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Abstract. This study develops a statistical conditional approach to evaluate climate model performance in
wind speed and direction and to project their future changes under the Representative Concentration Pathway
(RCP) 8.5 scenario over inland and offshore locations across the continental United States (CONUS). The pro-
posed conditional approach extends the scope of existing studies by a combined characterization of the wind
direction distribution and conditional distribution of wind on the direction, hence enabling an assessment of the
joint wind speed and direction distribution and their changes. A von Mises mixture distribution is used to model
wind directions across models and climate conditions. Wind speed distributions conditioned on wind direction
are estimated using two statistical methods, i.e., a Weibull distributional regression model and a quantile re-
gression model, both of which enforce the circular constraint to their resultant estimated distributions. Projected
uncertainties associated with different climate models and model internal variability are investigated and com-
pared with the climate change signal to quantify the robustness of the future projections. In particular, this work
extends the concept of internal variability in the climate mean to the standard deviation and high quantiles to
assess the relative magnitudes to their projected changes. The evaluation results show that the studied climate
model captures both historical wind speed and wind direction and their dependencies reasonably well over both
inland and offshore locations. Under the RCP8.5 scenario, most of the studied locations show no significant
changes in the mean wind speeds in both winter and summer, while the changes in the standard deviation and
95th quantile show some robust changes over certain locations in winter. Specifically, high wind speeds (95th
quantile) conditioned on direction in winter are projected to decrease in the northwestern, Colorado, and north-
ern Great Plains locations in our study. In summer, high wind speeds conditioned on direction over the southern
Great Plains increase slightly, while high wind speeds conditioned on direction over offshore locations do not
change much. The proposed conditional approach enables a combined characterization of the wind speed dis-
tributions conditioned on direction and wind direction distributions, which offers a flexible alternative that can
provide additional insights for the joint assessment of speed and direction.

1 Introduction

Short-term and long-term near-surface wind variations play
an important role for both human and the environmental sys-
tems ranging from wind energy (Pinson et al., 2009; Con-
stantinescu et al., 2011; Pinson, 2013), the shipping industry
(Fayle, 2006; Lu et al., 2013; Rusu et al., 2018), and air pol-
lution modeling (Zannetti, 2013) to wind erosion (De Winter

et al., 2013) building and infrastructure design (Mendis et al.,
2007; Holmes, 2018), just to name a few. Recent California
wildfires revealed that strong winds (Diablo winds in north-
ern California and Santa Ana winds in southern California,
for instance) are a critical factor in such events (Westerling
et al., 2004; Cooley et al., 2019). Therefore, assessing poten-
tial changes in both short-term variations and long-term cli-
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matology under future climate scenarios is critical and hence
has received great interest in the literature (e.g., Pryor et al.,
2009; McInnes et al., 2011; Zeng et al., 2019).

Changing wind resources is of great concern for energy
production and wind farm maintenance due to the vary-
ing wind magnitude and variability (Pryor and Barthelmie,
2010). Therefore, various aspects of wind have been studied,
namely daily wind (Bogardi and Matyasovzky, 1996) and
wind gust (Cheng et al., 2014). Studies are conducted in var-
ious parts of the world (Reyers et al., 2016; Gao et al., 2018;
Akinsanola et al., 2021), including North America (Breslow
and Sailor, 2002; Sailor et al., 2008; Pryor et al., 2009) and
the Great Lakes region (Pryor et al., 2009; Li et al., 2010).
Findings in the literature reveal regional and seasonal differ-
ences in wind resources; however, those results are tainted
by model uncertainty and a lack of predictability of future
climate that the community intends to quantify.

What makes wind different from other climate variables
(e.g., temperature and precipitation) is the intrinsic vector
nature that requires considering both wind speed and direc-
tion for many applications. Specifically, a wind vector can
be represented in terms of the zonal (east–west) and merid-
ional (south–north) components (u,v), which is mathemat-
ically equivalently represented by the wind speed and di-
rection (r,φ). In what follows, we will use the term “wind
conditions” to refer to both wind speed and direction. Most
of the previous studies focus on only characterizing wind
speed probability distributions and their changes (e.g., Mon-
ahan, 2006; Pryor et al., 2009; He et al., 2010; Zeng et al.,
2019). Wind direction has received less attention in the liter-
ature than wind speed due to its circular nature (Breckling,
2012) but, nonetheless, is important in many applications.
For instance, coastal wind direction (e.g., onshore or off-
shore) plays a key role in determining the magnitude of storm
surge events (Irish et al., 2008; Toro et al., 2010) and the tra-
jectories of storms, which can potentially have severe dam-
ages when making landfall. Woodruff et al. (2013) showed
that, in coastal regions prone to tropical cyclone flooding,
both wind speed and direction impact the wind-driven storm
surge, which highlights the need to analyze wind speed and
direction jointly. Wind direction also plays a critical role in
fire spread (both prescribed and wildland fires), which can
determine the affected areas (Abatzoglou et al., 2021).

However, most previous studies typically consider wind
speed and direction distributions separately (e.g., McInnes
et al., 2011). A few examples that model wind speed and
direction jointly are Coles and Walshaw (1994), who pro-
posed an extreme-value-theory-based (EVT) modeling ap-
proach for estimating wind speed extremes conditioned on
direction (i.e., the conditional upper tail wind speed dis-
tribution as a function of wind direction), and Pryor et al.
(2012); De Winter et al. (2013), who considered high wind
speed extremes and their associated wind directions (i.e., the
conditional wind direction distribution given extreme wind
speeds). In Ailliot et al. (2015), Markov-switching autore-

gressive models for bivariate time series of wind, when con-
sidering both polar (r,φ) and Cartesian coordinates (u,v), are
proposed. The hidden Markov chain of these models is made
non-homogeneous and, depending on past wind conditions,
enables the capturing of the complex multimodal marginal
distribution of wind speed and direction and to character-
ize jointly temporal dynamics of speed and direction. Bessac
et al. (2016) compared various types of weather regimes (lo-
cal hidden, local observed, and large-scale observed) for the
joint zonal and meridional components of wind in a spa-
tiotemporal fashion.

