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Abstract. This paper derives a test for deciding whether two time series come from the same stochastic model,
where the time series contains periodic and serially correlated components. This test is useful for comparing
dynamical model simulations to observations. The framework for deriving this test is the same as in the previous
three parts: the time series are first fit to separate autoregressive models, and then the hypothesis that their param-
eters are equal is tested. This paper generalizes the previous tests to a limited class of nonstationary processes,
namely, those represented by an autoregressive model with deterministic forcing terms. The statistic for testing
differences in parameters can be decomposed into independent terms that quantify differences in noise variance,
differences in autoregression parameters, and differences in forcing parameters (e.g., differences in annual cycle
forcing). A hierarchical procedure for testing individual terms and quantifying the overall significance level is
derived from standard methods. The test is applied to compare observations of the meridional overturning circu-
lation from the RAPID array to Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Most CMIP5
models are inconsistent with observations, with the strongest differences arising from having too little noise vari-
ance, though differences in annual cycle forcing also contribute significantly to discrepancies from observations.
This appears to be the first use of a rigorous criterion to decide “equality of annual cycles” in regards to all their
attributes (e.g., phases, amplitudes, frequencies) while accounting for serial correlations.

1 Introduction

This is Part 4 of a series of papers on comparing climate
time series that are serially correlated. In each of these pa-
pers, the basic idea is to fit time series to separate autore-
gressive (AR) models and then test whether the parameters
of the two AR models are equal. A rigorous statistical test
was derived for univariate time series (DelSole and Tippett,
2020; Part 1) and multivariate time series (DelSole and Tip-
pett, 2021b; Part 2) and was used as a foundation for diag-
nosing differences in stochastic processes (DelSole and Tip-
pett, 2022; Part 3). These procedures are equivalent to test-
ing equality of power spectra and equality of autocorrelation
functions within the class of functions generated by AR mod-
els. The purpose of this work is to generalize these tests to
nonstationary processes.

Many climate time series exhibit nonstationary variability,
including diurnal cycles, annual cycles, and long-term trends.
An established technique for comparing nonstationary vari-

ability between models and observations is optimal finger-
printing (Bindoff et al., 2013; Hammerling et al., 2019).
This technique is closely related to generalized least squares
in which serial correlation of the regression errors is taken
into account through a specified covariance matrix. Although
most studies focus on long-term trends, fingerprinting could
also be applied to other forms of nonstationarity, including
diurnal or annual cycles. In many applications, the required
covariance matrix is estimated by pooling dynamical model
simulations. Unfortunately, such pooling assumes that differ-
ent dynamical models produce statistically equivalent inter-
nal variability, which is dubious (see Parts 1–3 of this paper
series). If the covariance matrix is estimated from a single
dynamical model, then the sample sizes that can be produced
under current computational resources severely limit the di-
mension of the state space that can be analyzed. The method
we propose partly overcomes these limitations.

In the case of annual and diurnal cycles, no standard test
exists for deciding whether such cycles are consistent be-
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tween two data sets. To be sure, some studies test certain
aspects of the diurnal or annual cycles. For instance, some
studies have shown that the phase and amplitude of the an-
nual cycle of temperature changed over the past half century
(Stine et al., 2009; Stine and Huybers, 2012; Cornes et al.,
2017; Santer et al., 2018). These results were obtained by
isolating one particular feature of the annual cycle that can
be computed for each year, say the amplitude or phase of a
specified harmonic, and then performing a trend analysis of
the resulting time series. Obviously, this strategy depends on
carefully choosing the feature on which to focus. For many
problems, multiple features of the annual cycle are of inter-
est, and the available methods are not straightforward to gen-
eralize to the problem of comparing multiple features of the
annual cycle simultaneously. Our goal is to develop such a
test.

A standard approach to accounting for seasonality in time
series is to filter it out by subtracting last year’s value from
the present and then modeling the resulting residuals by an
ARMA model (Box et al., 2008). An advantage of this ap-
proach is that it can adaptively adjust to changes in the phase
and amplitude of the annual cycle. A disadvantage is that it
removes the annual cycle from the time series and thereby
removes the very object of interest. Various other methods
for analyzing deterministic signals in the presence of serially
correlated noise are reviewed by Chandler and Scott (2011).
Some of these methods are heuristic, such as adjusting the
degrees of freedom to account for serial correlation. Other
methods account for serial correlation at certain steps but
fail to propagate the associated uncertainty to the final uncer-
tainty estimates. The method we propose overcomes many
of these limitations, although it still contains approximations
that will be discussed shortly.

Our starting point is to assume that a climate time series
{yt } can be modeled as

yt =

H∑
h=1

(
b̃h cos(ωht)+ c̃h sin(ωht)

)
+ µ̃+ ηt , (1)

where b̃h, c̃h are deterministic Fourier coefficients for the an-
nual cycle, H is the total number of annual harmonics, µ̃
is a deterministic intercept term, and ηt is a serially corre-
lated process. This model is standard in climate studies. We
call b̃h, c̃h cycle parameters. Since the annual cycle is as-
sumed to be periodic, there is no loss in generality of repre-
senting it as a Fourier series. For many climate time series,
the annual cycle is well represented using H much less than
the Nyquist frequency. For concreteness, let y1,y2, . . . denote
values of the process in consecutive months, in which case
the period of the annual cycle is 12 and the Fourier frequen-
cies are ωh = 2πh/12.

The parameters in Eq. (1) could, in principle, be estimated
by the method of least squares (or by Fourier transform meth-
ods), but this procedure ignores serial correlation in ηt , and
hence the resulting confidence intervals would be incorrect.

Other methods are reviewed in Chandler and Scott (2011),
but most of these are limited in one way or another. For in-
stance, the method of Cochran and Orcutt fails to account
for estimation of noise parameters. In contrast, the maximum
likelihood method provides a general framework for estima-
tion and inference and yields estimators with attractive prop-
erties in the limit of large sample size (e.g., consistency, effi-
ciency). Accordingly, we focus on maximum likelihood esti-
mation (MLE).

If the covariance matrix is known, then MLE leads to gen-
eralized least squares (GLS). In practice, however, the co-
variance matrix of ηt is not known. If stationarity is imposed,
then the covariance matrix for ηt has Toeplitz structure, but
the number of unknowns still grows with sample size. Unfor-
tunately, this leads to the problem of incidental parameters
in which the maximum likelihood estimates are inconsistent
even for a large sample size (Neyman and Scott, 1948). The
usual approach to obtaining consistent estimates is to impose
additional constraints on the covariance matrix in such a way
that the number of parameters remains sufficiently small as
the sample size grows. A natural constraint is to assume that
ηt is a stationary AR process of order p and therefore can be
modeled as

ηt = φ1ηt−1+ . . .+φpηt−p + εt , (2)

where φ1, . . .,φp are AR parameters and εt is Gaussian white
noise with zero mean and variance σ 2

ε , which we denote as

εt
IID
∼ N (0,σ 2

ε ).

