimated by the segmented regression algorithm. Fi-
nally, we use θ to denote the generic parameter vector of each
method, including β and the temperature thresholds and θ̂ for
the corresponding estimate.

As a preparatory step, we transform the data so that they
are included in (0,1) without assuming the boundary values.
In fact, the segmented regression on logit-transformed data is
ill-behaved in case the variable assumes the limiting values of
0 and 1. To circumvent this problem, Smithson and Verkuilen
(2006) propose a transformation to effectively shrink the in-
terval as follows:

fs→
fs(n− 1)+ 0.5

n
, (2)

where n is the sample size. Notice that the interval ampli-
tude will depend on n. For example, for n= 50 the interval
reduces to [0.01, 0.99], while for n= 100 it ranges in [0.005,
0.995]. In the following, all variables are transformed using
Eq. (2) for regression models but not for the STM and the
sigmoid fit. Since we consider this adjustment as part of the
regression procedure, no different notation will be used to
denote the transformed variables.

For the statistical model selection and validation steps,
we use the entire available period from 1979 to 2005. For
the STM, we test two threshold temperatures T ∗, namely
T ∗1 = 1 ◦C, following Jennings et al. (2018), and T ∗2 = 2 ◦C,
following Faranda (2020). Then, we put f̂ E5

s = 1, if T < T ∗,
and f̂ E5

s = 0, if T > T ∗. To estimate snow fraction models
based on regression, for each point on the ERA5 grid, if the
total number of snowfall events is a least n= 30, we ran-
domly select half of the values as a training set, and the
remaining is used as a test set; otherwise, the grid point is
excluded from the analysis. Pure rainfall events are also ex-
cluded from regression analysis. Each method is evaluated
on the training set to obtain the parameter estimate θ̂ (with
the exception of the STM). Then, θ̂ is used to estimate f̂ E5

s
in the test set, and we finally obtain the estimated snowfall as
ŜF

E5
= f̂ E5

s ·P
E5
tot .

The performance of the method is assessed by compar-
ing true and predicted fs values in the test set. In particu-
lar, for each grid point, we compute two error measures, the
mean absolute error (MAE), and the root mean square error
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(RMSE), as follows:

MAE=
2
n

n/2∑
j=1
|ŜF

E5
j −SFE5

j |

RMSE=

√√√√2
n

n/2∑
j=1

(
ŜF

E5
j −SFE5

j

)2
. (3)

We consider the best method to be the one providing the
best performance in terms of minimum MAE and RMSE
over the considered domain. We repeat the estimation for
each grid point using the entire sample size n, instead of di-
viding it into a training and test set. Then, we use the re-
sulting θ̂ and T IW to estimate the snow fraction in the cli-
mate model, f̂ IW

s , and the corresponding snowfall ŜF
IW
=

f̂ IW
s ·P

IW
tot . Then, we compare both SFIW and ŜF

IW
to SFE5,

and we assess whether the version estimated with the chosen
method and using bias-adjusted total precipitation is closer
to reanalysis than the raw climate model output, showing that
the statistical method can be used to perform snowfall BC.

The capability of the chosen methods to perform a BC-like
task can be evaluated in terms of similarity between the dis-
tribution of the estimated daily snowfall and the reanalysis
values. We will use three measures of dissimilarity between
the distributions, i.e., the Kolmogorov–Smirnov (KS) statis-
tics, the Kullback–Leibler (KL) divergence, and the χ2 di-
vergence. See Sect. A2 for an illustration of these quantities.

5 Results

5.1 Threshold temperatures

The breakpoint analysis for the search of optimal threshold
temperatures is described in detail in Sect. A1. For each grid
point in the ERA5 dataset, we run the search algorithm, sav-
ing the number of resulting breakpoint positions, while the
values are discarded, since the segmented regression algo-
rithm only requires the number of breaks as an input. We ex-
clude all grid points where the total number of DJF snowfall
events over 1979–2005 is smaller than 30, which is also the
cutoff we chose as a minimal sample size for the regressions.

It is worth noting that at least one threshold temperature
is found for each grid point, even though having no break-
point is an admissible outcome from the search algorithm.
This corroborates the idea that some form of transition be-
tween two regimes is to be expected concerning the relation-
ship between T and fs.

As mentioned in Sect. 3.2, and illustrated in detail in Ap-
pendix A, the segmented regression algorithm finds the op-
timal threshold temperatures through Eq. (A11), using quan-
tiles of the independent variable as initial guess. The results
of this threshold temperature estimation are shown in Fig. 2.

Figure 2a displays the locations and temperature values
where only one threshold is found. These are also likely lo-

cations where the choice of a STM may produce good re-
sults. However, it is clear from the figure that the values
of the threshold are quite variable, displaying negative val-
ues on some areas, as opposed to the usual choice for a
STM framework. In particular, strongly negative values (up
to T ∗ ∼−5 ◦C) are found over the Alps and Scandinavia, and
slightly milder but still negative values are also observed over
parts of eastern Türkiye, Austria, the Czech Republic, Slo-
vakia, Hungary, Bulgaria, Romania, and Moldova. All these
areas are characterized by a large or extremely large number
of snowfall events (Fig. 1b), but only the Alps and eastern
Türkiye are also areas with a large average DJF snowfall.
The other two regions characterized by extreme total snow-
fall amounts, Iceland and the coast of Norway, with the ex-
ception of the most southwestern part, are instead not rep-
resented by this single threshold configuration. Thresholds
T ∗ ∼ 0 ◦C are found over central–western France and Bel-
gium, while positive values, more typical for single thresh-
old methods are found for the UK, Spain, southern France
and Germany, peninsular Italy, and the northern parts of Mo-
rocco, Algeria, and Tunisia. Panels (b) and (c) in Fig. 2 show,
respectively, T ∗low and T ∗high for all the remaining grid points,
characterized by a double threshold. These areas include Ice-
land and central–eastern Europe at all latitudes, excluding
the aforementioned areas characterized by single thresholds.
Concerning T ∗low, we observe temperatures T ∗ ∼ 0 ◦C in the
UK, eastern France, and central Europe, decreasing towards
negative values over more northern and eastern locations, in-
cluding Iceland. A similar gradient is observed for the up-
per threshold T ∗high, with positive temperatures over UK and
most of central–eastern Europe, and values closer to 0 ◦C in
southern Finland and western Russia. Areas displaying un-
realistically negative values for both thresholds over Iceland,
coastal Norway, and northern Russia are likely areas charac-
terized by a steep transition and noisy data, preventing the
algorithm from detecting realistic threshold values.

5.2 Statistical method evaluation and selection

We assess the performance of each method in terms of snow
fraction prediction, as described in Sect. 4. For every grid
point in the ERA5 dataset, we randomly split the time series
of snow fraction into a training and a test set, we estimate
each statistical model in the training set, and we use parame-
ter estimates to predict the values in the test set. In Fig. 3, we
show a summary of the results in terms of the chosen error
measures. Each box plot refers to the values of the error mea-
sure over the entire domain for grid points with more than 30
snowfall events. The tested methods include the STM with 1
and 2 ◦C threshold temperatures, the segmented logit-linear
and the cubic spline regressions, and the sigmoid fit based
on NLS, both with and without constraints on the parame-
ters. We do not display outliers in the box plot for greater
graphical clarity.
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Figure 1. The (a, b) 1979–2005 average DJF snowfall (m) and (c, d) 1979–2005 number of DJF snowfall days. The left column shows
ERA5, and the right column shows IPSL_WRF.

We show results for both the snow fraction, directly de-
rived from the statistical prediction (Fig. 3a), and the snow-
fall, obtained as ŜF

E5
= f̂s

E5
·P E5

tot (Fig. 3b).
From a visual inspection, the STM produces the poorest

performance in terms of median and variability of the er-
rors, for both fs and SF. The other methods provide very
similar results, with the two versions of the sigmoid show-
ing slightly higher median RMSE and lower median MAE;
the segmented logit-linear and the cubic spline regressions
display no visible differences.

In order to choose the best possible methodology based on
quantitative considerations, we test for significant differences
among groups using the rank test proposed by Kruskal and
Wallis (1952).

We perform a total of four Kruskal–Wallis tests on snow
fraction RMSE, snow fraction MAE, snowfall RMSE, and
snowfall MAE. In all cases, the null hypothesis must be re-
jected, with virtually null p values (all < 2.2×10−16, which
is the smallest value resolved in R). From this, we can infer
that at least one method produces significantly smaller errors
compared to at least another method. However, we cannot
establish exactly which groups are concerned. For this pur-
pose, we rely on post hoc testing using the pairwise Wilcoxon

rank sum test (Wilcoxon, 1992), a nonparametric alternative
to pairwise Student’s t tests suited for non-Gaussian samples,
also known as Mann–Whitney U test. See Sect. A3 for a de-
tailed description of the statistical tests.

For fs, the test indicates significant differences among all
groups, except between spline and segmented logit-linear re-
gressions, (p values 0.34 and 0.60 for RMSE and MAE, re-
spectively). For SF, the test gives results analogous to fs for
RMSE (no difference between spline and segmented logit-
linear regressions; p value = 0.20), while, in terms of MAE,
differences are nonsignificant also between the two versions
of STM (p value = 0.56), between spline and segmented
logit-linear regression (p value = 0.50), between sigmoid
and segmented logit-linear regression (p value = 0.12), and
between sigmoid fit and spline regression (p value = 0.34).
It is worth mentioning that, due to the very large sample size,
the tests may be sensitive even to very small differences, pos-
sibly leading to a high probability of rejection, even with dif-
ferences that are unrecognizable in practice.