In this study, we take a statistical-model-based conditional
approach to jointly model the wind speed and direction dis-
tribution via a conditional decomposition. Specifically, we
model wind direction distribution, denoted by [8], using a
von Mises mixture model (Mardia and Sutton, 1975), which
is a mixture of von Mises distributions (Mardia, 1975) to pre-
serve the circular nature. We then explore two distributional
regression (see Kneib et al., 2021, for a review) approaches,
namely Weibull regression, to accommodate the right skew-
ness of wind speed distributions (Brown et al., 1984; Mon-
ahan, 2006; Solari and Losada, 2016), and quantile regres-
sion (Koenker and Bassett, 1978, see Sect. 3 for more de-
tails), to estimate the conditional distribution of wind speed
given the wind direction and denoted by [R|8= φ] hereafter.
Combining the estimated wind direction distribution [8] and
the estimated wind speed distribution conditional on direc-
tion [R|8= φ] allows one to capture the joint distribution of
wind speed and direction [R,8] and hence their interactions.

In addition to the aforementioned bivariate and circular
nature (when considering the (r,φ) coordinate), wind ex-
hibits spatiotemporal features that vary across different spa-
tial and temporal scales, e.g., spatial variation due to topog-
raphy, distance to coast, temporal variation due to diurnal
cycle, weather regimes, seasonality, interannual variability,
and changing climates. In particular, some of these features
and dependencies vary across scales, such as the observed
spatiotemporal correlation varying across resolutions (e.g.,
Bessac et al., 2021). In addition, wind speeds over large wa-
terbodies are generally stronger than over land. As a result,
offshore wind power has been growing since the 1990s, en-
abling greater energy generation than inland farms. In 2020,
the U.S. offshore wind energy project development and op-
erational pipeline grew to a potential generating capacity of
35 324 megawatts (MW), experiencing a 24 % increase com-
pared to 2019 (Musial et al., 2022).

In order to explore and characterize these features, climate
model simulations are often used because of their complete
space–time data structure compared to the sparsity and ir-
regularity of observational data. Another key advantage of
climate models is that they can generate future climate pro-
jections under various conditions, and this therefore allows
us to estimate the projected changes in wind speed and di-
rection using our proposed method (described in Sect. 3).
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While the outputs from general circulation models
(GCMs) are generally shown to provide reasonable wind
conditions at global scales, their lack of skill in simulat-
ing regional-scale phenomena has been documented exten-
sively (e.g., Liang et al., 2008; Bukovsky and Karoly, 2011;
Gao et al., 2012). Downscaling techniques are used to mit-
igate the low spatial resolution of GCMs through dynami-
cal downscaling via regional climate models (RCMs; Giorgi
and Mearns, 1999) and statistical downscaling (Wilby et al.,
1998). RCMs account for local physical processes, such as
convective and vegetation schemes, with subgrid parameters
within GCM boundary conditions for high-resolution projec-
tions. High-resolution (< 20 km) RCMs resolve spatial and
temporal dependencies much better than GCMs do (Di Luca
et al., 2012; Wang et al., 2015) and therefore can better re-
solve wind conditions. Meanwhile, some researchers have in-
corporated small-scale features of wind speed into the param-
eterizations in numerical models (Zeng et al., 2002; Zhang
et al., 2016; Bessac et al., 2019, 2021).

In this study, we use outputs taken every 3 h from 12 km
Weather Research and Forecasting (WRF) regional climate
simulations driven by three different GCMs, under 10-year
historical and 10-year future time periods, under a Repre-
sentative Concentration Pathway (RCP8.5, also known as the
business-as-usual scenario). We evaluate climate model per-
formance and projected future changes in wind conditions
over selected inland and offshore grid cells (see Fig. 1) over
CONUS. We consider offshore locations in shallow waters
of both the western and eastern coasts of the U.S. and over
Lake Erie in the Great Lakes region, where the U.S. off-
shore wind pipelines are installed. In addition, we analyze a
10-member RCM ensemble (with the initial conditions per-
turbed) to quantify the effects of the model’s internal vari-
ability as opposed to the forced variability due to climate
change.

The remainder of this paper is structured as follows. In
Sect. 2, we describe the RCM model outputs, benchmark re-
analysis data, and in situ measurements used in this study for
model evaluation. In Sect. 3, we provide some background on
the von Mises distribution, directional Weibull and quantile
regression models, the bootstrap procedure we employ, and
the extended versions of the internal variability. Section 4
presents the model evaluation, where reanalysis data and in
situ measurements are used to evaluate inland and offshore
grid cell locations, respectively. We assess the projected fu-
ture changes in wind conditions under the RCP8.5 scenario
in Sect. 5. The main conclusions of the work are summarized
in Sect. 6.

2 Data

This section describes the datasets used in this study. We fo-
cus on seasonal (December–January–February (winter here-
after) and June–July–August (summer hereafter) statistics

computed from RCM outputs taken every 3 h on both wind
speed and direction1 over 10 locations with different local
topological and climatological features (see Fig. 1). Winter
and summer are chosen because of their stronger and more
identifiable patterns than autumn and spring.