The resulting covariance matrix for ηt has a particular struc-
ture that yields an easily computed Cholesky decomposi-
tion. An example of this decomposition for an AR(1) model
is presented in Chandler and Scott (2011), Sect. 3.3.3, and
leads to the Prais–Winsten transformation (see also David-
son and MacKinnon, 2021, Sect. 10.6). More generally, a
regression model of the form (1) with noise satisfying the
AR(p) model (2) can be re-parameterized into the following
AR model with deterministic periodic forcing:

yt = φ1yt−1+ . . .+φpyt−p +µ

+

H∑
h=1

(bh cos(ωht)+ ch sin(ωht))+ εt . (3)

This kind of re-parameterization is discussed at the end of
Sect. 3.3.3 in Chandler and Scott (2011), and here we gener-
alize it and present a detailed procedure for testing hypothe-
ses. An explicit proof of the re-parameterization based on
the Cholesky decomposition is complicated by issues related
to treatment of the first p values of yt . In the next section,
we bypass these issues by proving that Eqs. (1) and (3) pro-
duce stochastically indistinguishable time series, and there-
fore they necessarily have the same likelihood function. Ac-
cordingly, there is no loss of generality in choosing Eqs. (1)
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or (3) to model the stochastic process. An attractive feature of
using Eq. (3) as the fundamental model is that εt is Gaussian
white noise, and therefore the associated likelihood function
leads immediately to a linear regression form, for which a
large body of results in linear regression theory can be ex-
ploited. For this reason, we use Eq. (3) as our fundamental
model.

A model of form (3) is called an AR model with exogenous
inputs and will be denoted here as ARX(p,H ). The specific
values of p and H generally are chosen using a model se-
lection criterion such as Akaike’s information criterion. The
ARX model usually is not derived from first principles, so in
any given application its physical interpretation may be un-
clear. In the end, the persuasiveness of the model depends
on how well it captures the statistical properties of the data.
The AR model itself has a long track record of success in a
huge range of problems, including applications to weather,
climate, economics, speech, fisheries, and earthquakes (see
Box et al., 2008).

Model (1) would be a natural model framework for ap-
plying optimal fingerprinting to comparing annual cycles.
However, current applications of fingerprinting do not make
the autoregressive assumption (2). The advantage of impos-
ing autoregressive structure for internal variability is that the
associated number of parameters is much smaller than the
number of parameters required to specify a covariance ma-
trix. Thus, imposing structure on internal variability reduces
the number of estimated parameters, leading to more preci-
sion. Although a detection and attribution framework could
be developed along these lines, we first consider the problem
of comparing annual cycles, leaving the comparison of long-
term trends to future work. In the end, we derive a framework
for testing equality of diurnal or annual cycles that accounts
for serially correlated noise.

While our goal is to derive a hypothesis test, our interest is
not limited to the mere decision to accept or reject a null hy-
pothesis. After all, we know before looking at any data that
the statistical model is too simple to be a complete model of
reality. Rather, our goal is to quantify differences in variabil-
ity between two data sets. Numerous choices exist for mea-
suring differences in variability, but if one is not careful, one
might choose a measure with such poor statistical properties
as to be useless. For instance, the measure may have a large
sampling variance, in which case differences in the measure
may be dominated by sampling variability rather than by real
differences in the underlying process. This is a real danger
for serially correlated processes, as the variance of a statis-
tic tends to increase with the degree of autocorrelation. The
virtue of deriving a hypothesis test from a rigorous statistical
framework (i.e., the maximum likelihood method) is that it
yields a measure with attractive statistical properties, such as
having minimum variance in some sense and a well-defined
significance test.

Of course, model (3) has some limitations. First, it as-
sumes that annual or diurnal cycles are deterministic func-

tions of time. We believe this assumption is well justified by
the fact that the climate system is forced by deterministic pe-
riodic cycles in solar insolation. However, this view is not
universally accepted, as some studies propose a modulated
annual cycle that does not repeat each year (e.g., Wu et al.,
2008) or allow Fourier coefficients to be stochastic. Long-
term changes in annual cycle could be included by introduc-
ing secular terms into the annual cycle forcing. Second, the
model assumes that ηt is stationary. For climate time series, it
is likely that internal variability changes with season and thus
may be cyclostationary. Cyclostationarity may be incorpo-
rated into our framework, but this generalization lies beyond
the scope of the present paper (in fact, the present work pro-
vides a foundation for this generalization). Third, it assumes
that internal variability is well modeled by an autoregressive
model. Thus, variables like daily precipitation, which is non-
Gaussian and intermittent, would not be well captured by a
model of form (3). Fourth, large-sample approximations are
used to derive sampling distributions, and hence results from
small sample sizes should be interpreted cautiously. Finally,
the model applies only to scalar time series. The multivariate
generalization to vector time series is analogous to the uni-
variate case and follows the transition from Part 1 to Part 2
of this paper series but lies beyond the scope of the present
work.

The test derived here ought to be useful for the devel-
opment of dynamical models. In dynamical model develop-
ment, limited computational resources mean that only short
runs are possible, where annual and diurnal cycles might be
the only meaningful differences. In other situations, the ob-
servational record is the limiting factor. For instance, sub-
annual measurements of the meridional overturning circu-
lation (MOC) have been available only recently (Frajka-
Williams et al., 2019). Despite their short span, such obser-
vations provide valuable constraints on climate models. The
test derived here can be used to decide which version of a cli-
mate model is most consistent with observations in both its
annual cycle and random variability. We will illustrate this
application by applying this test to compare Coupled Model
Intercomparison Project Phase 5 (CMIP5) models to obser-
vations of MOC from the RAPID array.

2 Justification of the model

We first show that models (1) and (3) yield the same time se-
ries when given the same initial conditions and forcing. The
proof is considerably simplified by using complex variables,
which results in no loss of generality. Specifically, given the
sequence {εp+1,εp+2, . . .} and initial values {y1, . . .,yp}, the
subsequent values {yp+1,yp+2, . . .} derived from

yt = φ1yt−1+ . . .+φpyt−p +

H∑
h=0

dhe
itωh + εt (4)
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are the same as those derived from

yt =

H∑
h=0

d̃he
itωh + ηt , (5)

where ηt is defined in Eq. (2) and

dh = d̃h

(
1−φ1e

−iωh − . . .−φpe
−iωhp

)
. (6)

Note that Eqs. (1) and (3) are merely the real parts of
Eqs. (5) and (4) under the identifications d̃h = b̃h− ic̃h and
dh = bh−ich, respectively. To prove the above assertion, sub-
stitute Eq. (5) into Eq. (4) and then note that the time-periodic
terms cancel due to Eq. (6), leaving Eq. (2). The first p val-
ues of ηt are obtained from the first p residuals from Eq. (5).
Note that the intercept terms are incorporated into the above
model formulations by defining d0 = µ and d̃0 = µ̃.

Incidentally, it is also possible to prove that all solutions
of Eq. (4) can be written in the form of Eq. (5), but the proof
requires more steps and is not required for our purposes. The
proof is to recognize that Eq. (4) is a linear, finite-difference
equation, and therefore the general solution can be obtained
by solving for homogeneous and particular solutions sepa-
rately and adding them together. The end result is that the
periodic term in Eq. (5) is the particular solution to Eq. (4)
to periodic forcing, and ηt in Eq. (5) is the sum of the ho-
mogeneous solution and the particular solution of Eq. (4) to
εt .

Thus, Eqs. (4) and (5) represent exactly the same stochas-
tic process, under suitable identification of the parameters.
Equivalently, we say that Eq. (4) is a re-parameterization of
(5), or vice versa. The two models differ by whether the cycle
parameters dh or d̃h are used to parameterize the cycle. It can
be shown that the periodic part of Eq. (5) is the asymptotic re-
sponse of Eq. (4) in the absence of noise (i.e., εt = 0). Thus,
the parameter dh is identified with periodic forcing, and d̃h is
identified with periodic response. As indicated in Eq. (6), the
response d̃h is a nonlinear function of the forcing parameter
dh and AR parameters {φ1, . . .,φp}. This fact is illustrated in
Fig. 1, which shows the long-term response of a noise-free
version of Eq. (4) for different values of φ1.