The close similarity of results from the segmented logit-
linear and the spline regression is also evident from the sum-
mary statistics of the distributions of the two error measures
for the two variables, as shown in Table 1. Based on these re-
sults, spline regression seems to be potentially the best can-
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Figure 2. Threshold temperatures optimized for segmented logit-linear regression, according to Eq. (A11), using ERA5 data. (a) Locations
with a single threshold temperature. (b, c) Locations with double threshold temperatures, with lower thresholds (b) and upper thresholds (c)
also shown.

didate, as it shows the lowest error statistics, while being less
demanding than segmented regression, as it does not require
the breakpoint analysis step, which is the longest and most
computationally intensive step among the presented proce-
dures.

As a further criterion to choose the best-performing
method, we consider the Pearson’s correlation coefficient
computed, at each grid point, between the snow fraction ob-
served in ERA5 and predicted using the five methods under
investigation. Notice that the factor linking fs and SF is P E5

tot
for both true reanalysis and reconstructed data, so that results
in terms of the correlation coefficient are exactly the same
for both variables. The summary statistics for the correlation
coefficient are shown in Table 2. The box plots, shown in
Fig. 4a and constructed as described for MAE and RMSE,
show that the STM with 2 ◦C displays the lowest correla-
tion, followed by the 1 ◦C STM, segmented logit-linear re-
gression, spline regression, constrained sigmoid, and uncon-
strained sigmoid fit. As in the previous case, the Kruskal–
Wallis test finds a significant stochastic dominance of at least
one group on the others, but the pairwise Mann–Whitney test

suggests significant differences among all methods, except
between segmented and spline regression (p value 0.9985).

Figure 4b–e show the spatial structure of correlation be-
tween predicted and observed snow fraction for all methods,
except the STM with 2 ◦C threshold and the constrained sig-
moid. Clearly, areas characterized by frequent and abundant
winter snowfall, such as the Alps, Scandinavia, and eastern
Türkiye, correspond to the lowest values of the correlation
coefficient. It becomes evident that the slightly better per-
formance of the unconstrained sigmoid fit is due to the non-
convergence of the NLS algorithm over parts of the Alps,
Norway, Sweden, Finland, and northern Russia, which are
characterized by the lowest correlation values. This suggest
that, while this method can perform as well as the segmented
and spline regressions, it may be sensitive to misspecifica-
tion, making it unsuitable for areas where the transition de-
parts from an inverse S-shaped function. The constrained ver-
sion does indeed show better convergence as it providing re-
sults very close to the logit-linear segmented and cubic spline
regression.

Figures 5 and 6 show the transition for a total of 10 loca-
tions corresponding to the closest grid points to some Euro-
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Figure 3. Forecasting performance of the five considered methods applied to ERA5 reanalysis in terms of mean absolute error (orange) and
root mean squared error (green). (a) Snow fraction. (b) Snowfall (m).

pean capitals and the fits resulting from the segmented logit-
linear regression, spline regression, and sigmoid fit, which
are both constrained and unconstrained.

It is clear that the unconstrained sigmoid fit has some is-
sues with extreme values of fs, especially in catching the sat-
uration at fs = 1 for very low values of T . The constrained
version of the sigmoid fit is well-behaved at the extremes of
the transition; however, in most of the shown locations, it is
less accurate than the logit-linear segmented and cubic spline
regression in following the overall transition.

As expected, fitted values from segmented and spline
regressions are quite close, with the splines giving the
smoothest result, since they are continuous at the knots by
construction.

It is clear that, overall, the segmented logit-linear regres-
sion and the spline regression perform significantly better at
reconstructing the snowfall compared to the STM. However,
these results do not constitute strong evidence towards a bet-
ter performance in reconstructing snowfall in practical cases,
i.e., when it is unobserved or severely biased. To this purpose,
we will apply both methods to reconstruct the snowfall in a

climate projection model, and we assess which one produces
the least biased snowfall using bias-adjusted temperature and
precipitation as an input.

As an additional element to evaluate the performance of
the identified methods, we assess if they can produce robust
snowfall estimates in a pseudo climate change scenario. In
order to do so, we repeat the validation procedure described
in Sect. 4; after ordering the ERA5 dataset based on the an-
nual DJF average temperature, we take the coldest 25% as
the training set and the warmest 25% as the test set. We run
this procedure for all methods, except the 2 ◦C STM, which
clearly showed the poorest performance and will not be con-
sidered again in the following.

Figure 7 shows the statistical model performance metrics
in analogy with Figs. 3 and 4. Figure 7a–e display the map
of the event-to-event correlation coefficient, showing over-
all higher values than for the random training and test sets,
which is arguably due to more frequent snowfall in the top
25 % coldest years providing more training data. On the other
hand, both versions of the sigmoid fit exhibit convergence
problems over a larger number of grid points, despite still
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Table 1. Summary statistics of the distributions of the RMSE and MAE for snow fraction and snowfall in ERA5. The mean, standard
deviations, median, and interquartile range are shown.

Snow fraction

RMSE MAE

Method Mean SD Median IQR Mean SD Median IQR

Sigmoid 0.138 0.0530 0.144 0.0880 0.198 0.0531 0.207 0.0817
Constr. sigmoid 0.130 0.0568 0.135 0.0976 0.202 0.0584 0.211 0.0915
Cubic splines 0.117 0.0521 0.121 0.0902 0.206 0.0623 0.215 0.0977
Segmented reg. 0.118 0.0527 0.122 0.0911 0.206 0.0624 0.216 0.0985
STM 1◦C 0.155 0.0722 0.161 0.125 0.277 0.0877 0.291 0.145
STM 2◦C 0.167 0.0811 0.176 0.144 0.294 0.100 0.312 0.167

Snowfall

RMSE (×10−4) MAE (×10−4)

Method Mean SD Median IQR Mean SD Median IQR

Sigmoid 0.131 0.0833 0.115 0.0844 0.316 0.180 0.290 0.193
Constr. sigmoid 0.119 0.0876 0.104 0.0945 0.311 0.187 0.285 0.202
Cubic splines 0.106 0.0804 0.0926 0.0928 0.322 0.203 0.299 0.242
Segmented reg. 0.107 0.0828 0.0935 0.0955 0.325 0.209 0.299 0.248
STM 1◦C 0.136 0.137 0.106 0.114 0.475 0.356 0.396 0.325
STM 2◦C 0.134 0.120 0.119 0.120 0.449 0.301 0.414 0.316

Table 2. Summary statistics of the distributions of correlation be-
tween ERA5 reanalysis and predicted snow fraction. Note: IQR in-
dicates the amplitude of the interquartile range.

Correlation coefficient

Method Mean SD Median IQR

Sigmoid 0.690 0.132 0.724 0.130
Constr. sigmoid 0.675 0.147 0.713 0.138
Cubic spline 0.671 0.145 0.712 0.14
Segmented reg. 0.673 0.142 0.711 0.142
STM 1◦C 0.569 0.147 0.609 0.182
STM 2◦C 0.515 0.163 0.545 0.237

being limited to the Alps, Scandinavia, and Russia, with the
worst performance provided by the unconstrained fit.

Similar to the case of randomly drawn train and test sets,
the STM shows the lowest correlations, followed by the seg-
mented logit-linear and spline regressions, as shown by the
box plot in Fig. 7f. The sigmoid fits display less variability in
the lower tail of the box plot, probably thanks to the less dra-
matic lowering in correlation over western France, especially
when compared to the spline regression. The performance in
terms of RMSE and MAE (Fig. 7g) is also comparable to the
random train and test sets case, with cubic splines performing
the best.

Overall, assuming that separating cold and warm years can
be a proxy of climate change to assess statistical model per-
formance, the two regressions perform very similarly to the

general case in terms of forecasting error, without any vis-
ible improvement or decrease in accuracy. As expected, the
STM has the worst performance, while the sigmoid fit could
present advantages over some areas but more pronounced
convergence problems where DJF precipitation mainly falls
as snow. However, we observe an improvement in the cor-
relation between predicted and true forecasting values. We
argue that this effect is likely due to precipitation patterns in
years characterized by extreme temperatures in the historical
period, and it should not be expected to happen under future
climate change.

5.3 Bias correction of climate simulations

We now assess the performance of the considered methods
on the output of the IPSL_WRF climate simulations for the
period 1979–2005. For this RCM, we have near-surface tem-
perature and total daily precipitation bias-corrected using
CDF-t with respect to ERA5. However, available snowfall
data are not corrected, and this presents non-negligible dif-
ferences compared to ERA5 in terms of both the long run
statistics and probability distribution of daily snowfall.

Figure 8 shows the differences in average DJF snowfall
between IPSL_WRF and ERA5 and between each statistical
method and ERA5. The RCM displays larger biases com-
pared to the statistical methods, especially the positive val-
ues over the Alps and negative bias over the coast of Norway
and, with smaller values, over western Iceland, the Balkans,
and northern Russia. Overall, all methods produce a decrease
in snowfall bias, including the STM.
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Figure 4. Box plots of correlation coefficients between the ERA5 reanalysis and predicted snow fraction, using the five selected methods,
for all grid points with at least 30 snowfall events (a). Mapped values of the snowfall correlation coefficient for the STM (b), segmented
logit-linear regression (c), cubic spline regression (d), and constrained sigmoid fit (e). White areas over Scandinavia, the Alps, Türkiye and
isolated points in Spain, southern France, and Italy shown in panel (e) are due to the non-convergence of the constrained sigmoid fit.

It is also worth noting the different spatial distribution of
the bias sign, depending on the method. The two versions
of the sigmoid fit are the only methods that avoid the pos-
itive bias patch over Norway; however, the unconstrained
sigmoid is characterized by larger areas of negative bias be-
tween Scandinavia and Russia, while the constrained version
produces more positively biased values over central Europe.