2.1 Regional climate model outputs

We use three WRF simulations driven by Community Cli-
mate System Model 4 (CCSM4; Gent et al., 2011), the Geo-
physical Fluid Dynamics Laboratory Earth System Model 2
(GFDL-ESM2G; Donner et al., 2011), and the Hadley Centre
Global Environment Model version 2 (HadGEM2-ES; Jones
et al., 2011). These three GCMs represent a range of climate
sensitivities that encompasses most of the Coupled Model In-
tercomparison Project – Phase 5 (CMIP5) GCMs when pro-
jecting future temperature changes (Sherwood et al., 2014).
For more details on these simulations, see Wang and Kota-
marthi (2015) and Zobel et al. (2018a, b). The WRF outputs
are instantaneous data taken every 3 h, which may capture
some peak wind speeds, as they are not averaged over time;
however, under this time resolution, intermediate gusts may
have been missed. We consider wind at 10 m that is diag-
nosed from the higher simulated heights with the first layer
simulated at 28.8 m.

In both CCSM4- and GFDL-driven WRF runs, bound-
ary conditions are bias-corrected using reanalysis data, and
nudging techniques are applied to WRF runs. No bias cor-
rection or nudging is applied to the HadGEM-driven WRF
runs. In this work, we focus on historical data and the RCP8.5
scenario for future projections, which assumes the continued
heavy use of fossil fuels at a similar, or greater, rate to the
current concentrations of CO2 and other greenhouse gases
(GHGs) through the end of the century, leading to a radiative
forcing of 8.5 W m−2 by 2100 (Riahi et al., 2011). For the
historical time period, we focus on 1995–2004, and for the
future time period, we focus on the late 21st century period
(2085–2094).

A 10-member ensemble of 1 year of RCM simulation
using a bias-corrected CCSM4-driven WRF is also gener-
ated for analyzing the uncertainty due to the RCM’s inter-
nal variability (IV; see the methods in Sect. 3.5) and for an-
alyzing how significant the climate change signal in wind
speed is when compared with this uncertainty. These ensem-
ble members use exactly the same model configuration, such
as physics parameterizations, spatial resolutions, and nudg-
ing techniques, except that their initial conditions are per-
turbed initial conditions. Further details about the experiment
design can be found in Wang et al. (2018). Previous stud-
ies found that the IV was neither affected by the time period
(i.e., historical versus future) nor by the type of driving data
(i.e., reanalysis data versus GCM output; Braun et al., 2012).

1Note that, with meteorological conventions, the given direction
is the direction from which the wind is blowing.
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Figure 1. Studied locations are the Californian coast (location 1), Idaho (ID) inland (location 2), Oregon (OR) coast (location 3), Colorado
Mountain (location 4), Texas southern Great Plains (SGP; location 5), North Dakota Great Plains (location 6), southeastern mountains
(location 7), Florida (FL; location 8), northeastern coast (location 9), and Lake Erie, Ohio (OH; location 10). We use the ∗ symbol to denote
an offshore location, N to denote a mountain location, and � to denote a plain location. The map is colored by the ratio of changes in the
10-year mean 95th percentile of the wind speed distribution projected by WRF and driven by the Community Climate System Model 4
(CCSM4). See the data description in Sect. 2.

Lucas-Picher et al. (2008) found that, from a 10-member en-
semble of 30-year simulations over North America, there was
no long-term tendency in the IV, but there were fluctuations
in the IV in time, such as in the day-to-day variations. There-
fore, 1 year of ensemble simulations driven by one GCM is
considered sufficient for our purpose in order to compare the
magnitudes of future change in wind speed versus the un-
certainty due to IV. See Sect. 3.5 for details describing the
calculation of IV in this study.

2.2 Benchmark data

2.2.1 Reanalysis fields

Reanalysis data are used as a verification dataset to evalu-
ate the RCM wind conditions under study for the histori-
cal time period. Only a few reanalysis datasets are available
at high resolution and with both wind speed and wind di-
rection. For the seven inland locations, we use the second
phase of the multi-institution North American Land Data As-
similation System project, phase 2 (NLDAS-2; Xia et al.,
2012a, b), at a spatial resolution of 12 km and hourly reso-
lution. NLDAS-2 is an offline data assimilation system fea-
turing uncoupled land surface models driven by observation-
based atmospheric forcing. The non-precipitation land sur-
face forcing fields for NLDAS-2 are derived from the analy-
sis fields of the National Centers for Environmental Predic-
tion (NCEP) North American Regional Reanalysis (NARR;
Mesinger et al., 2006). NARR fields are spatially interpolated
to the finer resolution of the NLDAS one-eighth of a degree

grid and then temporally disaggregated to the NLDAS hourly
frequency. Since NLDAS fields are not available offshore, we
use NARR fields to evaluate the RCM wind conditions for
the offshore locations. NARR reanalysis fields are at a 32 km
spatial resolution and a temporal frequency of 3 h.

Because NARR data and reanalysis may present bias, we
also consider in situ measurements described in Sect. 2.2.2.
Pryor et al. (2009) advocate the use of multiple sources of
datasets, while pointing out discrepancies between observa-
tions, RCM outputs, and reanalysis in their temporal trends
of surface wind speed. In particular, reanalysis data show
contradictory temporal trends from the observational and
RCM data. Daines (2015) and Daines et al. (2016) also noted
discrepancies between observational and NARR reanalysis
along coastal British Columbia and posited the cause to the
misrepresentation of the topography in NARR or a need for
more assimilation of the near-surface wind speed.

2.2.2 In situ measurements

Since reanalysis data can present errors and uncertainties,
ground measurements and offshore buoy measurements de-
scribed below are used to consolidate the evaluation of
RCMs’ wind conditions for inland and offshore locations in
historical climates.

Observational data are extracted from the Automated Sur-
face Observing System (ASOS) network that consists of a
station network covering the U.S. territory. Wind data are
outputted every minute; however, wind speed are 2 min win-
dow averages of 5 s measurements. The recorded wind speed
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is discretized in integer knots (one knot is 0.514 m s−1). We
do not apply any additional treatment to account for this dis-
cretization because the data are filtered (averaged) over a
window of 1 h. Finally, ASOS data are often used for avia-
tion purposes and, hence, are known to be high-quality data.
ASOS data undergo three levels of quality checking during
their creation (on-site and real-time checks before observa-
tion transmission, aerial or state checks by a weather forecast
office (WFO) within 2 h after observation transmission, and a
nationwide check about 2 h after the scheduled transmission
time).