If we detect a difference in parameters, we do not know
whether the difference is dominated by a difference in AR
parameters or in cycle parameters. To isolate the source, tests
on subcomponents of the model need to be performed. At
this step, a difference arises between testing equality of dh
in Eq. (4) and testing equality of d̃h in Eq. (5). In general,
equality of dh does not imply equality of d̃h, or vice versa.
However, if the AR parameters are equal, then it follows from
Eq. (6) that equality of dh is equivalent to equality of d̃h, and
our decision about equality of dh will agree with our decision
about equality of d̃h. This is attractive because there is no
compelling reason to favor testing equality of dh over d̃h. By
testing equality of AR parameters before equality of dh or
d̃h, our decision about equality of dh will be consistent with

Figure 1. The periodic response of a noise-free AR(1) model to si-
nusoidal forcing for AR parameters φ = 0, 0.5, and 0.8. The forcing
is shown by the black curve, which is equivalent to the response for
φ = 0.

our decision about equality of d̃h. This fact motivates testing
equality of AR parameters prior to testing equality of cycle
parameters (either dh or d̃h).

3 General procedure

The standard method for estimating ARX models is the
maximum likelihood method (Brockwell and Davis, 1991;
Box et al., 2008). Unfortunately, the resulting estimates have
complicated distributions even in the Gaussian case (Brock-
well and Davis, 1991, chap. 6). Nevertheless, for asymp-
totically large sample sizes, the distributions of the param-
eter estimates are consistent with those derived from lin-
ear regression theory; e.g., see theorem 8.1.2 and Sect. 8.9
of Brockwell and Davis (1991) and Appendix A7.5 of Box
et al. (2008). Accordingly, we first describe an exact test for
equality of parameters for regression models and then invoke
asymptotic theory to apply that test to equality of ARX mod-
els.

Tests for equality of regression parameters have appeared
previously (Fisher, 1970; Rao, 1973). However, merely de-
tecting a difference in models would be unsatisfying because
this result gives no information about which components
of the regression model dominate the differences. Accord-
ingly, we test hypotheses about particular components of the
model through a sequence of nested tests while accounting
for multiple-testing issues. The procedure presented here is
an adaptation of the sequential test derived by Hogg (1961)
and Seber (2015). We give a brief description of the test here
and provide more mathematical details in Appendix B. Rela-
tive to the test derived in Part 2 (DelSole and Tippett, 2021b),
the test derived here is more general in that it tests equality
of an arbitrary subset of regression coefficients.
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The general problem is to compare models of the form

y = jµ+X2β2+X3β3+ ε and ε ∼N (0,σ 2I), (7)

y∗ = j∗µ∗+X∗2β
∗

2+X
∗

3β
∗

3+ ε
∗ and ε∗ ∼N (0,σ ∗2I), (8)

where j and j∗ are a vector of ones to account for the in-
tercept, ε and ε∗ are independent, and the other terms have
dimensions

y ∈ RN , Xk ∈ RN×Kk , βk ∈ RKk , j ∈ RN ,

y∗ ∈ RN
∗

, X∗k ∈ R
N∗×Kk , β∗k ∈ R

Kk , j∗ ∈ RN
∗

,

where k = 2,3.
Model (3) can be written in this form, as shown explicitly

in Appendix A. If a model difference is detected, the next
natural question is whether this difference is dominated by a
difference in noise variance, AR parameters, or cycle param-
eters. The order in which we test these components is an im-
portant issue. To appreciate this, it is instructive to recall the
difference-in-means test. The standard difference-in-means
test is the Student’s t test, which examines equality of means
assuming the variances are equal. However, if the variances
are unequal, the Student’s t test is not appropriate because the
distribution of the t statistic depends on the ratio of variances.
This is the central issue in the Behrens–Fisher problem. Our
procedure would reduce to the t test if we tested equality of
µ in Eq. (3) under vanishing AR parameters and Fourier co-
efficients. Consequently, we can anticipate that when testing
equality of regression coefficients, the sampling distribution
of the test statistic will also depend on the ratio of variances.
To avoid this situation, tests for equality of regression coef-
ficients should assume equality of noise variances. That is,
even if our goal is to compare only annual cycles, a usable
test requires checking for equality of variances. This require-
ment is analogous to having to check for equality of variances
before using the Student’s t test.

For reasons discussed in Sect. 2, we test equality of AR pa-
rameters before testing equality of cycle parameters. These
considerations dictate the hierarchy of hypotheses given in
Table 1. Under this hierarchy, the vector β2 contains the AR
parameters {φ1, . . .,φp}, and the vector β3 contains the an-
nual cycle parameters {bh,ch}. Thus, K2 = p and K3 = 2H .
In climate studies, it is customary to ignore biases, and there-
fore no restriction is imposed on µ and µ∗ in the hypotheses
in Table 1 (although the hypothesis µ= µ∗ could easily be
included in the hierarchy if desired).

Note that �0 denotes the least restrictive hypothesis and
does not denote the null hypothesis. This notation is adopted
so that the order of the tests in the hierarchy conveniently
starts with �0 and then proceeds to �1,�2,�3. Also, addi-
tional hypotheses�4,�5, . . .may be added simply by adding
rows to the bottom of Table 1. The procedure described here
and in Appendix B can be generalized to an arbitrary number
of hypotheses.

The maximized likelihoods for hypotheses�0,�1,�2,�3
are, respectively,

L�0 = (2πeσ 2)−N/2(2πeσ ∗2)−N
∗/2, (9)

L�1 = (2πeσ 2
�1

)−(N+N∗)/2, (10)

L�2 = (2πeσ 2
�2

)−(N+N∗)/2, (11)

L�3 = (2πeσ 2
�3

)−(N+N∗)/2, (12)

where σ ∗2,σ 2,σ 2
�1
,σ 2

�2
,σ 2

�3
are defined in Appendix B.

The statistic for testing�i+k against�i is called the deviance
(Hastie et al., 2009, p. 221) and defined as

D�i:i+k =−2logL�i+k + 2logL�i .

The deviance vanishes when the likelihoods are equal. Be-
cause L�3 ≤ L�2 ≤ L�1 ≤ L�0 , the deviance is positive
when the likelihoods differ. Thus, the deviance effectively
measures the “distance” between likelihoods, with larger val-
ues indicating stronger differences between likelihoods. If
�i+k is true, then D�i:i+k has the asymptotic distribution

D�i:i+k ∼ χ
2
Pi−Pi+k , (13)

where Pi is the number of estimated parameters under �i
indicated in Table 1. Large values of D�i:i+k indicate reject-
ing �i+k . In effect, D�i:i+k measures the difference between
models �i and �i+k .

The tests associated with D�1:2 and D�2:3 are stan-
dard analysis of variance tests. For instance, in R, the
tests are performed with the commands anova(Model2,
Model1) and anova(Model3, Model2), respectively,
where Model1, Model2, Model3 are the model fits
from lm under �1,�2, and �3, respectively. However, the
equality of noise test associated with D�0:1 is not part of a
standard analysis of variance decomposition. In fact, anal-
ysis of variance assumes variables come from populations
with the same variance. Thus, the tests proposed here in-
clude more than a standard variance decomposition: rather,
they constitute a deviance decomposition. This fact and other
shortcomings of the standard analysis of variance decompo-
sition are discussed in more detail in Appendix B.

The deviances satisfy the identity

D�0:3 =D�0:1 +D�1:2 +D�2:3 , (14)

which allows us to quantify how differences in particular as-
pects of the ARX model contribute to the total deviance. We
use the following terminology.