To assess the overall performance of the models, we
compute the mean absolute bias as the spatial mean
of the absolute differences between modeled and ERA5

DJF snowfall differences. The cubic splines produce the
smallest bias (0.008 m), followed by segmented regres-
sion (0.0096 m), constrained sigmoid (0.0118 m), STM
(0.0122 m), unconstrained sigmoid (0.0136 m), and non-
bias-corrected IPSL_WRF (0.041 m).

We evaluate the performance of the STM, cubic spline re-
gression, and the two versions of the sigmoid fit and compare
it to the values produced by the IPSL_WRF model, using
three measures of proximity between probability distribu-
tions of SF, as described in Sect. 4 (KS, KL, χ2). At each grid
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Figure 5. Snow fraction as a function of temperature for the five ERA5 grid points closest to some European cities (gray circles). Solid lines
represent fitted values for the segmented logit-linear regression (blue), spline regression (orange), sigmoid fit (dark red), and constrained
sigmoid fit (green).

point, we estimate the three divergence measures between the
empirical probability distribution of ERA5 and of each statis-
tical method. We do not consider the segmented logit-linear
regression, since results produced by such a method are al-
most identical to the ones obtained using spline regression,
but require also the breakpoint analysis, which is a lengthy
and computationally expensive step for large datasets, mak-
ing it a less attractive candidate.

The results are summarized in Fig. 9a through the box
plots of the values considering the entire domain. Outliers are
excluded for greater graphical clarity. For each method, the
three divergence measures assume similar values overall. All
methods to approximate snowfall produce smaller values of
the statistical divergences compared to the raw IPSL_WRF
output. The largest dissimilarity is observed for the STM: as
already mentioned, such a method can be expected to pro-
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Figure 6. Snow fraction as a function of temperature for the five ERA5 grid points closest to some European cities (gray circles). Solid lines
represent fitted values for the segmented logit-linear regression (blue), spline regression (orange), sigmoid fit (dark red), and constrained
sigmoid fit (green).

duce accurate snowfall climatologies, but the resulting SF
distributions cannot be realistic, given the binary partition.

The spline regression appears to be the best method in
terms of both median and variability, as it consistently dis-
plays the smallest interquartile range (IQR) for all the three
measures. However, while χ2 and KL produce very homoge-
neous values over the domain (not shown), KS is more spa-
tially differentiated and also has larger outlier values. Fig-

ure 9b and c show the spatial distribution of the difference
between IPSL_WRF KS distance compared to cubic spline
regression and constrained sigmoid fit, respectively. Both
methods display a clear spatial coherence, showing that im-
provements in terms of KS statistics concern central and east-
ern Europe, especially below 45◦ latitude. Figure 9d shows
the distributions of the KS distance for the IPSL_WRF and
the four discussed methods. Once again, smallest values are
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Figure 7. Performance of the statistical methods for the prediction of snow fraction, trained on the 25% coldest ERA5 years, in forecasting
in the 25% warmest years. (a–e) Maps of Pearson’s correlation coefficient between prediction and reanalysis. (f, g) Comparison of the box
plots of the correlation coefficient and of the statistical method performance in terms of RMSE and MAE, respectively. White points over
northern Europe and Russia indicate non-convergence of the two sigmoid fits.

observed for the cubic spline that appears to be the best-
performing method when considering the domain as a whole.
Almost no difference is found between the constrained and
the unconstrained version of the sigmoid fit.

5.3.1 Regional extremes

The results discussed so far show that the IPSL_WRF model
is affected by a spatially inhomogeneous and sometimes im-
portant bias, and that the snowfall reconstruction based on
the methods selected in Sect. 5.2 produces more realistic val-

ues on the majority of grid points. In particular, the greatest
advantage seems to be in very snowy areas, such as the Alps
and Norway, where post-correction biases are comparable to
the rest of the domain, while those in the IPSL_WRF model
are roughly up to an order of magnitude larger. Other areas,
such as central Europe, are characterized by smaller biases,
even in the raw climate model output and in the STM. In
this paragraph, we focus our analysis over limited areas with
high (the Alps and Norway) and low (France and Germany)
bias. Here, we only show results for the constrained version
of the sigmoid function. We define the Alps region based on
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Figure 8. Difference in meters between the statistical approximation and reanalysis average of DJF snowfall for the years 1979–2005. The
IPSL_WRF model (a), 1 ◦C STM (b), segmented logit-linear regression (c), cubic spline regression (d), unconstrained (e), and constrained
sigmoid function (f) are shown.

Eurostat 2016 nomenclature of territorial units for statistics
(NUTS 3), choosing provinces belonging to France, Switzer-
land, Italy, and Austria characterized by large values of to-
tal 1979–2005 snowfall and large differences between ERA5
and IPSL_WRF. In particular, we include the regions marked
by the NUTS 3 codes listed in Table A1.

The IPSL_WRF simulation is characterized by a large pos-
itive bias over the Alps, with values up to∼ 1 m difference in
the average 1979–2005 DJF snowfall, as shown in Fig. 10a.
Figure 10b–d clearly show the dramatic reduction in the bias
for all the statistical methods, with values decreasing from
∼ 0.5–1 to ∼ 0.05 m especially in the most affected areas of
the central–western Alps. As already mentioned, however,

the sigmoid fit does not converge over several grid points
over the Alps, making this method not suitable for snowfall
reconstruction over this region.

Overall, the median bias of the STM and spline regression
remains slightly positive, but the IQR of the differences with
respect to ERA5 is reduced by around an order of magni-
tude, as evident from Fig. 10e. The overall best performance
in terms of average DJF snowfall is shown by the spline re-
gression, with both the smallest residual bias and variability.

Since comparing IPSL_WRF and its adjusted versions to
ERA5 does not provide a one-on-one correspondence be-
tween snowfall events, it is not possible to compute corre-
lation coefficients between reanalysis and statistically recon-
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Figure 9. Performance of the statistical methods as bias correction methods of snowfall in terms of statistical divergences. Divergence
measures box plots for statistical methods and raw IPSL_WRF simulations (a). Maps of KS statistical differences between IPSL_WRF and
spline regression (b) and constrained sigmoid fit (c). Comparison of the probability density function of the KS statistics associated with the
four considered statistical methods and the uncorrected IPSL_WRF model (d).

structed snowfall time series at each grid point as in Fig. 4.
Instead, we can study the correlation between the total 1979–
2005 ERA5 snowfall and the total 1979–2005 snowfall simu-
lated by IPSL_WRF and approximated with the STM, cubic
spline regression, and sigmoid fit at each grid point.

The upper left quadrant of Table 3 reports values of the
intercept and slope of the least squares line plus the determi-
nation coefficient; the asterisks mark coefficients that are sig-
nificantly different from 0 at the 5% level. The slope estimate

is accompanied by its 95% confidence interval, obtained as
±2 s.e., where s.e. is the standard error.

In case of an ideal bias correction method, differences
between the reference dataset and corrected model output
would be a sequence of uncorrelated zero-mean Gaussian
random variables. This implies a linear relationship with zero
(nonsignificant) intercept, a significant slope close to 1 (i.e.,
with 1 included in the confidence interval), and an R2 as
close to 1 as possible. The intercept of the IPSL_WRF is
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Figure 10. Maps of average 1979–2005 DJF snow differences over the Alps region between raw IPSL_WRF (a), STM (b), cubic spline
regression (c), sigmoid fit (d) bias correction, and ERA5. Corresponding summary box plots are shown in panel (e).

significant and negative, the slope is significantly different
from 1, and a determination coefficient is R2

= 0.73. All the
statistical methods produce a remarkable improvement in the
parameters, with the cubic spline regression displaying the
values closest to the ideal case. These results demonstrate a
marked improvement of the long run snowfall statistics over
the Alps obtained with any of the considered statistical ap-
proximations, compared to the uncorrected climate model
snowfall.

We repeat the same analysis for Norway, another area
where DJF snowfall constitutes a large proportion of total
DJF precipitation and the IPSL_WRF model shows large bi-
ases. As shown by Fig. 11a, IPSL_WRF presents a negative
bias, up to −0.4 m on average for 1979–2005 DJF snowfall,

on the entire western and northern sides of the country, and
positive biases up to ∼+0.4 m on the southern areas, mak-
ing snowfall over one of the most snowy areas in Europe
heavily misrepresented. Again, Fig. 11b, c, and d show the
reconstructed snowfall using STM, cubic spline regression,
and constrained sigmoid fit, respectively. In this case, the bias
pattern is still persistent after correction, with the exception
of a passage from positive to negative values over the south-
ern coast. The magnitude of the residual bias is reduced by a
factor ranging from∼ 2 for the STM to∼ 5 for the spline re-
gression and sigmoid fit, compared to IPSL_WRF. As for the
Alps, the box plots of total snowfall over the country, shown
in Fig. 11e, suggest that the best performance in terms of cor-
rection of average DJF snowfall is obtained using the cubic
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Figure 11. Maps of average 1979–2005 DJF snow differences over Norway between raw IPSL_WRF (a), STM (b), cubic spline regres-
sion (c), sigmoid fit (d) bias correction, and ERA5. Corresponding summary box plots are shown in panel (e).

spline regression and by the sigmoid fit, without large differ-
ences between the two methods. However, while the mean
absolute bias is similar for cubic splines and the sigmoid fit,
the latter results in an area of non-convergence in a region
characterized by large DJF snowfall totals. As for the Alps
region, STM estimates are less biased compared to the raw
IPSL_WRF output, even though its performance is less close
to the one of the two other competing methods.