The offshore downscaled wind speeds from the histori-
cal decade are compared with National Data Buoy Center
(NDBC) buoy observations of near-surface wind velocities.
The observed winds at the NBDC anemometers are collected
at an hourly rate averaged from 8 min observations. The data
are extrapolated to 10 m above ground height through the
power law extrapolation method (Hsu et al., 1994), follow-

ing WS10 m =WSNDBC×
(

10
hNDBC

)0.11
, where WSNDBC is the

wind speed directly from the buoy, and hNDBC is the buoy
sensor elevation between 3.8 and 4.1 m, depending on the
buoys. The exponent of 0.11 is an empirically derived co-
efficient, based on the stability of the atmosphere, for water
conditions in this study.

In the following, we perform a station-wise comparison
of wind speed and direction and select locations across the
country with various climatic conditions. For each selected
location, we consider the closest grid points from each model
and the closest in situ data measurements.

3 Methods

This section describes the statistical techniques used for
modeling the probability distributions of wind direction and
wind speed conditioned on direction. Due to the circular na-
ture of the wind direction variable, we fit a von Mises mixture
distribution (Fisher, 1995; Mardia and Jupp, 2009; Breck-
ling, 2012) to the wind directions, and we model the wind
speed distribution conditioned on the wind directions by two
distributional regression models, i.e., (1) quantile regression
(Koenker and Bassett, 1978) and (2) a two-step Weibull dis-
tributional regression model, both of which impose a circular
constraint. In the following, we give a brief account of the
von Mises mixture distribution, our two-step Weibull regres-
sion, and quantile regression, respectively.

3.1 Von Mises distribution

The von Mises distribution (also known as the circular nor-
mal distribution) has been widely used to accommodate the
circular nature of wind direction. The probability density
function of the von Mises distribution is given by the fol-

lowing:

f (x|µ,κ)=
eκ cos(x−µ)

2πI0(κ)
, (1)

where I0(κ) is the modified Bessel function of the order 0
(Hill, 1977), µ is the location parameter that describes where
the bulk of the angle x distribution is clustered around, and
κ measures the level of concentration around the location µ
(the larger the κ , the more concentrate the data to µ), so 1

κ
is

analogous to σ 2 in the normal distribution.
The von Mises distribution is unimodal and may lack the

flexibility to capture the potentially complex wind direction
distribution. Therefore, we employ a two-component mixture
of von Mises distributions that can accommodate more com-
plicated wind direction distributions while keeping model fit-
ting manageable, using the movMF package developed by
(Hornik and Grün, 2014) in R. The probability density func-
tion of the von Mises distribution mixture is given by the
following:

g(x|µ,κ)= π1f (x|µ1,κ1)+ (1−π1)f (x|µ2,κ2), (2)

and its parameters (π1,µ1,κ1,µ2,κ2) are estimated via the
expectation–maximization (EM) algorithm (Dempster et al.,
1977).

3.2 Periodic quantile regression

Quantile regression (QR) extends the scope of classic re-
gression analysis, which models the conditional mean of a
response (E(Y )) as a function of the explanatory variables
x’s, to modeling how a quantile of a response QY (τ )=
F−1
Y (τ )= inf{y : F (y)≥ τ },τ ∈ [0,1] changes with the ex-

planatory variables (Koenker and Bassett, 1978). Since the
quantile functions {QY (τ ),τ ∈ [0,1]} fully determine the
distribution FY , one can estimate a set of conditional quantile
levels (i.e., QY (τk|X = x), τk ∈ [0,1],k = 1, · · ·,K , x ∈ R)
to approximate the underlying conditional distribution. By
doing so, one can obtain a more complete picture of the full
distribution of interest and how this distribution varies with
the predictors (Mosteller and Tukey, 1977). More details can
be found in the Appendix A.

In this study, we model a given quantile of wind speed
varying across wind direction by representing the direc-
tional quantile curve as a periodic B spline. We utilize the
quantreg and pbs packages in R to implement this pro-
cedure. Having a collection of estimated conditional quan-
tiles will provide us with information on not only how a spe-
cific quantile level of wind speed changes with direction but
also how these quantile curves, as function of wind direction,
change across quantile levels.

3.3 Weibull distributional regression

The Weibull distributional regression (WDR), an example
of parametric distributional regression (Kneib et al., 2021)
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with the Weibull conditional distribution assumption, is
another method that we propose for estimating wind speed
quantiles conditioned on direction. Under Weibull distri-
bution assumptions, we need to estimate how the scale λ
and shape κ parameters vary as functions of wind direction
φ with periodicity constraints. We propose a two-stage
procedure as follows: (1) we bin the data by dividing the
wind direction intoN bins, and then fit a Weibull distribution
to the wind speed data within each bin via maximum like-
lihood method to obtain the estimates {λ̂j , κ̂j }Nj=1 and their

standard error {se(λ̂j ), se(κ̂j )}Nj=1. (2) Next, we estimate
λ(φ) and κ(φ),φ ∈ [−π,π ] via a harmonic regression
(i.e., λ(φ)=

∑K
k=1

{
αλ,k cos(φ× k)+βλ,k sin(φ× k)

}
,

and κ(φ)=
∑K
k=1

{
ακ,k cos(φ× k)+βκ,k sin(φ× k)

}
).

Specifically, with a chosen K , we fit, by weighted
least squares, to {λ̂j , φ̃j }Nj=1 and {κ̂j , φ̃j }Nj=1 to obtain

{α̂λ,k, α̂κ,k, β̂λ,k, β̂λ,k}
K
k=1, where the weights are the recip-

rocal of squared standard errors, and φ̃j is the average wind
direction within the j th bin. The use of harmonic regression
here ensures both λ(φ) and κ(φ) are circular functions.