D�0:3 total deviance
D�0:1 noise deviance
D�1:2 AR deviance
D�2:3 cycle deviance

Since multiple hypotheses arise, the problem of multiple test-
ing needs to be addressed. Appendix B shows that the com-
ponents in Eq. (14) are mutually stochastically independent
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Table 1. Table summarizing the hypotheses considered in the hierarchical test procedure. P in the last column denotes the number of
parameters estimated.

Model σ β2 β3 P

�0 Unrestricted Unrestricted Unrestricted Unrestricted 2K2+ 2K3+ 4
�1 Same noise σ = σ∗ Unrestricted Unrestricted 2K2+ 2K3+ 3
�2 Same cycle σ = σ∗ β2 = β

∗
2 Unrestricted K2+ 2K3+ 3

�3 Same process σ = σ∗ β2 = β
∗
2 β3 = β

∗
3 K2+K3+ 3

when�3 is true. This independence follows from the fact that
the hypotheses are nested such that �3 ⊆�2 ⊆�1 ⊆�0,
and the estimates satisfy the appropriate properties of suf-
ficiency and completeness required for such independence
(see Sect. 7.9 of Hogg et al., 2019). This independence is
proven in a more elementary way in Appendix B. The in-
dependence of deviances also allows quantification of the
family-wise error rate (FWER) of the multiple tests. For test-
ing�3 against�0, a FWER of 5 % can be achieved by setting
the type-I error rate of each test to be

1− (1− 0.05)1/3
≈ 1.7%.

See Appendix B for further details.
Because the hypotheses are nested andD�0:1 ,D�1:2 ,D�2:3

are independent, there exists a natural stepwise testing pro-
cedure. This procedure is discussed in Hogg (1961), from
which the following is based. First,D�0:1 is tested for signif-
icance based on Eq. (13). If it is significantly large, then we
decide that �1 is false and stop testing. On the other hand,
if D�0:1 is not significant, then D�1:2 is tested for signifi-
cance. If it is significant, then we decide that �1 is true but
�2 is false and stop testing. On the other hand, ifD�1:2 is not
significant, then D�2:3 is tested for significance. If it is sig-
nificant, then we conclude that �2 is true but �3 is false. If
D�2:3 is not significant, then we conclude that no significant
difference in ARX models is detected.

4 Diagnostics

Once a significant difference in a component of the ARX
model is identified, there still remains the question of pre-
cisely how that component differs between ARX models. In
Appendix B, we show that the noise deviance D�0:1 can be
written as a function of the variance ratio

F ∗ =
σ 2

σ ∗2
.

As a result, the test for�1 is equivalent to testing differences
in variance based on the F test. Importantly, the F test is ap-
plied not to the original time series, but to residuals of the
ARX models. This is important because the original time se-
ries may be serially correlated and thereby not satisfy the
assumptions of the F test. In contrast, the residuals from an

ARX model tend to be closer to white noise and thereby bet-
ter satisfy the assumptions of the F test.

Although we have explored various diagnostics for opti-
mally decomposing AR deviances and cycle deviances, we
found it much more instructive to simply plot the correspond-
ing autocorrelation function or the annual cycle response of
the ARX model, and indicate the ones that differ significantly
from that derived from observations. The autocorrelation of
an AR(p) model can be derived by standard methods (e.g.,
see Box et al., 2008, Sect. 3.2.2).

5 Model selection

To apply our procedure, the order of the AR process and the
number of harmonics to include in the model must be speci-
fied. These must be the same in the two models being com-
pared; otherwise, we know the processes differ and there is
no need to perform the test. Whatever criterion is used, it in-
evitably chooses different orders and a different number of
harmonics for different data sets. In such cases, we choose
the highest order and the largest number of harmonics among
the results. Our rationale is that underfitting is more serious
than overfitting because underfitting leads to residuals with
serial correlations that invalidate the distributional assump-
tions. In contrast, overfitting is taken into account by the
test because the test makes no assumption about the value of
the regression coefficients, and therefore it includes the case
of overfitting in which some coefficients vanish. The main
detrimental effect of overfitting is to reduce statistical power:
i.e., for a given difference in ARX models, the difference be-
comes harder to detect as the degree of overfitting increases.
This loss of power is not a serious concern in this study be-
cause, for our data, differences grow rapidly with the number
of predictors.

We choose the order and number of harmonics using a cri-
terion based on a corrected version of Akaike’s information
criterion (see DelSole and Tippett, 2021a). Strictly speaking,
the ARX model contains a mixture of random and determin-
istic components and this fact should be taken into account
in the criterion. The generalization of Akaike’s information
criterion to the case of a mixture of random and deterministic
predictors has been derived in DelSole and Tippett (2021a)
and is called AICm (“m” stands for mixture). The explicit
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equation for this criterion is given in Appendix B (e.g., see
Eq. B2).

6 Data

We analyze the net transport of the Atlantic meridional over-
turning circulation (AMOC) at 26◦ N. This choice was mo-
tivated by the availability of monthly estimates from the
RAPID array (Frajka-Williams et al., 2019). At present, this
time series is of length 190 months and lies within the 17-
year period 2004–2020. This observational period is rela-
tively short, and hence the associated forced variability, such
as by aerosols or greenhouse gases, is small relative to in-
ternal variability and assumed to be negligible. For climate
simulations, we use preindustrial control simulations from
CMIP5 (Taylor et al., 2012). Control simulations use forc-
ings that have only diurnal and annual cycles and contain no
forced variability on interannual timescales. To avoid climate
drift, a second-order polynomial in time is removed from the
last 500 years of each control simulation (this has no impact
on the results because the quadratic polynomial over the 500-
year period is virtually constant over 17 years). The model
variable is the maximum MOC streamfunction at 26◦ N. Ten
CMIP5 models have this variable available.

The first observation from RAPID occurs in April. We
sample a 190-month sequence (called the “first half”) from
each CMIP5 control simulation starting from the first April
in the last 500 years of simulation. Then, the subsequent 190-
month sequence (called the “second half”) is used as an inde-
pendent sample. Note that the second sample does not begin
in May because 190 is not divisible by 12. This difference
in phase τ is taken into account when specifying the annual
cycle forcing for the two ARX models (i.e., by specifying
τ = 5 and τ = 195 in Eq. (A1) for X2 and X∗2, respectively).

7 Results

The time series under investigation are shown in Fig. 2. One
can see a variety of similarities and differences between ob-
servational and dynamical model time series. Based on visual
comparisons, one might suggest that NorESM1-M differs the
most from observations due to its much smaller amplitude,
while the MPI models are most similar to observations. How-
ever, these are subjective impressions. The purpose of this
paper is to decide objectively which of the simulated time se-
ries are most statistically similar to observations. Moreover,
for the models that differ, we want to rank CMIP5 models in
order of dissimilarity to observations and diagnose the nature
of the dissimilarities.

As discussed earlier, the order of the AR model and the
number of annual harmonics are selected by minimizing a
criterion called AICm (DelSole and Tippett, 2021a). For con-
sistency, we restrict simulation time series to be of the same
length as that of observations. A representative example of

Figure 2. Monthly time series of the maximum transport at 26◦ N
(thin curves) from observations (RAPID; top, black curve) and
CMIP5 models (colored curves, with model names at the right end).
The thick curves show the best-fit annual cycle based on five annual
harmonics. The percentages next to the names are the percent vari-
ance explained by the annual cycle (i.e., the R2 of the annual cycle).
The annual cycle is computed by ordinary least squares without ac-
counting for serial correlation. The time series have been offset rel-
ative to each other by an additive constant.