As shown in Table 3, the relationship between total DJF
snowfall simulated by the IPSL_WRF model and ERA5 is
characterized by poor correlation (R2

= 0.12) and regression

parameters. Snowfall reconstruction via statistical methods
produces, once again, a sizable improvement in snowfall es-
timation, with R2

= 0.91 for the STM and R2
≥ 0.98 for the

cubic splines and sigmoid fit.
Both Norway and the Alps regions are characterized by

mountain ranges subject to orographic forcing of moist air
masses and by low DJF temperatures due to elevation (es-
pecially for the Alps) and latitude (Norway). Moreover, all
methods show the lowest correlation between observed and
reconstructed snowfall in the validation phase over these ar-
eas (see Fig. 4). We now repeat the same assessment for areas

https://doi.org/10.5194/ascmo-8-155-2022 Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, 2022



174 F. M. E. Pons and D. Faranda: Improving snowfall representation via statistical modeling

Figure 12. Maps of average 1979–2005 DJF snow differences over France between raw IPSL_WRF (a), STM (b), cubic spline regression (c),
sigmoid fit (d) bias correction, and ERA5. Corresponding summary box plots are shown in panel (e).

where snowfall is overall less abundant and driven by dif-
ferent mechanisms, and the statistical methods show higher
correlations in the validation phase. Figure 12 shows results
for France and Fig. 13 for Germany. Both countries are char-
acterized by nonhomogeneous orography, continental areas,
and coasts directly influenced by the Atlantic Ocean, the
North Sea, and the Mediterranean Sea. In both cases, the
IPSL_WRF bias is overall positive but smaller compared
to the previously analyzed regions, with the largest values

in the areas closest to the Alps region. In terms of average
DJF snowfall (Figs. 12e and 13e), all three statistical models
produce a visible improvement compared to the raw climate
model, with some residual biases especially over the more el-
evated areas. Differences among models over these two areas
appear to be negligible.

As already mentioned, bias adjustment usually aims at
correcting as much of the distribution of the observable as
possible. To assess if and how well our methods work in

Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, 2022 https://doi.org/10.5194/ascmo-8-155-2022



F. M. E. Pons and D. Faranda: Improving snowfall representation via statistical modeling 175

Figure 13. Maps of average 1979–2005 DJF snow differences over Germany between raw IPSL_WRF (a), STM (b), cubic spline regres-
sion (c), sigmoid fit (d) bias correction, and ERA5. Corresponding summary box plots are shown in panel (e).

this sense, we compare the empirical cumulative distribution
function (ECDF) of daily snowfall, once again considering
each region as homogeneous. Figure 14 shows the compar-
isons among the ECDFs with a logarithmic x axis to magnify
small differences. In all cases, the IPSL_WRF distribution
is visibly different from the reference. For France and Ger-
many, the STM results in distributions very similar to those
of the raw model, despite the small residual biases in snow-
fall totals, while it approximates the ERA5 distribution very

well in the case of the Alps region. The two more complex
methods produce a visible improvement in all cases, com-
pared to the raw IPSL_WRF model.

In summary, we have shown that combining a breakpoint
search algorithm and a flexible regression method – be it a
segmented logit-linear or a cubic spline regression – allows
for a reliable snowfall reconstruction in climate simulations.
This method proves to be effective both in correcting large
mean biases and in preserving the shape of the entire prob-
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Figure 14. Comparison between cumulative distribution function of daily snowfall in ERA5 reanalysis (red lines), raw IPSL_WRF model
output (orange line), STM (blue line), cubic spline (purple line), and constrained sigmoid (turquoise line) bias correction for (a) the Alps,
(b) Norway, (c) France, and (d) Germany. The distributions are shown in a natural logarithmic scale to magnify the differences.

ability distribution of (daily) snowfall rather than only long
run totals. This result is crucial for studying the character-
istics of future snowfall in a wide range of environments,
encompassing regions characterized by frequent and abun-
dant snowfall in cold climates and temperate areas where oc-
casional snowstorms and heavy wet-snow events can cause
serious loss and damage.

6 Discussion

We have presented four statistical methods to estimate the
snowfall fraction of total DJF precipitation over Europe, pro-
vided that a reliable measure of near-surface temperature is

available. This is a relevant problem in both hydrology and
climatology, since an accurate estimation of snowfall is chal-
lenging in case of both observed or simulated precipitation.

In case of observational data, especially over large areas
where a single weather station is not representative, snowfall
is often unobserved due to difficulties in making its measure-
ment an automated procedure. On the other hand, climate
model outputs often include snowfall, but this is affected by a
bias arising from the physical and mathematical approxima-
tions contained in the model scheme. For other variables such
as temperature and total precipitation, we can rely on well-
established and relatively simple univariate bias correction
methods that can be applied pointwise in the case of gridded
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Table 3. Summary statistics of the linear relationship between reconstructed and reanalysis snowfall over the Alps, Norway, France, and
Germany.

Alps Norway

Method Intercept Slope R2 Intercept Slope R2

IPSL_WRF −0.19± 0.06∗ 3.08± 0.26∗ 0.73 0.12± 0.01∗ 0.25± 0.04∗ 0.12
Sigmoid fit 0.01± 0.004∗ 0.88± 0.02∗ 0.98 0.00± 0.002 0.90± 0.006∗ 0.99
Cubic spline 0.001± 0.004 1.01± 0.02∗ 0.98 0.00± 0.002 0.95± 0.008∗ 0.98
STM −0.009± 0.006∗ 1.08± 0.00∗ 0.96 0.015± 0.002∗ 0.79± 0.02∗ 0.91

France Germany

IPSL_WRF −0.49± 0.12∗ 2.65± 0.06∗ 0.89 0.12± 0.12∗ 1.77± 0.06∗ 0.82
Sigmoid fit 0.09± 0.01∗ 0.93± 0.008∗ 0.98 0.16± 0.02∗ 0.89± 0.012∗ 0.97
Cubic spline −0.08± 0.02∗ 1.00± 0.008∗ 0.98 −0.02± 0.02 0.96± 0.016∗ 0.95
STM −0.09± 0.02∗ 1.00± 0.014∗ 0.96 0.12± 0.04∗ 0.94± 0.02∗ 0.93

∗ Denotes significance at the 5 % level.

data. However, snowfall presents more challenges, since not
only the magnitude but also the number of events is biased as
a consequence of biases in the temperature. Thus, its correc-
tion would require conditioning on temperature and precipi-
tation, and possibly including a stochastic generator of snow-
fall events to correct snowfall frequency, other than snowfall
magnitude. Therefore, the availability of simple methods to
reconstruct the snow fraction of total precipitation is a great
advantage in contexts where much more complex and com-
putationally costly procedures should be created and applied
in order to obtain an accurate snowfall measurement.

The techniques applied in the existing literature mainly
consist of a binary representation based on a threshold tem-
perature, linear interpolations between two thresholds, and
a binary representation outside of the inter-threshold inter-
val or fitting parametric S-shaped functions with nonlinear
least squares. The simple binary description is effective in
its simplicity when the researcher is interested in particular
in extreme events or long run total climatologies, but it can-
not provide a reliable reproduction of the entire snowfall dis-
tribution. Moreover, the thresholds in the first two methods
are often established simply by visual inspection of the plot
of snow fraction against temperature, or analyzing the en-
tire available dataset at once. However, in the case of gridded
data over large areas, the optimal threshold values may vary,
depending on the location.

The first considered method consists of a binary partition
(STM), testing two possible thresholds at 1 and 2 ◦C. For our
domain, the 1 ◦C proved to provide better results compared
to the alternative.

The second method is a segmented linear regression on the
logit of the snowfall fraction, informed about the location-
specific optimal number of thresholds (between 0 and 2) via
a breakpoint search algorithm.

As a more flexible alternative to segmented logit-linear re-
gression, we introduced a nonlinear regression based on cu-

bic splines, where the spline knots are taken as the deciles
of the location-specific temperature distribution. This allows
us to construct a flexible statistical model without requiring
computationally intensive additional step such as the break-
point search in the case of the segmented logit-linear regres-
sion.

Finally, we adopt a parametric nonlinear statistical model,
in which the link between near-surface temperature and snow
fraction is given by a hyperbolic tangent function, whose pa-
rameters are estimated via nonlinear least squares.

We used ERA5 reanalysis over Europe for the period
1979–2005 for validation, by estimating each statistical
model at each grid point over a training set and comparing the
performances in terms of prediction of out-of-sample values.
In this validation phase, the STM provides much less accu-
rate prediction compared to the more complex methods. The
results obtained with the two regression models are very sim-
ilar; however, the longer, computationally intense, and more
complex procedure required to inform the segmented logit-
linear regression makes it less advantageous compared to the
spline regression. Finally, the constrained sigmoid fit pro-
duces results comparable overall to the spline regression over
most grid points. However, it seems to be slightly less flex-
ible than its competitors, as the fit can fail to converge over
areas where DJF precipitation mainly falls as snow, such as
Scandinavia and the Alps, or be negatively affected by out-
liers, as seen in the transition curve for Oslo. Based on our
result, we conclude that this method could be superior to oth-
ers for studies conducted over limited areas characterized by
very smooth snow transitions. However, it does not seem to
be adequate for studies over very large domains or when us-
ing already validated and published datasets that could still
contain some noisy data, as is the case for snowfall in ERA5.

Results hold when using the 25 % coldest and warmest
years as training and test sets, respectively. This observa-
tion is encouraging in view of the application of the ana-
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lyzed techniques to study snowfall under different climate
projection scenarios, provided that the performance can be
reproduced when considering climate simulations instead of
reanalysis.

To tackle this question, we consider the historical period of
1979–2005 in the IPSL_WRF high-resolution climate simu-
lation model, for which bias-corrected near-surface tempera-
ture and total precipitation are available, while snowfall is not
adjusted, showing very large biases with respect to ERA5,
especially over areas characterized by frequent and abundant
snowfall. We find that the point-specific estimates obtained in
the model selection phase can be applied to this dataset to ob-
tain snowfall estimates much closer to reanalysis compared
to the raw IPSL_WRF data. We exclude the segmented logit-
linear regression, since its performance did not show differ-
ences compared to the spline regression, making its higher
complexity not justified.