Although the Weibull distributional regression and quan-
tile regression are both employed in this study to estimate
wind speed quantiles conditioned on direction, there are
some distinctions between the two methods. Both methods
use the wind direction as a predictor of the wind speed. For
the binning of the wind direction in this study, quantile re-
gression represents each bin with the same amount of data
and, hence, each bin has different length, whereas bins in the
Weibull regression have the same length, and thus each bin
contains different number of data points. In this study, binned
Weibull fitting performs slightly better than quantile regres-
sion, except at the Idaho (ID) location, due to very unstable
parameter estimates for one of the direction bins (only a few
data points are contained in that bin). An ongoing study on
assessing the estimation performance via Monte Carlo simu-
lations of these two methods can be found in Murphy et al.
(2022).

3.4 Quantify estimation uncertainty via bootstrap

For both QR and WDR, we use bootstrapping (Efron and
Tibshirani, 1994) to quantify the uncertainty associated with
the parameter estimation. Specifically, we draw 500-block
bootstrap samples, where the block size is taken to be one
season to preserve the temporal dependence within a season.
The α/2 upper and lower percentiles of the bootstrap distri-
bution are used to form a 100× (1−α)% confidence interval
to quantify estimation uncertainty (see Fig. 2, for an exam-
ple). In Sects. 5 and S3, we provide 100× (1−α)% confi-
dence intervals for other selected locations.

3.5 Internal variability and projected climate change
signal

In this section, we propose new statistics based on the com-
monly used internal variability (IV). IV arises from intrinsic
variations in the nonlinear physical and dynamical processes
that are described by climate models (Hawkins and Sutton,
2009; Wang et al., 2018). Due to the restrictions on the large-
scale atmospheric flow imposed by the lateral boundary con-
ditions, the level of IV generated by RCMs is smaller than
those generated by GCMs (at least at the large scale). How-
ever, it is important to evaluate the IV of an RCM because
this variability may modulate or even mask physically forced
signals in the model (Braun et al., 2012; Deser et al., 2012).
In order to assess the strength of climate change signals rela-
tive to the internal variability in the system, we compare the
intensity of the climate change signal to the IV of the WRF
model. The IV is typically calculated by the time-wise spread
across members of an ensemble averaged over given time
windows. Members of an ensemble are commonly started
with perturbed initial conditions.

The IV usually represents the average over a time window
T , where T represents days, months, or seasons of the time-
wise ensemble spread, as follows:

IVmean(i,j,T )=

Et∈T

 1
N

N∑
n=1

[
Yn(i,j, t)−

1
N

N∑
n=1

Yn(i,j, t)

]2
 1

2

, (3)

where Yn(i,j, t) refers to a variable Y on grid point (i,j ) at
time t and the member n in the N ensemble. In this study,
we consider N = 10 members (described in Sect. 2.1) and
compute the IV over the summer and winter time windows
for data taken every 6 h.

The commonly used IV provides information on the en-
semble variability with respect to the mean of the quantity
of interest; however, it does not provide information regard-
ing the internal variability in other summary statistics, such
as its variance or quantiles. This study extends the concept
of IV to compute the ensemble spread of the standard devi-
ation and 95th quantile of the wind speed. For the IV of the
standard deviations, we calculate the spread across ensemble
members of the wind speed standard deviation, as follows:

IVsd(i,j,T )=

 1
N

N∑
n=1

[
σn(i,j,T )−

1
N

N∑
n=1

σn(i,j,T )

]2
 1

2

, (4)

where σn(i,j,T ) is the standard deviation of the ensemble
member n at location (i,j ) for the season T , and

σn(i,j,T )=

(
1
T

T∑
t=1

[
Yn(i,j, t)− Ȳ (i,j, .)

]2) 1
2

,

where Ȳ (i,j, .)= 1
T
∑T
t=1Yn(i,j, t). Similarly, for the 95th

quantile IV, we calculate the 95th quantile value of each en-
semble member n over a season T , and then we calculate the
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Figure 2. WRF-CCSM winter California (CA) coast data. (a) Fitted quantile curves (50th, 75th, and 95th quantiles) of the quantile and
Weibull regression methods at the CA grid point, along with their bin-wise empirical estimates. (b) The 95 % bootstrapped confidence
intervals of the 95th quantile (gray shaded area) and its point estimate (red curve), using periodic quantile regression. (c) Same as panel (b)
but using Weibull regression.

ensemble spread of the member 95th quantiles, as follows:

IVq95(i,j,T )=

 1
N

N∑
n=1

[
Qn(i,j,T )−

1
N

N∑
n=1

Qn(i,j,T )

]2
 1

2

, (5)

where Qn(i,j,T ) is the 95th quantile of the ensembles over
a season T .

When projected climate changes (PCCs), which are de-
rived as the difference between historical and projected
statistics, are 2-fold larger than the internal variability,
changes can be considered robust with respect to the IV
(Wang et al., 2018). These computations are performed on
the WRF-CCSM ensemble (described in Sect. 2.1).

4 Evaluation of wind conditions

In this section, we evaluate the historical RCM outputs
against reanalysis data and in situ measurements (as de-
scribed in Sect. 2) via different statistical methods (described
in Sect. 3).

4.1 Comparison of reanalysis benchmark data and in
situ measurements

First, we evaluate the reanalysis benchmark data NARR, us-
ing in situ buoy observation over coastal locations, and the
reanalysis benchmark data NLDAS, using near-surface ob-
servation ASOS data over inland locations.

Buoy data are reported hourly and are averaged based on
8 min measurements, while NARR and WRF outputs are in-
stantaneous outputs taken every 3 h. As a result, NARR and
WRF may capture some peak wind speeds, while the buoy
data may smooth out peaks. However, because NARR and
WRF only output data every 3 h, they likely miss peaks dur-
ing these 3 h intervals.