AICm for varying p and H is shown in Fig. 3. In this case,
the minimum AICm occurs for a third-order AR process with
three annual harmonics. Repeating this procedure for each
CMIP5 model reveals at least two cases in which five an-
nual harmonics are chosen (not shown), which is nearly the
Nyquist frequency. Accordingly, following the discussion in
Sect. 5, we choose H = 5 annual harmonics for all cases.
After fixing H = 5, we use AICm to select p. The resulting
AICm is shown in Fig. 4. The maximum selected order is 3,
hence we choose p = 3 and H = 5 for all ARX models.

If the ARX(3,5) model is adequate, then the residuals
should resemble Gaussian white noise. To check this, we
show the autocorrelation function of the residuals of the
ARX(3,5) models in Fig. 5. As can be seen, the residuals
have insignificant autocorrelations, except for two isolated
cases which are marginal and not significant given the multi-
ple comparisons.

Having chosen the ARX(3,5) model, we next fit time se-
ries from observations and from a CMIP5 model and evaluate
the total deviance D�0:3 , which is used to test the hypothesis
�3 that all parameters in the respective ARX(3,5) models are
equal. The results, shown in Fig. 6, reveal that the deviances
for the MPI models fall below the significance threshold, in-
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Figure 3. The AICm for fitting time series from the CanEMS2
model to ARX models of the form (3), as a function of the order
of the AR process p (x axis) and the number of annual harmonics
H (y axis). The ARX model with the smallest AICm is indicated
by a dot and is labeled.

Figure 4. The AICm for fitting time series from each CMIP5 model
to ARX models of the form (3), as a function of the order of the
AR process p and for the number of annual harmonics H = 5. The
minimum AICm for each CMIP5 is indicated by a square, and the
associated order is indicated above the square (provided it is greater
than zero). AICm has not been offset for each model – the different
levels of AICm reflect differences in time series.

dicating that the MPI models are statistically indistinguish-
able from observations. The other models exceed the signif-
icance threshold and therefore differ from observations. As
anticipated from Fig. 2, the deviance for the NorESM1-M
model is relatively high.

Although our test is rigorous, it makes asymptotic approx-
imations whose validity may be questioned for our partic-
ular sample. One exercise for building further confidence
is to compare each time series not to observations, but to
time series from other models. In such a comparison, we

Figure 5. The autocorrelation function of the residuals of the ARX
models. The horizontal dashed lines show the upper and lower 5 %
confidence limits for zero correlation.

Figure 6. Total deviance between CMIP5 simulations and obser-
vational time series of the AMOC. Each time series is 190 months
long and modeled by an ARX(3,5) model. The horizontal grey line
shows the 5 % significance threshold.

expect deviances to be small when time series come from
the same CMIP5 model. To check this, we compare each
190-month time series to an independent 190-month time
series from the CMIP5 models. The resulting deviances are
shown in Fig. 7. As expected, the deviances between time
series from the same model, which occur along the diago-
nal, tend to be much smaller than those between different
models (i.e., the off-diagonal elements). In fact, the diagonal
elements are either insignificant or are marginally significant
(i.e., 0.01< p < 0.05). Only one diagonal element exceeds
the 5 % threshold (CanESM2), which is not serious in view
of the multiple comparisons (e.g., when the null hypothesis
is true, the probability of at least 1 rejection in 10 is about
4 out of 10). None of the diagonal elements exceeds the 1 %
threshold.

In addition to similarities along the diagonal, there are ad-
ditional similarities – different models from the same center
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Figure 7. The total deviance between the time series shown in
Fig. 2, and an independent “second-half” time series from CMIP5
models. The deviance is normalized by the 5 % significance value.
Values that are insignificant, 5 % significant, and 1 % significant are
indicated by no shading, light grey shading, and dark grey shading,
respectively. There is no “second-half” time series for observations,
but an associated bottom row is included to make the matrix square.

have insignificant deviances. For instance, the two NCAR
models (CCSM4 and CESM1-BGC) and the three Max
Planck models (MIP-LR, MPI-MR, MPI-P) have insignifi-
cant deviances. Besides this, no other similarities are found.
This example suggests that the deviance between 16-year
AMOC indices could be used to decide whether two given
time series came from dynamical models from the same cen-
ter.

An alternative approach to summarizing these results is a
dendogram. A dendogram visualizes the distance matrix in
a way that makes multiple clusters easy to identify. A den-
dogram is constructed by linking elements together based
on similarity. Here, distance is measured by total deviance
D�0:3 . At the beginning, each element is assigned to a cluster
of its own. Next, the two elements with the smallest deviance
are linked together, using a “leaf” whose length equals the
deviance. Subsequent leaves are constructed by joining two
elements with the next smallest deviance. When comparing
two clusters, we assign a distance equal to the maximum de-
viance among all pairs of elements between the two clusters
(known as the complete-linkage rule). This process repeats
to produce larger clusters until all elements are in the same
cluster.

Figure 8. A dendogram showing clusters based on total deviance
D�0:3 . All time series are of length 190 months. Two independent
time series from the same CMIP5 model are included in the cluster
analysis. The vertical red line shows the 5 % significance level for
the deviance. Leaves joined to the left of the significance line are
statistically indistinguishable from each other.

The resulting dendogram is shown in Fig. 8. As can be
seen, the dendogram correctly clusters time series from the
same dynamical model. Observations are clustered with the
MPI models, consistent with Fig. 6, and then that cluster is
clustered with INMCM4 and CNRM. The other models form
an entirely separate cluster. Analogous dendograms have
been constructed in previous studies (for example, Knutti
et al., 2013). Our cluster differs from those in previous stud-
ies in that it is based on a similarity measure with a rigorous
significance test, so that statistically significant clusters can
be identified rigorously.

Although significant differences from observations have
been detected, the test does not tell us the nature of those dif-
ferences. To gain insight into the source of the differences,
we decompose the deviance as in Eq. (14) and evaluate the
individual terms. The result is shown in Fig. 9. We see that
only two CMIP5 models have AR deviances D�1:2 (green
bar) that exceed the significance threshold, and these ex-
ceedances are marginal at best, suggesting that differences
in AR parameters are an insignificant source of differences
between ARX models. For the dynamical models that dif-
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Figure 9. The AR devianceD�2:3 (pink bar), cycle devianceD�1:2
(green bar), and noise deviance D�0:1 (blue bar) between fitted
ARX(3,5) models. The red, green, and blue lines show the corre-
sponding significance levels at the FWER of 5 %. The dot, cross,
and triangle indicate insignificant deviances. Each deviance is com-
puted from pairs of time series each of length 190 months.

fer from observations (see Fig. 6), differences in noise are
consistently significant and often dominate. Annual cycle de-
viances are also significant in most cases.

Although we have detected a significant difference in noise
variance, we do not know the direction of this difference. As
discussed in Sect. 4, the test for differences in noise vari-
ances is equivalent to an F test of the residuals of the ARX
models. The F ratio of variances is shown in Fig. 10 and
shows that CMIP5 models tend to have too little noise vari-
ance compared to observations. Differences in noise can be
interpreted in a variety of ways. For instance, differences in
noise imply differences in 1-month prediction errors of the
ARX models. The fact that most CMIP models have too lit-
tle noise variance implies that their 1-month predictions are
overly confident. Alternatively, we may say models and ob-
servations have different AMOC variances after the first three
lagged values have been regressed out. This constitutes a di-
agnostic that may be monitored during dynamical model de-
velopment.