We validate our results by both considering the entire do-
main and specific regions. We find that, in general, the recon-
structed snowfall improves remarkably in terms of long run
statistics and similarly between probability distributions with
all methods, proving that they can be used in place of more
complex multivariate bias correction schemes. However, it is
clear that the best method depends on both the geographical
area and the objective. For example, over the Alps, the best
performance is given by the spline regression both in terms
of average DJF snowfall bias and distribution of daily snow-
fall events but without dramatic differences among the three
methods; over Norway, another region characterized by large
DJF snowfall, the STM performs discernibly worse than the
other two methods in terms of average snowfall, but it pro-
duces the best bias correction of the daily snowfall distribu-
tion, even though with no dramatic differences compared to
the spline regression and sigmoid fit. For areas such as France
and Germany, the STM is competitive against more complex
methods in terms of both snowfall averages and daily snow-
fall distribution.

Overall, among the tested methods, we discard the
segmented logit-linear regression, which requires a time-
consuming step to perform breakpoint analysis over the grid
and without performing better than its competitors. We re-
mark that, to reproduce average DJF snowfall, the simple
STM can be applied with success; however, unlike what is
reported in Faranda (2020), its performance is sensitive to the
choice of the threshold temperature, as we find that a value of
1 ◦C improves snowfall reconstruction compared to 2 ◦C, in
line with Jennings et al. (2018). In some areas, such as Ger-
many, the sigmoid fit produces the best results, but it can be
a poor choice to approximate the snowfall fraction over ar-
eas where most precipitation falls as snow in the considered
season. Overall, we find that the cubic spline regression with
knots given by temperature quantiles (deciles in our case) has
the best tradeoff between feasibility and accuracy of results.
However, for studies over limited areas, it could be worth
comparing different specifications (e.g., STM, spline regres-

sion, and a sigmoid fit) on reanalysis or observations, to es-
tablish which techniques produce the most accurate results.

Limitations

We also clarify some of the limitations of our analysis.
The nature of climate datasets makes multiple comparisons
among methods and BC techniques very demanding in terms
of data storage and computational time. For this reason, we
limited our analysis to one reanalysis dataset (ERA5), one
marginal bias correction technique (CDF-t), one climate pro-
jection model (IPSL_WRF), and to the DJF season.

We do not consider the choice of ERA5 problematic with
respect to other gridded datasets that could be observational
(e.g., E-OBSv20) or other reanalysis (e.g., NCEP/NCAR).
While the actual values could change between datasets, we
do not foresee this directly affecting the performance of the
methodology we presented in terms of improvement of the
raw simulations with respect the chosen reference dataset.

On the other hand, the choice of the BC may influence
the outcome of our statistical modeling procedure. The CDF-
t is applied marginally to each variable, so that there is no
guarantee that the inter-variable correlations are correctly re-
produced in the bias-corrected climate model output. Indeed,
Meyer et al. (2019) showed that applying multivariate as op-
posed to univariate BC produces significant changes in esti-
mated snow accumulation, stressing the importance of mod-
eling the interdependence between precipitation and air tem-
perature in hydrological studies focused on snowy areas. The
choice of the BC, in general, should be tuned on the tradeoff
between complexity and need for controlling specific fea-
ture, in this case the inter-variable correlation. In our case,
we considered a climate dataset prepared in the context of
the CORDEX-Adjust project, which is made available al-
ready adjusted with respect to ERA5 using marginal CDF-t.
Our results show an improvement in snowfall representation
even relying on marginal BC; however, we stress that the
methodology should be validated again if used on datasets
prepared with different BC techniques to assess whether this
difference affects the predicting performance of the statisti-
cal method.

On the same note, we remark that prediction accuracy may
vary across different climate models, due to the different
physical approximations and parameterizations, which are
likely to affect the relationship between near-surface tem-
perature and precipitation. Due to these differences, even
other RCMs from the EURO-CORDEX project may exhibit
variability in the performance of the snowfall reconstruction.
This holds true for all statistical methods cited in Sect. 1, as it
is rarely the case that snowfall reconstruction techniques are
tested over an ensemble of different climate models. Once
more, we stress the importance of assessing the performance
of the chosen methodology to approximate snow (or compare
several of incidences thereof) by validating it on the histori-
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cal period of the available climate models in reference to the
available reanalysis/observation dataset.

7 Conclusions

We have presented four statistical methods to estimate the
snowfall fraction of total precipitation, provided that a reli-
able measure of near-surface temperature is available. This is
a relevant problem in both hydrology and climatology, since
an accurate estimation of snowfall is challenging in the case
of both observed or simulated precipitation.

There are two methods, namely the segmented logit-linear
and the spline regressions, that are an extension of traditional
precipitation-phase partitioning methods based on estimating
the snowfall fraction of total precipitation on the base of one
or multiple threshold temperatures. For the segmented logit-
linear regression, we estimate the number of such thresholds
by means of a breakpoint search algorithm, while splines do
not require the specification of physically meaningful thresh-
olds, and quantiles of the temperature can be assumed as
knots. The other two methods, i.e., STM and sigmoid fit, are
used in studies already present in the literature, even though
not with the scope of eliminating biases in climate simula-
tions.

The two regression models perform the best in terms of
prediction error and correlation between real and recon-
structed values in a train–test sets validation framework,
based on the ERA5 reanalysis dataset. These two meth-
ods also show robustness with respect to possible non-
stationarity, when choosing the 25 % coldest years as training
set and the 25 % warmest years for testing. In this context, the
sigmoid fit also produces good results, but it could fail in case
the snow fraction transition curve is not well represented by
an S-shaped function.

When applied to reconstructing snowfall in a regional cir-
culation climate model, all techniques produce results with a
markedly reduced bias respect to ERA5, when compared to
raw climate model simulations.

We conclude that statistical methods based on spline re-
gression and sigmoid fit, informed by bias-corrected temper-
ature and precipitation, are capable of providing a reliable re-
construction of snowfall that can replace more complex bias
correction techniques, with better performances than similar
methods based on parametric assumptions or binary phase
separation. For limited areas, and depending on the task, sim-
pler single threshold methods can perform equally well and
could be advantageous in case fast or computationally light
procedures are needed.

Appendix A: Statistical modeling framework

A1 Breakpoint analysis and segmented logit-linear
regression

In order to estimate the temperature thresholds, we rely on
breakpoint analysis. This method was originally developed
by Bai (1994) to detect and date a structural change in a
linear time series model and later extended to the case of a
time series with multiple structural breaks (Bai and Perron,
1998). The technique was further generalized by Bai and Per-
ron (2003) to the simultaneous estimation of multiple break-
points in multivariate regression. In the following, we rely on
this formulation, implemented by Zeileis et al. (2003) in the
R package strucchange (Kleiber et al., 2002).

The method can be summarized as follows. Let us first
consider the case of a univariate response variable yi and a
k× 1 vector of explanatory variables xi , which evolve over
time i = 1, . . .,n and are linked by a linear relationship, as
follows:

yi ≈ x
T
i βi + εi (i = 1, . . .,n), (A1)

where βi is a k×1 vector of regression coefficients, and εi a
random term. The first component of x is the unit, so that the
first component of β is the statistical model intercept. The
null hypothesis when testing for structural change is that the
slope βi is constant over time, i.e.,

H0 : βi = β0 ∀i = 1, . . .,n, (A2)

which goes against the alternative hypothesis that there is
at least one date i, such that βi 6= β0. In case there are m
breakpoints, there arem+1 regimes, i.e., time segments over
which the regression coefficient is constant and the statistical
model can be written, as follows:

yi ≈ x
T
i βj + εi (j = 1, . . ., m+ 1;

i = ij−1+ 1, . . ., ij ), (A3)

where j denotes the segments, and Im,n = {i1, . . ., im} is the
m partition representing the set of breakpoints, with i0 = 0
and im+1 = n, by convention. The null hypothesis in Eq. (A2)
is tested in a generalized fluctuation framework. The statis-
tical model in Eq. (A1) is fitted, and the model residuals ε̂i
are used to construct an empirical process that captures their
fluctuations, provided that a functional central limit theorem
holds. In general, this requires that xi is stationary, and εi is a
martingale difference sequence independent on xi . However,
the method implemented by Zeileis et al. (2003) allows for
less stringent conditions, and in particular, the stationarity of
xi can be relaxed to admit trending independent variables.

It is crucial to remark that, while the method was origi-
nally developed to detect structural breaks in time series, i
must not necessarily represent time. In our case, x is near-
surface temperature and y the snow fraction; the breakpoints
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in the scatterplot of y against x can indeed be interpreted as
threshold temperature values. Suppose that an m partition is
given, and the statistical model Eq. (A3) is estimated, using
ordinary least square (OLS) regression, giving a total resid-
ual sum of squares, as follows:

RSS(i1, . . ., im)=
m+1∑
j=1

ij∑
l=ij−1+1

ε̂2
k =

m+1∑
j=1

rss(ij−1+ 1, ij ), (A4)

where rss(ij−1+ 1, ij ) is the residual sum of squares in the
j th segment of the partition. Then, finding the breakpoints
in the model, Eq. (A3) consists of finding the set of points
î1, . . ., îm such that, in the following:

(î1, . . ., îm)= arg min
i1,...,im

RSS(i1, . . ., im). (A5)

This operation is performed using the linear programming
method illustrated in Bai and Perron (2003), which is of
the order of O(n2) for a sample size n and any number
of breakpoints m. The optimal number of breakpoints can
be estimated as well, by considering several possible val-
ues of m and choosing the one that results in the smallest
RSS(i1, . . ., im). Since we aim at reproducing an S-shaped
relationship between T and fs, which finds strong support
in the literature, we assume the existence of, at most, two
threshold temperatures, dividing three regimes in analogy to
Pipes and Quick (1977). However, for higher flexibility, we
will not necessarily assume a complete saturation of snow-
fall and rainfall below and above the two thresholds, thereby
allowing βi 6= 0 in all regimes.