Figure 3 shows the diurnal patterns of wind speed for three
offshore locations (the California (CA) coast, NW coast,
and NE coast) of NARR reanalysis and buoy measurements.
NARR captures the seasonal differences between summer
and winter wind speed shown in buoy data, e.g., winter has a
stronger wind speed than summer does in offshore locations
in the northwest and northeast. The diurnal pattern of the
wind speeds over the CA coast is also captured by NARR.
However, for both summer and winter wind speed, NARR
tends to underestimate the wind speeds compared with buoy
measurements. On average, at the CA coast location, NARR
underestimate buoy wind measurements by around 2.2 m s−1

(29 %, relatively speaking) in winter and 4.6 m s−1 (48 %,
relatively speaking) in summer. At the NW coast, the un-
derestimate is around 1.4 m s−1 (17 %, relatively speaking)
in winter and 0.4 m s−1 (8 %, relatively speaking) in sum-
mer. At the NE coast, the underestimate is around 1.2 m s−1

(13 %, relatively speaking) in winter and 1.2 m s−1 (22 %,
relatively speaking) in summer. In a later section, we observe
the systematic low bias of NARR compared with WRF. The
wind speed over the CA coast in winter is underestimated
in NARR by about 4 m s−1. This misrepresentation of wind
along the coast may corroborate the results from (Daines,
2015; Daines et al., 2016) on coastal wind misrepresenta-
tion by NARR data, and we also note that the NARR spatial
resolution is coarse (32 km), inducing a different quality of
results at the grid cell level. Figure 4 shows the diurnal pat-
terns from ASOS and NLDAS data, using three inland loca-
tions over the U.S. in 2018 January, February, June, and July.
Overall, we find that NLDAS reanalysis data captures both
wind speed and direction well. We have also evaluated other
locations across the CONUS and find that NLDAS provides
a reasonable benchmark dataset for the selected inland loca-
tions.
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Figure 3. Diurnal wind speed pattern of NARR and buoy wind data for the three offshore locations on the CA coast, NW coast, and NE
coast (from left to right), displayed in winter (blue) and summer (red). Diurnal cycles are computed as averages over 10 years (1995–2004).

Figure 4. Diurnal wind speed pattern of NLDAS and ASOS wind data for the three inland locations in Colorado (CO), Texas (TX), and
North Dakota (ND), from left to right, displayed in winter (blue) and summer (red). Diurnal cycles are computed as the averages of January
and February 2018 for winter and June and July 2018 for summer.

4.2 Wind direction evaluation

Figure 5 shows von Mises density estimates for an inland
Texas–southern Great Plains (Texas-SGP) location in winter
(right) and an offshore location of the CA coast in winter
(left). The estimated von Mises densities for the remaining
locations can be found in Sect. S1 in the Supplement. In gen-
eral, WRF simulations driven by different GCMs were able
to capture the distribution of wind directions well over most
locations. For example, over the CA coast, the wind direction
is dominated by the westerly and northwesterly winds in both
summer and winter, which is driven by the high-pressure
system over the mid-latitude Pacific. Over Texas-SGP, the
winter winds have two dominant directions (southerly and
northerly), which are well captured by the mixture of von
Mises distributions, and the summer winds have only one
dominant direction that is caused by low-level jet from the
Gulf of Mexico to the Great Plains and eastern U.S. One ex-
ception is that none of the WRF simulations capture the wind
direction distribution well over Colorado Mountains, likely
due to the high elevation and high spatial variability in the
terrain conditions that are not well modeled by the current
spatial resolution in WRF.

4.3 Wind speed distribution conditioned on direction

We use the quantile regression with periodic B splines to
estimate the median and 95th quantile of wind speed con-
ditioned on wind direction. Figure 6 compares the binned
WDR and quantile regression results using WRF and NL-
DAS over CO and Texas-SGP inland locations and WRF and
NARR at the CA location in winter. (Results for the remain-
ing locations can be found in Sects. S4 and S5.) For the off-
shore location on the CA coast (left panel), both the median
and the 95th quantile in the benchmark data NARR show the
strongest wind speed concentrated in the northwesterly direc-
tions, which is favorable for stable wind resources. All three
WRF models capture high wind speeds in the western and
northwestern direction but also generate high wind speeds in
northeastern and eastern directions that are not present in the
NARR data. In addition, WRF simulations tend to overes-
timate wind speed by 1 to 5 m s−1 (1 % to 25 % of relative
change) compared to NARR and NLDAS for most the di-
rections. According to the validation of NARR, using buoy
data in Fig. 3, the apparent overestimation could mostly be
coming from the systematic low bias of NARR. For exam-
ple, over the CA coast, the wind speed is underestimated in
NARR by about 4 m s−1. Therefore, the overestimation seen
in Figs. 6 and 7 over the CA coast is not as concerning as it
appears.
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Figure 5. Fitted von Mises mixture densities for historical data. From left to right is offshore California, Colorado, and Texas-SGP. From
top to bottom is winter and summer. The black, red, green, and blue curves represent the benchmark (NARR for offshore and NLDAS for
inland), WRF-CCSM, WRF-GFDL, and WRF-HadGEM models.

Over the Colorado location, WRF simulations capture the
highest wind speed in southern and southwestern directions
and the lowest wind speed in the northeast and east. Over the
Texas location, WRF simulations capture the highest wind
speed in the northwest and north in addition to the magni-
tude of the wind speed, indicating that reanalysis benchmark
data and WRF simulations show a strong consistency. Note
that winds are relatively easier to simulate in flat regions than
over complex terrains such as mountains and coastal lines.
WRF-simulated dominant wind directions over the Texas and
Colorado locations are similar overall to the ones from NL-
DAS.