Next, we consider differences in AR parameters. Ac-
cording to Fig. 9, only MPI-P and MPI-MR have AR pa-
rameters that differ significantly from those of observations
(as indicated by the fact that the red bar crosses the red
line for these models). The autocorrelation functions of the
ARX(3,5) models are shown in Fig. 11. To gain insight into
why the ACF for these models is identified as differing sig-
nificantly from that of observations, we simulated 200 time
series from the ARX(3,5) model estimated from observations
and then computed the sample ACFs. The results are shown
in Fig. 12. Comparing these ACFs to that of MPI-P and MPI-

Figure 10. Ratio of noise variances between time series on the
x axis and observations. Ratios less than one indicate that the
CMIP5 model has less noise variance than observations. The hor-
izontal grey lines show the upper and lower significance thresh-
olds for rejecting equality of noise variances based on a signifi-
cance level to control for a FWER of 5 %. The noise variances are
each derived by fitting ARX(3,5) models to time series of length
190 months.

Figure 11. The autocorrelation function from each ARX(3,5)
model. Dots indicate ACFs that differ significantly from that of ob-
servations at the 5 % level for FWER. The same color scheme as
used in previous figures is used, including black for observations.

MR (red curves in Fig. 12) suggests that the ACFs differ from
that of observations by a much faster decay.

Recall that the testing procedure stops when different
noise variances are detected. Despite this, if we proceed to
test differences in annual cycles, it should be recognized that
the sampling distribution of the cycle deviance depends on
the ratio of noise variances. Monte Carlo experiments dis-
cussed in Appendix C suggest that the chi-squared distribu-
tion provides a reasonable estimate of the 5 % significance
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Figure 12. Two-hundred realizations of the sample autocorrelation
function from the ARX(3,5) estimated from observations (black
curves), and the autocorrelation function for CNRM-CM5 (red),
which was found to differ significantly from observations.

Figure 13. The annual cycle response of each ARX(3,5) model
estimated from 190-month time series from CMIP5 models (col-
ored curves) and from observations (black curve). Dots indicate an-
nual cycles that differ significantly from that of observations at the
FWER of 5 %. Note that the dots have the opposite meaning than
they do in Fig. 11.

level of D�2:3 in our particular data set even when �1 is
not true. We can therefore proceed to test equality of cycle
parameters in our particular data set despite detecting differ-
ences in noise variances.

According to Fig. 9, MPI-P, MPI-MR, and NorESM1-M
have annual cycles consistent with observations. To diag-
nose annual cycle discrepancies in the other CMIP5 mod-
els, we found it most instructive to simply plot the annual
cycle response, given by Eq. (5), using Eq. (6) to convert
from ARX estimates. The annual cycle response of each
ARX(3,5) model is shown in Fig. 13. Dots indicate cycles

that are indistinguishable from that of observations. In gen-
eral, the larger the difference from the observed annual cy-
cle, the more likely the cycles differ significantly. We draw
attention to the fact that numerous studies contain plots like
Fig. 13 illustrating the annual cycle for different CMIP mod-
els (e.g., Anav et al., 2013; Sanap et al., 2015; Alves et al.,
2016) but without a significance test.

8 Conclusions

In this paper, we presented a test for comparing a lim-
ited class of nonstationary stochastic processes, namely, pro-
cesses with deterministic signals, such as annual or diurnal
cycles. The strategy was to introduce periodic deterministic
terms in an autoregressive model, yielding an ARX model,
and then to test for differences in the parameters. A test for
equality of noise variances must precede other tests, other-
wise the subsequent tests will depend on the ratio of vari-
ances, which is an unknown population parameter. This sit-
uation is similar to the t test, which tests for differences in
means assuming the variances are equal. If no difference
in noise variance is detected, then it is advantageous to test
equality of AR parameters next, followed by equality of de-
terministic forcing parameters, for in this case the procedure
leads to the same decision about “equality of the annual cy-
cle” regardless of whether the hypothesis is framed in terms
of forcing or response. This hierarchy of tests can be formu-
lated such that each test is stochastically independent of the
others. This stochastic independence allows the family-wise
error rate of the multiple tests to be quantified rigorously.

If a difference in parameters is detected, then it is of in-
terest to diagnose the nature of the difference. The statis-
tic for testing differences in parameters can be decomposed
into independent terms that quantify differences in noise, dif-
ferences in AR parameters, and differences in deterministic
forcing. Furthermore, each of these terms can be diagnosed
fairly easily in a univariate setting. For instance, differences
in noise variances can be characterized by the ratio of noise
variances, and differences in AR parameters can be charac-
terized by differences in autocorrelation functions associated
with the ARX models.

We applied the above procedure to compare observations
of the MOC from the RAPID array to CMIP5 models, treat-
ing the annual cycle as the response to deterministic forcing.
The observational record is about 16 years (more precisely,
190 months) and considered sufficiently short to ignore an-
thropogenic climate change. To apply the procedure, the or-
der of the AR process and the number of annual harmonics
need to be chosen. We selected these parameters using a cri-
terion called AICm, which is a generalization of Akaike’s in-
formation criterion to a mixture of deterministic and random
predictors. This criterion suggested choosing five annual har-
monics and a third-order AR process, hence an ARX(3,5)
model.
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The total deviance between observations and CMIP5 mod-
els was evaluated and indicated that only three models (all
from MPI) generated simulations consistent with observa-
tions. As a check on the statistical test, we compared the
190-month time series from each CMIP5 model to another
independent set of time series from the CMIP5 models. We
confirmed that time series from the same CMIP5 model had
small deviances (the CanESM2 model had only marginally
significant deviances). Interestingly, this analysis revealed
that each CMIP5 model differed from every other CMIP5
model, unless the model came from the same modeling cen-
ter (e.g., Max Planck or NCAR). It seems remarkable that 16
years of AMOC observations, at one latitude, is enough to
distinguish CMIP5 models.

The total deviance is dominated by differences in noise
variance and cycle parameters, although the relative contri-
bution depends on CMIP5 model. Differences in AR parame-
ters were small for our data. In other situations differences in
AR parameters may play a bigger role. For models with the
most extreme deviance, the noise deviance is the dominant
contributor. In all cases, the noise deviance is due to the fact
that models have too little noise variance compared to ob-
servations. The cycle deviance can be diagnosed by plotting
the annual cycle response from each ARX model and indi-
cating the cycles that differ significantly from observations.
Although such plots have been presented in the past, this ap-
pears to be the first use of an objective criterion to identify
annual cycles that differ significantly from observed annual
cycles in regards to all their attributes (e.g., phases, ampli-
tudes, frequencies) and accounting for serial correlation.

Although we have framed our procedure in terms of an-
nual cycles, it should be recognized that the procedure ap-
plies to any deterministic function of time, including trends,
exponential functions, or diurnal cycles.

Appendix A: Model formulation

Here we show how Eq. (3) can be written in the forms (7) and
(8). Specifically, for time steps t = 1, . . .,N +p, model (3)
can be written in the form (7) using the identifications

y =


yp+1
yp+2
...

yp+N

 , X2 =


yp yp−1 . . . y1
yp+1 yp . . . y2
...

...
. . .

...

yN+p−1 yN+p−2 . . . yN

 ,

β2 =


φ1
φ2
...

φp

 ,
and

X3 =


cos(ω1(p+ 1+ τ )) sin(ω1(p+ 1+ τ )) . . . cos(ωH (p+ 1+ τ )) sin(ωH (p+ 1+ τ ))
cos(ω1(p+ 2+ τ )) sin(ω1(p+ 2+ τ )) . . . cos(ωH (p+ 1+ τ )) sin(ωH (p+ 1+ τ ))

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
cos(ω1(p+N + τ )) sin(ω1(p+N + τ )) . . . cos(ωH (p+ 1+ τ )) sin(ωH (p+ 1+ τ ))

 ,

(A1)

where τ is a phase, and

β3 =


a1
b1
...

aH
bH

 ,j =


1
1
...