In principle, imposing two threshold temperatures is not
necessarily the best assumption for every point on the grid.
In fact, the EURO-CORDEX domain clearly includes areas
where, even if only considering DJF precipitation, snowfall
is infrequent and usually happens at positive temperatures
and areas (such as Scandinavia and continental Eastern Eu-
rope) where most of the winter precipitation is likely to fall
as snow. For this reason, we admit m= 0,1,2 as possible
numbers of thresholds at each point, and we use the break-
point search described above to determine both m and the
corresponding threshold temperatures, if any.

Once the number of thresholds and their values are ob-
tained, we estimate a segmented logit-linear regression of the
general form presented in Eq. (A3). First, it is worth men-
tioning the assumptions required for a consistent parameter
estimation in the context of a simple linear model such as in
Eq. (A1). For the sake of simplicity, let us assume a model
without intercept, so that xi reduces to a one-dimensional
random variable. The expected value of the response variable
is as follows:

µi = E[yi] = xiβ,

so that yi ≈ µi + εi . If εi is a sequence of mutually indepen-
dent zero mean and homoskedastic (i.e., with constant vari-
ance σ 2) random variables, then fitted values can be written
as µ̂i = β̂xi , where the estimator β̂ is obtained via OLS, as
follows:

β̂ =

∑
xiyi∑
x2
i

.

It can be shown (see, for example, Wood, 2017) that E[β̂] =
β and Var[β̂] = σ 2/

∑
x2
i . If εi are not only homoskedas-

tic and independent but also normally distributed, εi ∼
N (0,σ 2), then the estimator β̂ is normally distributed around
the true value, as follows:

β̂ ∼N

(
β,

σ 2∑
x2
i

)
,

so that it is possible to make inference on β̂, for example, to
test significance and construct confidence intervals. Assum-
ing that the random term εi has a normal distribution also
implies that yi ∼N (xiβ,σ 2). Under these assumptions, OLS
estimates of β coincide with maximum likelihood estimates.
A check of how realistic these assumptions are can be done
by considering the model residuals ε̂i = yi − xi β̂ and testing
for normality, autocorrelation, and homoskedasticity. For the
sake of greater readability, in the following, we omit the time
index i, unless necessary.

In our case, the dependent variable is the snow fraction
fs, and the explanatory variable x is the near-surface tem-
perature T . Since 0≤ fs ≤ 1, the assumptions required to
estimate the regression coefficient using OLS are not met,
even approximately. The problem can be regularized using
the logit function of the snowfall fraction so that the trans-
formed variable can assume any real value, as follows:

f ′s = logit(fs)= log
(

fs

1− fs

)
. (A6)

The logit function is a natural transformation for binary vari-
ables or variables assuming values in [0,1] and is then used
as the canonical link in case of generalized linear models
with binary response (Agresti, 2015) and for beta regres-
sion (Smithson and Verkuilen, 2006). Notice that the quantity
fs/(1− fs) represents the odds of snowfall against rainfall,
and it is a positive quantity without an upper limit, charac-
terized by positive skewness, and it is sometimes assumed
that its logarithm approximately follows a normal distribu-
tion (Bland and Altman, 2000).

Givenm thresholds,m+1 regression models must be esti-
mated. If no threshold is found, then the problem reduces to
a standard linear regression model, as follows:

f ′s ≈ β
0
1 +β1T + ε1, (A7)

where β0 denotes the intercept, and the index i was omit-
ted for simplicity. If only one threshold temperature T ∗ is
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detected, then we write the following:

for T ≤ T ∗ : f ′s ≈ β
0
1 +β1T + ε1

for T > T ∗ : f ′s ≈ β
0
2 +β2T + ε2.

(A8)

For grid points where two thresholds are found, we write the
following:

for T ≤ T ∗low : f ′s ≈ β
0
1 +β1T + ε1

for T ∗low < T < T
∗

high : f ′s ≈ β
0
2 +β2T + ε2

for T > T ∗high : f ′s ≈ β
0
3 +β3T + ε3.

(A9)

In the following, the symbol β without any further index-
ing will denote the complete parameter vector, i.e., β =
(β0

1 ,β
0
2 ,β

0
3 ,β1,β2,β3) or any of the subsets defined by the

statistical model assumed among the ones described by
Eqs. (A7)–(A9), and β̂ will denote the vector of estimates.

A statistical model of the type shown in Eqs. (A8) or (A9)
is known as segmented regression, and the slope in each
regime can be estimated with OLS if the assumptions for
simple linear regression are (at least approximately) met. In
particular, we refer to the methodology described in Muggeo
(2003). Let µ= E[y] denote the expected value of the re-
sponse variable, and let g(·) be a link function and η(x) the
linear predictor. in a generalized linear model framework,
g(E[y])= η(x), and in the case of simple linear regression,
g(·) is the identity function. In case there is one threshold
T ∗, the relationship between the mean response µ and the
explanatory variables can be modeled by adding nonlinear
extra terms to the predictor, as follows:

µi = η(xi)+β1xi +βd(xi − T ∗)I (xi > T ∗), (A10)

where I (·) denotes the indicator function. Here, β1 is the
slope in the first regime, while βd is the difference in slopes
between the two regimes separated by T ∗. Muggeo (2003)
shows that the nonlinear term in Eq. (A10) can be approx-
imated by a linear representation, enabling the use of stan-
dard linear regression to estimate the parameters. In particu-
lar, provided a first estimate of the threshold T ∗, Eq. (A10) is
estimated by iteratively fitting a linear model with a predictor
including an additional term, as follows:

µ= η(Ti)+β1xi +βd(Ti − T ∗)I (Ti > T ∗)

− γ I (Ti < T ∗), (A11)

where γ measures the gap between the two regression lines
estimated in the regimes located on the left and right of
T ∗. At each iteration, the estimated values of the gap, γ̂ ,
and of the difference in slope, β̂d, are used to update the
previous value of the threshold, so that the new value is
T̃ ∗ = T ∗+ γ̂ /β̂d. When γ̂ ≈ 0, the algorithm converges, and
the values T̃ ∗ and β̂d (and then β̂2) are saved. The method
is easily generalized to the case of m breakpoints and is im-
plemented in the R package segmented (Muggeo, 2008).
In the following, T ∗ will denote the threshold temperatures

estimated using the breakpoint analysis (Eq. A5), and T̃ ∗ are
the estimates updated in the segmented regression procedure
(Eq. A11). In practical terms, the procedure is conducted as
follows for each grid point.

(i.) The number of threshold temperatures are found us-
ing the breakpoints() function from the R package
strucchange.

(ii.) A threshold-free model of the form Eq. (A7) is esti-
mated via OLS, using the lm() function from the na-
tive R package stats.

(iii.) If the number of breakpoints estimated in step (i.) are
larger than 0, then the object containing the result from
lm() is passed to the function segmented() from
the homonymous package, which performs the iterative
procedure shown in Eq. (A11), using quantiles of T as
the first guess of the threshold.

Then the final output contains the updated estimates of the
breakpoints and the parameter estimates for the appropriate
model between Eqs. (A8) and (A9). If the original number of
threshold temperatures is null, then the simple OLS estimate
from lm() is kept with no further updating.

The methodology presented thus far has a few drawbacks.
The relationship between T and fs is expected to be highly
nonlinear, and a segmented straight line may not be able
to fully catch this nonlinearity. Furthermore, to ensure that
the estimates are physically meaningful, we are forced to
use a transformation, in this case logit(·), to avoid predic-
tions outside the interval of admitted values, [0,1]. This
also implies that, once estimates f̂ ′s are obtained for the
logit-transformed variable, the predicted snowfall must be
obtained by applying the inverse logit transformation, also
known as logistic or expit, as follows:

f̂s = logistic(f̂ ′s)=
exp(f̂ ′s)

exp(f̂ ′s)+ 1
. (A12)

The use of invertible transformations in linear regression is
common, but it can create issues when back-transforming the
predicted value to re-project them onto the scale of the origi-
nal variable. A typical example is the use of a natural log-
arithm transformation of the response variable, y′ = logy,
which is very common when y takes positive values and fol-
lows a positively skewed distribution.

However, if logy ≈ β0+β1x+ε, then the statistical model
in the original scale reads as follows:

y ≈ β ′0e
β1xε′,

with β ′0 = e
β0 and ε′ = eε. This means that the log-linear

regression is well specified only if the underlying generat-
ing process is characterized by multiplicative errors. Further-
more, assuming a statistical model, as in Eq. (A7), in the
log-linear scale implies that y′ ∼N (µ,σ 2) and then that y ∼
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LogNorm(µ,σ 2), where LogNorm(, ) denotes the lognormal
distribution. It follows that E[y′] = µ, but E[y] = exp(µ+
σ 2/2). Then, taking the inverse transform of the logarithm
of the prediction will give an estimate Ê(y)= exp(µ̂), while
the correct estimator would be Ê(y)= exp(β̂0+ β̂1x+

σ̂ 2

2 ),

producing a bias given by a factor equal to exp( σ̂
2

2 ).
Similarly, in our setting, the use of the logit transform re-

quires the following two assumptions to enable us to state
that statistical models, as in Eqs. (A7)–(A9), are well spec-
ified: (i) that the odds of snowfall against rainfall are log-
normally distributed and that (ii) the process on the odds is
multiplicative, so that taking their natural logarithm results
in a normal distribution and linearizes the statistical model.
Taken together, these two assumptions require that the odds
ratio fs/(1−fs) follows a logit-normal distribution (Atchison
and Shen, 1980). As pointed out by Hinde (2011), the logit-
normal assumption implies for fs a distribution on the inter-
val (0,1), which is different from the beta distribution, and is
usually assumed to describe continuous proportion data.