Figure 7 shows the binned WDR and quantile regression
results for WRF and benchmark data over the same location
as shown in Fig. 6 but in summer. While the two inland lo-
cations have much weaker wind speeds in summer than in
winter, the offshore location over CA shows a similar high
wind speed (95th quantile); however, its median wind speed
is stronger in summer than in winter. WRF outputs capture
the dominant wind direction over all three locations. Inter-
estingly, the highest wind speeds over all three locations are
located in the same direction as seen in winter. For exam-
ple, over the offshore location in CA coast, the highest wind
speed is concentrated over the northwestern locations. More
importantly, although WRF models show three peaks of wind
direction in winter, the benchmark NARR data demonstrate
only one peak, which is the same direction peak as the sum-
mer scenario. Over the inland locations, the highest wind
speed is from the southern and southwestern directions over

the Colorado location and northern and southern over the lo-
cation in Texas. This is perhaps encouraging information for
wind energy resource development, as stable wind directions
can ensure stable wind energy production. One potential rea-
son for the inconsistency could be the resolution difference,
as NARR has a 32 km resolution, while WRF has a 12 km
resolution. A mismatch in the locations at the grid point level
is typically more visible for offshore locations. Another rea-
son for the direction bias could be that mountain areas are
more sensitive to the wind direction.

In order to better quantify the results, we calculate a
weighted integrated average of the relative error (WIRE) of
the estimated distribution of model output (mod) with respect
to the estimated distribution of reanalysis (obs). The weights
are coming from the wind direction density of the reanalysis
data, as follows:

WIRE=

∫ π
φ=−π

tobs(φ)|fmod(r|φ)−fobs(r|φ)
fobs(r|φ) |dφ∫ π

φ=−π
tobs(φ) dφ

,

where φ represents wind direction, and r represents wind
speed. f (·) represents the corresponding models (QR or
WDR for wind speed and von Mises distribution for wind
direction), and t(φ) represents the density of the wind di-
rection. Table B1 in Appendix B provides the WIRE for all
stations in winter and summer seasons during 1995–2008 at
95 % quantile level via quantile regression, Weibull direc-
tional models for wind speed, and von Mises distribution for
wind direction. Taking Fig. B1 as an example, when WIRE is
high, such as in the example where the CCSM at CO in win-
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Figure 6. The 50th (blue) and 95th (red) quantiles of wind speed as a function of wind direction for the historical period in winter for
offshore California (a, d), Colorado (b, e), and Texas-SGP (c, f) using the Weibull distribution regression model (a–c) and quantile regression
model (d–f). The different RCMs are shown with different types of dotted and dashed lines, while benchmark data are in solid lines (NARR
for offshore and NLDAS for inland).

ter from the quantile regression is 0.407, we can see the huge
discrepancy between the CCSM and the benchmark curve at
the southwesterly direction, where the wind direction density
is the highest. When WIRE is small, such as in Texas-SGP in
winter for which quantile regression is 0.132, the curves are
very close to each other.

5 Future projections of wind conditions

In this section, we focus on projections of wind condi-
tions in the late century (2085–2094) under the RCP8.5 sce-
nario compared with wind conditions in the historical pe-
riod (1995–2004). We also conducted the same analysis us-
ing mid-century projections, and the climate change sig-
nal is smaller but the conclusions are qualitatively similar
(not shown). The changes in wind speed distributions con-
ditioned on direction are estimated using quantile regres-
sion and Weibull distributional regression, where a bootstrap
(Sect. 3.4) is used to quantify the estimation uncertainty. We
also compute their projected changes for the mean, standard
deviation, and 95th quantile of wind speed and compare them

with the corresponding statistics of internal variability de-
fined in Sect. 3.5. Finally, in addition to the near-surface
wind, we also discuss the uncertainty due to internal vari-
ability versus projected changes in wind conditions at higher
heights relevant to wind industry (up to 200 m) in WRF out-
puts to shed some light on potential future changes in wind
energy resources.

5.1 Changes in wind speed and direction distributions

The change in wind direction estimated by a von Mises dis-
tribution between the historical and late century periods is
not significant in all the locations (as shown in Sect. S1).
Thus, in the following, we focus on the change in the wind
speed conditioned on direction. Figure 8 shows the esti-
mated wind speed quantiles (50th, 75th, and 95th) condi-
tioned on direction for WRF-HadGEM outputs at the CO
mountain location in winter, using both quantile regression
and Weibull distributional regression (upper panels), and the
associated 95 % pointwise bootstrapped confidence interval
(for the 95th quantile), using the Weibull distributional re-
gression. The corresponding results for the remaining nine
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Figure 7. As in Fig. 6 but for summer.

locations can be found in Sect. S2. Compared with the wind
speed quantile estimates conditioned on the direction from
the historical period, the projected winds at the Colorado
Mountains location show evident weaker wind speeds condi-
tioned on direction, especially for the dominant wind direc-
tion southwesterlies, but also other directions such as wester-
lies and northwesterlies from both the quantile regression and
Weibull distributional regression models at all three quan-
tiles. Figure 9 shows similar statistics for the northern Great
Plains location in North Dakota, and the prevalent wind di-
rections tend to be similar from the historical to the late cen-
tury periods. The overall wind speed tends to show a decrease
in intensity (across all quantiles) in particular in the dominant
direction mode.