1

 .

Under these identifications, K2 = p and K3 = 2H . If ω1N

is an integer multiple of 2π , then XT2 X2 is diagonal and
XT2 j = 0, reflecting the fact that in this case the discrete
Fourier functions are orthogonal and have zero mean.

Appendix B: Likelihood ratio tests and their
distributions

In this Appendix, we describe the likelihood ratio tests for
�i+1 versus �i indicated in Table 1 and show that they are
independent. These results are not new and have been pre-
sented essentially by Hogg (1961). However, Hogg (1961)
invokes the concept of complete sufficient statistics, which
may not be familiar to many readers. The purpose of this
Appendix is to summarize facts about nested likelihood ratio
tests at a level that may be more accessible to climate scien-
tists.

Under �0, models (7) and (8) are independent, and hence
their parameters can be estimated separately. The estimated
parameters are β2,β

∗

2,β3,β
∗

3,σ
2,σ ∗2,µ,µ∗, the count of

which is

P�0 = 2K2+ 2K3+ 4.

This is a standard problem in maximum likelihood estimation
(MLE; Seber and Lee, 2003, Sect. 4.3). Let the MLEs of σ 2

and σ ∗2 be denoted as

σ 2
=
Q

N
and σ ∗2 =

Q∗

N∗
,

whereQ andQ∗ are the sum square errors of models (7) and
(8) under�0. Standard regression theory implies that the sum
square errors have distributions

Q

σ 2 ∼ χ
2
N−K2−K3−1 and

Q∗

σ ∗2
∼ χ2

N∗−K2−K3−1.

Since Q and Q∗ are independent, their ratio has a scaled F
distribution under �1:

Q

Q∗

(
N∗−K2−K3− 1
N −K2−K3− 1

)
∼ FN−K2−K3−1,N∗−K2−K3−1. (B1)

This result provides the basis for testing �1 versus �0 and
was used to draw the significance thresholds in Fig. 10.
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The model selection criterion AICm under �3 can be ap-
plied to models (7) and (8) separately, since they are inde-
pendent. This criterion is Eq. (12) in DelSole and Tippett
(2021a), which in our notation (for model 7) is

AICm=N logσ 2
+

N (N +K2+ 1)
N −K2−K3− 3

(
1+

K3

N −K2−K3− 2

)
(B2)

(an irrelevant additive term equal to N log2π has been
dropped).

Under �1,�2,�3, models (7) and (8) have a common
variance. In this case, Eqs. (7) and (8) can be combined as

Y= XB+E,

where

Y=
(
y

y∗

)
, E=

(
ε

ε∗

)
and where X and B have the following identifications under
�1,�2,�3:

�1 : X=
(
X2 X3 j 0 0 0
0 0 0 X∗2 X∗3 j∗

)
, B=


β2
β3
µ

β∗2
β∗3
µ∗



�2 : X=
(
X2 X3 j 0 0
X∗2 0 0 X∗3 j∗

)
, B=


β2
β3
µ

β∗3
µ∗



�3 : X=
(
X2 X3 j 0
X∗2 X∗3 0 j∗

)
, B=


β2
β3
µ

µ∗


Each estimation problem requires estimation of B and the

common variance σ 2, and hence the numbers of parameters
estimated under �1,�2,�3 are, respectively,

P�1 = 2K2+ 2K3+ 3
P�2 =K2+ 2K3+ 3
P�3 =K2+K3+ 3.

The sum square errors of the model estimated under �i (for
i ≥ 1) can be written as the quadratic form

Q�i = YT
(
I−P�i

)
Y, (B3)

where P�i is an orthogonal projection matrix appropriate to
hypothesis �i ,

P�i = X�i
(
XT�iX�i

)−1
XT�i .

The maximum likelihood estimate of σ 2 under �i for i ≥ 1
is denoted as

σ 2
�i
=

Q�i

N +N∗
.

In general, Q�1 ≤Q�2 ≤Q�3 and σ 2
�1
≤ σ 2

�2
≤ σ 2

�3
.

If �i is true, then standard regression theory gives

Q�i

σ 2 ∼ χ
2
νi
,

with the degrees of freedom

νi =N +N
∗
−P�i + 1

(one is added because σ is counted in P but not in ν).
Testing the hypotheses in Table 1 requires knowing the

distribution of ratios of Q�1 ,Q�2 ,Q�3 . These distributions
follow from the identity

I−P�3 =
(
I−P�1

)
+
(
P�1 −P�2

)
+
(
P�2 −P�3

)
. (B4)

Specifically, the projection matrices are idempotent and sat-
isfy

P�i+jP�i = P�iP�i+j = P�i+j for i ≥ 1,j ≥ 0. (B5)

This identity can be seen from the fact that the columns of
X�i+j are a linear combination of the columns of X�i , and
hence there exists a matrix C such that

X�i+j = X�iC.

Therefore

P�iP�i+j =X�i
(
XT�iX�i

)−1
XT�iX�i+j

·

(
XT�i+jX�i+j

)−1
XT�i+j

=X�i
(
XT�iX�i

)−1
XT�iX�iC

·

(
XT�i+jX�i+j

)−1
XT�i+j

=X�iC
(
XT�i+jX�i+j

)−1
XT�i+j

=X�i+j
(
XT�i+jX�i+j

)−1
XT�i+j

=P�i+j .

A similar proof shows that P�i+jP�i = P�i+j .
As a result of Eq. (B5), the product of any pair of(

I−P�1

)
,
(
P�1 −P�2

)
,
(
P�2 −P�3

)
vanishes. Multiplying Eq. (B4) by Y on the left and right to
produce quadratic forms gives

Q�3 =Q�1 +
(
Q�2 −Q�1

)
+
(
Q�3 −Q�2

)
. (B6)
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It follows from Cochran’s theorem (Seber, 2015, Theo-
rem 4.1) that

Q�1

σ 2 ,
Q�2 −Q�1

σ 2 ,
Q�3 −Q�2

σ 2 (B7)

are distributed as independent chi square with respective de-
grees of freedom

ν�1 , ν�2 − ν�1 , ν�3 − ν�2 .

Therefore, if �i+j is true, then(
Q�i+j −Q�i

Q�i

)(
νi

νi+j − νi

)
∼ Fνi+j−νi ,νi

for i ≥ 1,j ≥ 1. (B8)

This result provides the basis for testing Q�i+j relative to
Q�i for i ≥ 1,j ≥ 1.

The test derived from Eq. (B8) is a standard analysis
of variance (ANOVA) test. For instance, in R, the tests
for pairwise comparisons of �1,�2,�3 can be performed
using the commands anova(Model2, Model1)
and anova(Model3, Model2), where Model1,
Model2, Model3 are the model fits from lm under
�1,�2,�3, respectively. Unfortunately, comparison of �0
and �1 is not part of the standard decomposition because
ANOVA assumes that variables come from populations
with the same variance σ 2. If the populations have different
variances, then the F statistic in Eq. (B8) would not have an
F distribution and would depend on the population variance
ratio. Therefore, the anova command in R does not handle
the test for equality of noise variances, and in fact assumes
equality of noise variances. Although the comparison be-
tween �0 and �1 is not part a standard analysis of variance
table, it can be included in a deviance decomposition.

A further point is that comparing three hypothe-
ses �1,�2,�3 with the command anova(Model3,
Model2, Model1) is not equivalent to testing each model
pairwise (for instance, different F values are produced). The
reason for this is that when comparing more than two mod-
els, it is convention to compute the denominator for the F
statistic in Eq. (B8) using the least restrictive model, namely,
Q�1/ν1 rather than Q�i/νi . Unfortunately, this convention
leads to F statistics that are not mutually stochastically in-
dependent, as noted by Hogg (1961). In contrast, compar-
ing models pairwise leads to F statistics that are mutually
stochastically independent, as we show below using a more
elementary proof than that of Hogg (1961).