A1.1 Cubic spline regression

The segmented logit-linear regression previously described
presents some drawbacks. First, a piecewise linear function
can only be a coarse approximation of the underlying non-
linear relationship. Second, segmented regression does not
theoretically guarantee that the regression lines in differ-
ent regimes match at the threshold points. In order to fit
functions that are more flexible in shape and smooth at the
threshold temperatures, we rely on splines. Spline regres-
sion can be thought of as an improvement of the traditional
power transform and polynomial regression, where the re-
gression splines are piecewise polynomials constrained to
meet smoothly at the knots, i.e., the transition x points, in our
case the threshold temperatures. One main drawback of poly-
nomials is that they display unpredictable tail behavior, mak-
ing polynomial regression a poor methodology to model data
with tail asymptotic behavior or where extrapolation may be
needed to predict y from x values that are not observed in the
training set. Moreover, polynomial regression is highly non-
local, meaning that features of the data over small regions of
the x domain may heavily bias the overall statistical model.

Let us consider the general case of a problem with k =
1, . . .,K knots ξk . We call a spline of order M a piecewise
polynomial of orderM−1, with continuous derivatives up to
the orderM−2. Common choices areM = 1, corresponding
to the case of a piecewise constant function, M = 2 (contin-
uous piecewise linear function), and M = 4 (cubic spline).
Notice that the case M = 2 is analogous to a segmented re-
gression with matching regression lines. Splines of order M
with K knots have Df =M(K + 1)−K(M − 1) degrees of
freedom and can be decomposed on a basis of Df functions

h(·), as follows:

y =
Df∑
m=1

βmhm(x)+ ε

hk(x)= xk−1, k = 1, . . .,M,
hk+M (x)= (x− ξk)M−1

+ , k = 1, . . .,K.

(A13)

In our case, we choose M = 4 (cubic splines) and the
deciles of the distribution of T at each grid point to be the
knots. This makes the spline regression free from additional
steps such as the breakpoint search.

For a more comprehensive overview on spline regression,
see, e.g., Fox (2015) and Harrell Jr. (2015).

A2 Statistical divergences

The capability of the chosen method(s) to perform a BC-like
task can be evaluated in terms of the similarity between the
distribution of the reconstructed daily snowfall and the re-
analysis values. We will use three measures of dissimilar-
ity between the distributions, i.e., the Kolmogorov–Smirnov
(KS) statistics, the Kullback–Leibler (KL) divergence, and
the χ2 divergence. The KS statistics were originally designed
to test the null hypothesis that two samples are drawn from
populations with the same probability distribution (Darling,
1957). This test, compared to others previously designed,
shows a higher power, i.e., a better ability to correctly re-
ject the null hypothesis when it is false. However, when the
samples to be compared are large, the KS test rejects the
null hypothesis even in presence of very small differences
between the distributions, which we realistically expect to
observe even in the case of what we could consider a good
performance of our methods. For this reason, rather than per-
forming the test, we use the KS statistics as a measure of the
proximity between reanalysis and statistical model distribu-
tions. In general, given two samples x and y of size n and m
from two random variables X,Y , with distribution functions
F (x),G(y), the KS statistics is constructed as follows:

Dn,m(x,y)= sup|Fn(x)−Gm(y)|,

where Fn(x),Gm(y) are the empirical cumulative distribu-
tion functions (ECDF) of the two samples, obtained as
Fn(x)= 1

n

∑n
i=1I[−inf,x](xi) and in the same way for Gm(y).

While the KS statistic can be seen as a distance, since
Dn,m(x,y)=Dm,n(y,x), the same does not apply to the KL
and the χ2 measures that are usually referred to as diver-
gences. Both can be computed between two samples, one of
which is considered as drawn from a reference distribution.
Depending on which sample is taken as the reference, the
value of the χ2 and of the KL changes. For a comprehen-
sive review of the role of divergences and distances in sta-
tistical inference, see Basu et al. (2011) and Pardo (2018).
In the presence of two samples x and y as described above,
we consider y to be drawn from the reference distribution.
Let f (x),g(y) be the probability density functions of the two
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variables and fn(x),gm(y) their empirical version, i.e., their
histogram or a kernel density estimation over a common set
of bins h= 1, . . .,H . The χ2 divergence reads as follows:

χ2(x,y)=
H∑
h=1

(fn(x)h− gm(y)h)2

gm(y)h
.

The KL divergence can be obtained as follows:

KL(x,y)=
H∑
h=1

log
(
fn(x)h
gm(y)h

.

)
fn(x)h.

Notice that both quantities are not defined if the empirical
reference distribution in the hth bin is zero. Given the high
positive skewness of the observable of interest in this pa-
per, problems may arise in the right tail of the distribution
if there are zero-valued density estimates in gm(y) at bins
where fn(y)h > 0. Since we are using these two quantities to
evaluate the overall forecasting performance of the methods,
rather than to draw strong theoretical discussions, we simply
circumvent this problem by cutting the right tail after the first
bin with gm(y)= 0 during the computation.

A3 Statistical tests

In order to choose the best possible methodology based on
quantitative considerations, we test for significant differences
among groups using the rank test proposed by Kruskal and
Wallis (1952) as a nonparametric alternative to the classic
analysis of variance (ANOVA). In fact, conditions to apply
a one-way ANOVA are not met, since the distribution of
the MAE and RMSE are clearly non homoskedastic across
methods and visibly non-Gaussian, at least in the case of the
snowfall. To compute the Kruskal–Wallis H test statistic, all
observations must be ranked together regardless of the group
to which they belong. If there are no ties, i.e., no identical
observations, then the test statistics reads as follows:

H =
12

N (N + 1)

G∑
g=1

R2
g

ng
− 3(N + 1), (A14)

where G= 5 is the number of groups, defined by the five
chosen methods. ng is the sample size, and Rg is the sum of
the ranks of group g, withN =

∑
ng . In the case of ties, each

tied observation is assigned the mean of the ranks for which
it is tied, and then the test statistics is corrected as follows:

H →
H

1−
∑
gTg

N3−N

, (A15)

with Tg = t3g − tg , where tg is the number of ties in group g.
IfH is large, the null hypothesis of no significant differences
among groups is rejected at the chosen level. The distribu-
tion of H is tabulated, and if the sample sizes in the groups

Table A1. NUTS 3 units used for the definition of the Alps region
and divided by country.

France Switzerland Italy Austria

FRK27 CH011 ITC11 AT322
FRK28 CH012 ITC12 AT323
FRL01 CH013 ITC13 AT331
FRL02 CH051 ITC14 AT332
FRL03 CH053 ITC16 AT333

CH054 ITC20 AT334
CH055 ITC41 AT335
CH056 ITC42 AT341
CH062 ITC43 AT342
CH063 ITC44
CH064 ITH10
CH065 ITH33
CH070

are large enough, then it is approximately distributed as a χ2

random variable.
For the purpose of detecting the stochastically dominant

methods, we rely on post hoc testing using the pairwise
Wilcoxon rank sum test (Wilcoxon, 1992), which is a non-
parametric alternative to pairwise Student’s t tests suited for
non-Gaussian samples, also known as the Mann–Whitney U
test. The procedure consists of the following steps: (i) two
samples are merged and ranked, (ii) the sum of the ranks is
computed separately for data belonging to sample A and B,
and denoted RA and RB respectively, and (iii) the Mann–
Whitney U test statistic is obtained as UA = RA− nA(nA+
1)/2. In case of ties, the rank in the midpoint between the
two closest non-tied ranks is used. Under the null hypothesis,
U follows a known tabulated distribution, which converges
to a normal distribution for large enough samples (n&20).
Since for G groups we perform G(G− 1)/2 tests, the level
of the test must be corrected to control the family-wise er-
ror rate. We choose the method introduced by Benjamini and
Hochberg (1995), which is usually recommended because it
provides a higher power than other common family-wise er-
ror rate correction methods. However, we also compare re-
sults to the ones obtained using the simple Bonferroni cor-
rection (Bonferroni, 1936), which turns out to be equivalent
in terms of statistical significance.

A4 Alps region definition

The following table shows the NUTS 3 codes of the
provinces included in the definition of the Alps region an-
alyzed in Sect. 5.3.1 and Fig. 10.

Code and data availability. Scripts and data files to recre-
ate our analyses are available for direct download from
Figshare (https://doi.org/10.6084/m9.figshare.20552745.v1; Pons
and Faranda, 2022).
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Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M.,
Maraldo, L., Micheletti, S., Bonati, V., Lussana, C., Ronchi,
C.,Panettieri, E., Marigo, G., and Vertacnik, G.: The climate of
daily precipitation in the Alps: development and analysis of a
high-resolution grid dataset from pan-Alpine rain-gauge data,
Int. J. Climatol., 34, 1657–1675, 2014.

Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N. P.:
Spatial variation of the rain–snow temperature threshold across
the Northern Hemisphere, Nat. Commun., 9, 1–9, 2018.

Kienzle, S. W.: A new temperature based method to separate rain
and snow, Hydrol. Process., 22, 5067–5085, 2008.

Kite, G.: The SLURP model, in: Computer models of watershed
hydrology, edited by: Singh, V. P., Water Resources Publications,
521–562, 1995.

Kleiber, C., Hornik, K., Leisch, F., and Zeileis, A.: strucchange: An
r package for testing for structural change in linear regression
models, J. Stat. Softw., 7, 1–38, 2002.

Krasting, J. P., Broccoli, A. J., Dixon, K. W., and Lanzante, J. R.:
Future changes in Northern Hemisphere snowfall, J. Climate, 26,
7813–7828, 2013.

Kruskal, W. H. and Wallis, W. A.: Use of ranks in one-criterion
variance analysis, J. Am. Stat. Assoc., 47, 583–621, 1952.

Lange, S.: Trend-preserving bias adjustment and statistical down-
scaling with ISIMIP3BASD (v1.0), Geosci. Model Dev., 12,
3055–3070, https://doi.org/10.5194/gmd-12-3055-2019, 2019.

L’hôte, Y., Chevallier, P., Coudrain, A., Lejeune, Y., and Etchev-
ers, P.: Relationship between precipitation phase and air tem-
perature: comparison between the Bolivian Andes and the
Swiss Alps/Relation entre phase de précipitation et tem-

pérature de l’air: comparaison entre les Andes Boliviennes
et les Alpes Suisses, Hydrological Sciences Journal, 50,
https://doi.org/10.1623/hysj.2005.50.6.989, 2005.

Llasat, M. C., Turco, M., Quintana-Seguí, P., and Llasat-Botija, M.:
The snow storm of 8 March 2010 in Catalonia (Spain): a paradig-
matic wet-snow event with a high societal impact, Nat. Hazards
Earth Syst. Sci., 14, 427–441, https://doi.org/10.5194/nhess-14-
427-2014, 2014.

Maraun, D.: Bias correcting climate change simulations-a critical
review, Current Climate Change Reports, 2, 211–220, 2016.

McAfee, S. A., Walsh, J., and Rupp, T. S.: Statistically downscaled
projections of snow/rain partitioning for Alaska, Hydrol. Pro-
cess., 28, 3930–3946, 2014.

McCabe, G. J. and Wolock, D. M.: Joint variability of global runoff
and global sea surface temperatures, J. Hydrometeorol., 9, 816–
824, 2008.

McCabe, G. J. and Wolock, D. M.: Recent declines in western US
snowpack in the context of twentieth-century climate variability,
Earth Interact., 13, 1–15, 2009.

Meyer, J., Kohn, I., Stahl, K., Hakala, K., Seibert, J., and Cannon,
A. J.: Effects of univariate and multivariate bias correction on
hydrological impact projections in alpine catchments, Hydrol.
Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-
1339-2019, 2019.

Muggeo, V. M.: Estimating regression models with unknown break-
points, Stat. Med., 22, 3055–3071, 2003.

Muggeo, V. M.: Segmented: an R package to fit regression models
with broken-line relationships, R news, 8, 20–25, 2008.

Murray, R.: Rain and snow in relation to the 1000–700 mb and
1000–500 mb thicknesses and the freezing level, Meteorol. Mag.,
81, 5–8, 1952.

Nikolov, D. and Wichura, B.: Analysis of spatial and temporal dis-
tribution of wet snow events in Germany, in: XIII International
Workshop on Atmospheric Icing of Structures (IWAIS), IWAIS
XIII, Andermatt, Switzerland, 8–11 September 2009, 2009.

Pan, X., Yang, D., Li, Y., Barr, A., Helgason, W., Hayashi, M.,
Marsh, P., Pomeroy, J., and Janowicz, R. J.: Bias corrections of
precipitation measurements across experimental sites in differ-
ent ecoclimatic regions of western Canada, The Cryosphere, 10,
2347–2360, https://doi.org/10.5194/tc-10-2347-2016, 2016.

Pardo, L.: Statistical inference based on divergence measures, CRC
press, ISBN 9780429148521, 2018.

Pipes, A. and Quick, M. C.: UBC watershed model users guide, De-
partment of Civil Engineering, University of British Columbia,
1977.

Pons, F. and Faranda, D.: Statistical reconstruction of Euro-
pean winter snowfall in reanalysis and climate models based
on air temperature and total precipitation, figshare [data set],
https://doi.org/10.6084/m9.figshare.20552745.v1, 2022.

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt,
S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis,
D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.:
How well are we measuring snow: The NOAA/FAA/NCAR win-
ter precipitation test bed, B. Am. Meteorol. Soc., 93, 811–829,
2012.

Scherrer, S. C. and Appenzeller, C.: Swiss Alpine snow pack vari-
ability: major patterns and links to local climate and large-scale
flow, Clim. Res., 32, 187–199, 2006.

https://doi.org/10.5194/ascmo-8-155-2022 Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, 2022

https://doi.org/10.5194/nhess-14-3031-2014
https://doi.org/10.5194/esd-11-537-2020
https://doi.org/10.5194/tc-12-1-2018
https://doi.org/10.5194/hess-20-1031-2016
https://doi.org/10.5194/gmd-12-3055-2019
https://doi.org/10.1623/hysj.2005.50.6.989
https://doi.org/10.5194/nhess-14-427-2014
https://doi.org/10.5194/nhess-14-427-2014
https://doi.org/10.5194/hess-23-1339-2019
https://doi.org/10.5194/hess-23-1339-2019
https://doi.org/10.5194/tc-10-2347-2016
https://doi.org/10.6084/m9.figshare.20552745.v1


186 F. M. E. Pons and D. Faranda: Improving snowfall representation via statistical modeling

Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Simulations
of 21st century snow response to climate change in Switzerland
from a set of RCMs, Int. J. Climatol., 35, 3262–3273, 2015.

Smithson, M. and Verkuilen, J.: A better lemon squeezer?
Maximum-likelihood regression with beta-distributed dependent
variables, Psychologica methods, 11, 54–71, 2006.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate
model simulations for hydrological climate-change impact stud-
ies: Review and evaluation of different methods, J. Hydrol., 456,
12–29, 2012.

Teutschbein, C. and Seibert, J.: Is bias correction of re-
gional climate model (RCM) simulations possible for non-
stationary conditions?, Hydrol. Earth Syst. Sci., 17, 5061–5077,
https://doi.org/10.5194/hess-17-5061-2013, 2013.

US Army Corps of Engineers: Snow hydrology: Summary report
of the snow investigations, North Pacific Division Portland, OR,
https://doi.org/10.3189/S0022143000024503, 1956.

Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo,
E., Bülow, K., Coppola, E., Corre, L., van Meijgaard, E.,
Nogherotto, R., Sandstad, M., Schwingshakl, C., Somot, S., Aal-
bers, E. E., Christensen, O., Ciarlo, J., Demory, M.-E., Giorgi,F.,
Jacob, D., Jones, R. G., Keuler, K., Kjellström, E., Lenderink,G.,
Levavasseur, G., Nikulin, G., Sillmann, J., Solidoro, C., Sørland,
S., Steger, C., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer,
V.: Evaluation of the large EURO-CORDEX regional cli-
mate model ensemble, J. Geophys. Res., 125, e2019JD032344,
https://doi.org/10.1029/2019JD032344, 2020.

Vrac, M.: Multivariate bias adjustment of high-dimensional climate
simulations: the Rank Resampling for Distributions and Depen-
dences (R2D2) bias correction, Hydrol. Earth Syst. Sci., 22,
3175–3196, https://doi.org/10.5194/hess-22-3175-2018, 2018.

Vrac, M. and Friederichs, P.: Multivariate-intervariable, spatial, and
temporal-bias correction, J. Climate, 28, 218–237, 2015.

Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse,
C., Li, L., and Somot, S.: Dynamical and statistical down-
scaling of the French Mediterranean climate: uncertainty as-
sessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784,
https://doi.org/10.5194/nhess-12-2769-2012, 2012.

Vrac, M., Noël, T., and Vautard, R.: Bias correction of precipitation
through Singularity Stochastic Removal: Because occurrences
matter, J. Geophys. Res.-Atmos., 121, 5237–5258, 2016.

Wen, L., Nagabhatla, N., Lü, S., and Wang, S.-Y.: Impact of rain
snow threshold temperature on snow depth simulation in land
surface and regional atmospheric models, Adv. Atmos. Sci., 30,
1449–1460, 2013.

Wilcoxon, F.: Individual comparisons by ranking meth-
ods, in: Breakthroughs in statistics, 196–202, Springer,
https://doi.org/10.1007/978-1-4612-4380-9_16, 1992.

Wood, S. N.: Generalized additive models: an introduction with R,
CRC press, https://doi.org/10.1201/9781315370279, 2017.

Zeileis, A., Kleiber, C., Krämer, W., and Hornik, K.: Testing and
dating of structural changes in practice, Comput. Stat. Data An.,
44, 109–123, 2003.

Zubler, E. M., Scherrer, S. C., Croci-Maspoli, M., Liniger, M. A.,
and Appenzeller, C.: Key climate indices in Switzerland; ex-
pected changes in a future climate, Climatic Change, 123, 255–
271, 2014.

Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, 2022 https://doi.org/10.5194/ascmo-8-155-2022

https://doi.org/10.5194/hess-17-5061-2013
https://doi.org/10.3189/S0022143000024503
https://doi.org/10.1029/2019JD032344
https://doi.org/10.5194/hess-22-3175-2018
https://doi.org/10.5194/nhess-12-2769-2012
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1201/9781315370279

	Abstract
	Introduction
	Data
	The ERA5 reanalysis dataset
	Historical climate simulation

	Methods
	Single threshold model (STM)
	Segmented logit-linear regression
	Cubic spline regression
	Sigmoid function fit

	Design of the experiment and statistical method evaluation
	Results
	Threshold temperatures
	Statistical method evaluation and selection
	Bias correction of climate simulations
	Regional extremes


	Discussion
	Conclusions
	Appendix A: Statistical modeling framework
	Appendix A1: Breakpoint analysis and segmented logit-linear regression
	Appendix A1.1: Cubic spline regression

	Appendix A2: Statistical divergences
	Appendix A3: Statistical tests
	Appendix A4: Alps region definition

	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