To prove the independence of the F statistics in the hierar-
chy, we focus on the likelihoods. The maximized likelihoods
for Eqs. (7) and (8) are, respectively,

L= (2πeσ 2)−N/2 and L∗ = (2πeσ ∗2)−N
∗/2.

Since Eqs. (7) and (8) are independent, the total likelihood
for �0 is

L�0 = LL
∗.

The maximized likelihood under �i for i = 1, 2, 3 is

L�i =
(

2πeσ 2
�i

)−(N+N∗)/2
for i ≥ 1.

Therefore,

L�i+1

L�i
=

(
Q�i+1

Q�i

)−(N+N∗)/2

for i ≥ 1 (B9)

and

L�1

L�0

=

(
Q�1
N+N∗

)−(N+N∗)/2

(
Q
N

)−N/2(
Q∗

N∗

)−N∗/2 . (B10)

The likelihood ratio (B9) can be written equivalently as

L�i+1

L�i
=

(
1+

Q�i+j −Q�i

Q�i

)−(N+N∗)/2

for i ≥ 1.

Also, usingQ�1 =Q+Q
∗, the likelihood ratio (B10) can be

written equivalently in terms of the variance ratio r =Q/Q∗

as

L�1

L�0

= f (r)= (1+ 1/r)−N/2(1+ r)−N
∗/2

 N−
N
2 N∗−

N∗

2

(N +N∗)−(N+N∗)/2

 .
The likelihood ratio for testing �3 versus �0 can be written
in the factored form

L�3

L�0

=
L�1

L�0

L�2

L�1

L�3

L�2

. (B11)

Independence of Eq. (B7) implies independence of the nu-
merators of L�1L�2L�3 . However, this does not imply that
the ratios in Eq. (B11) are independent. To show indepen-
dence of the ratios, we write the product in the form(
L�3

L�0

)−2/(N+N∗)

= f
(a
b

)
g

(
c

a+ b

)
g

(
d

a+ b+ c

)
,

(B12)

where g(x)= 1+x and a,b,c,d are independent and defined
as

a =Q∗, b =Q, c =Q�2 −Q�1 , d =Q�3 −Q�2 .

For each consecutive pair of products in Eq. (B12), the de-
nominator on the right is the sum of the numerator and de-
nominator on the left. Lukacs (1955) proved that if w and z
are independent and have gamma distributions with the same
scale parameter, then w/z and w+ z are also independent.
Since the chi-squared distribution is a gamma distribution
with scale parameter 2, Lukacs’ theorem implies that the fac-
tors in Eq. (B12) are independent. This proof can be general-
ized to any number of nested hypotheses. The above decom-
position is also derived in Hogg (1961) based on an indepen-
dence theorem associated with complete sufficient statistics.
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Note that if equality of noise variance �0 were not as-
sumed in �1,�2,�3, the sampling distributions would de-
pend on the ratio of noise variances and not have F dis-
tributions. This situation is similar to the Behrens–Fisher
problem, to which our problem would reduce if X2 = 0 and
X3 = 0 and the hypothesis µ= µ∗ were included in the hi-
erarchy.

We end by defining the associated deviance statistics and
their distributions. The deviance is defined as

D�i:i+k =−2logL�i+k + 2logL�i .

In particular,

D�0:1 =−2logf (Q/Q∗),

D�i:i+1 = (N +N∗) log
(
Q�i+1

Q�i

)
for i ≥ 1.

It follows trivially that

D�0:3 =D�0:1 +D�1:2 +D�2:3 . (B13)

The terms on the right-hand side are independent because of
the independence of the factors in Eq. (B11).

The sampling distribution ofD�i:i+1 when�i+1 is true can
be derived from Eq. (B1) for i = 0 and from Eq. (B8) for
i ≥ 1. It turns out that Monte Carlo techniques provide an
easier way to estimate the significance threshold for D�0:1 .
In this approach, we draw 1000 random samples from

r ′ = FN−K2−K3−1,N∗−K2−K3−1

(
N −K2−K3− 1
N∗−K2−K3− 1

)
and then compute 1000 realizations of

D�0:1 =−2logf (r ′).

The 95th percentile is then an estimate of the 5 % signifi-
cance threshold. This Monte Carlo estimate is fast because
the F distribution is sampled directly. The (1−α)100% sig-
nificance threshold of D�i:i+1 can be derived from Eq. (B8)
as

D
(α)
�i:i+1

= (N +N∗) log
(

1+Fα,νi+1−νi ,νi

(
νi+1− νi

νi

))
. (B14)

A less accurate but more convenient approach is to use the
fact that, when�i+j is true, the deviance has asymptotic dis-
tribution

D�i:i+1 ∼ χ
2
Pi−Pi+1

.

Because the factors L�1/L�0 ,L�2/L�1 ,L�3/L�2 are
stochastically independent, it is straightforward to control the
family-wise error rate of the test. For instance, for a hier-
archy with J tests, a family-wise error rate (FWER) of α
can be achieved by setting the type-I error of each test to
1− (1−α)1/J . Of course, other choices for the individual
type-I error rates could be selected to give the same FWER,
but there is little reason to prefer one test to have a higher
type-I error rate than the others.

Appendix C: Monte Carlo experiments

In this Appendix, we quantify the sensitivity of the signif-
icance threshold of D�2:3 to differences in noise variances.
To do this, we take the best fit ARX(3,5) model for each
CMIP5 model (i.e., the maximum likelihood estimates under
�0) and compare it to the same model except with a noise
variance 5 times larger (hence �1 is false). A variance ratio
of 5 was chosen because it is the most extreme variance ra-
tio from Fig. 10. We generate time series of length 190 from
both ARX(3,5) models, evaluate D�2:3 , repeat 2000 times,
and identify the 95th percentiles. The 95th percentile is cho-
sen merely as a reference and does not correspond to the ac-
tual significance level of the hierarchical test.

Figure C1. Upper 5th percentiles of the cycle deviance D�2:3
for fitting ARX(3,5) models from 190-month time series when the
noise variance ratio equals 5 (crosses). Percentiles are estimated by
Monte Carlo techniques. For the two ARX(3,5) models being com-
pared, the AR parameters and cycle parameters are the same and
equal those estimated from each CMIP5 model on the x axis. The
upper 5th percentiles of the appropriate chi-squared distribution and
F distribution are indicated by horizontal grey lines. The colored
numbers give the α of the F distribution corresponding to the point
indicated by the X.

The results of these experiments are shown in Fig. C1.
Each cross shows the upper 5th percentile of the cycle de-
viance D�2:3 of ARX(3,5) models that have the same regres-
sion parameters but have a noise variance ratio of 0.2, the
most extreme ratio from Fig. 10. For comparison, the fig-
ure also shows the upper 5th percentile obtained from the
chi-squared distribution and from the more accurate F distri-
bution computed from Eq. (B14). The figure shows that the
observed 5th percentiles are relatively close to the correct 5th
percentile computed from the F distribution. For reference,
the numbers next to the Xs in Fig. C1 show the effective α of
the F distribution, and they all lie between 4.1 % and 5.4 %.
The effective α of the chi-squared distribution lies between
2.6 % and 3.5 % (not shown), which is still relatively close
to 5 %. Thus, even for the most extreme variance ratios in
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our data, the chi-squared distribution provides a reasonable
estimate of the 5 % significance level of D�2:3 .
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