We also find that the dominant wind speeds conditioned
on the direction decrease at the Idaho inland location and
Florida (FL), as shown in Sect. S2. In addition to the wind
speed change at the dominant wind directions, there are
changes in future wind speed patterns conditioned on the
direction. For example, at the Oregon (OR) coastal loca-
tion during the historical period, the northwesterly winds are
dominant at both median and high wind speeds; in the pro-
jections, there are stronger winds from the southeasterly di-
rection as well. Over Lake Erie, in the historical period, the

dominant wind speeds are southwesterly and northeasterly;
in the future, the northeasterly wind will decrease while the
northerly wind will increase. In summary, the change in the
median winds from the historical to the late century periods is
noticeable in some locations such as the Colorado Mountains
and Idaho inland but minor in most locations. However, the
95th quantile wind speeds conditioned on direction tend to
show more changes. These changes in the conditional wind
95th quantile are corroborated by the unconditional changes
in the 95th quantile winds observed in Fig. 1, where most re-
gions of the U.S. exhibit changes in their 95th quantile winds
with up to around 20 % decrease and up to around 12 % in-
crease in 95th quantile across all wind directions.

5.2 Projected climate change versus internal variability

From previous discussions, we noticed that several locations
may show a general decrease in the wind speed at their
dominant wind directions, while other locations may expe-
rience changes in the dominant wind directions themselves,
yet other locations do not exhibit any significant wind con-
dition changes in the late century period. In this section, we
investigate the robustness of such projected changes by con-
sidering the uncertainty due to the internal variability (Wang
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Figure 8. Estimated wind speed quantiles (a, b; blue for the 50th, green for the 75th, and red for the 95th quantile) conditioned on wind
direction and their bootstrapping estimation uncertainties (c, d; only results for the 95th quantile are shown) at the Colorado Mountains grid
cell for the winter season under the historical (a, c) and late century periods (b, d).

et al., 2018) that is caused by a perturbation in the initial con-
ditions. We calculate the commonly used internal variability
and the newly defined internal variability for standard devi-
ation and 95th quantile (following Sect. 3.5), and the results
are summarized in Table 1. These IV statistics enable the as-
sessment of the significance of projected changes over the in-
trinsic variability in the models for other statistics (standard
deviation and 95th quantile) than the commonly used mean
statistics. Table 1 provides insights to significant changes
across the seasons, locations, and statistics of the wind speed.
Across the three studied statistics, winter shows the most sig-
nificant changes in the wind speed statistics. In particular, the
standard deviation and 95th quantile show the most changes
in intensity across locations compared to mean wind speed,
namely that the winter standard deviations and 95th quantiles
mostly show a decrease between the historical and late cen-

tury conditions. In contrast, the summer 95th quantiles tend
to show some increases in the wind speed statistics.

In the following, in order to generate the observed vari-
ability in PCCs and gather more information on PCCs than
a single a PCC statistic (difference between the historical
and projected statistic), we compute the PCC differences in
yearly statistics. Figure 10 presents the yearly PCC variabil-
ity (box plot) and the internal variability (red lines) over the
10 studied locations across the U.S. for the standard devia-
tion and 95th quantile in winter and summer. First, we calcu-
late the standard deviation and the 95th quantile of each year
in the historical (1995–2004) and future (2085–2094) peri-
ods and consider all the differences between historical and
projected statistics. The box plot (box, whiskers, and black
line for the median) shows the distribution of these differ-
ences (yearly historical and yearly projected) for the seasonal
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Figure 9. Estimated wind speed quantiles (a, b; blue for the 50th, green for the 75th, and red for the 95th quantile) conditioned on wind
direction and their bootstrapping estimation uncertainties (c, d; only results for the 95th quantile are shown) at the northern Great Plains
(NGP) grid cell for winter season under the historical (a, c) and late century periods (b, d).

Table 1. The 10-year-based IV and PCCs from WRF-CCSM. The asterisk indicates 2> PCC
IV > 1, and the double asterisk indicates PCC

IV > 2.
Note: NC is North Carolina.

Standard deviation 95th quantile Mean

Winter Summer Winter Summer Winter Summer

IV PCC IV PCC IV PCC IV PCC IV PCC IV PCC

CA 0.020 0.022∗ 0.027 0.086∗∗ 0.228 0.058 0.064 0.570∗∗ 0.411 −0.203 0.311 0.242
ID 0.031 −0.310∗∗ 0.025 −0.040∗ 0.115 −1.316∗∗ 0.066 −0.163∗∗ 0.222 −0.353∗ 0.346 −0.099
OR 0.023 0.174∗∗ 0.023 −0.014 0.256 0.664∗∗ 0.075 −0.137∗ 0.453 0.210 0.352 −0.065
CO 0.019 −0.664∗∗ 0.025 −0.129∗∗ 0.178 −1.995∗∗ 0.073 −0.435∗∗ 0.250 −0.824∗∗ 0.513 −0.150
Texas-SGP 0.011 −0.032∗∗ 0.032 0.061∗ 0.059 −0.024 0.080 0.573∗∗ 0.259 0.044 0.515 0.631∗

ND-NGP 0.017 −0.113∗∗ 0.049 −0.038 0.105 −0.404∗∗ 0.119 −0.187∗ 0.210 −0.194 0.763 0.019
NC 0.012 0.051∗∗ 0.044 0.017 0.044 0.287∗∗ 0.213 0.098 0.190 0.171 0.606 0.121
FL 0.019 −0.201∗∗ 0.020 −0.025∗ 0.091 −0.983∗∗ 0.166 0.236∗ 0.315 −0.357∗ 0.343 0.384∗

NE 0.016 0.036∗∗ 0.050 −0.069∗∗ 0.164 −0.088 0.195 −0.078 0.253 −0.172 0.908 −0.012
Erie, OH 0.023 −0.034∗ 0.042 0.019 0.139 0.336∗∗ 0.176 0.167 0.277 0.400∗ 0.997 0.351
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standard deviation and seasonal 95th quantile. In each case,
the internal variability is added and subtracted to the median
values of standard deviations and 95th quantiles. When the
difference between the median of historical and future is 2
times larger than the internal variability, then we consider
the climate change in standard deviation and 95th percentile
of wind speed to be significant with respect to the internal
variability.

We observe that, in winter, the standard deviation is re-
duced by 0.1 to 1 (5 % to 20 % of the relative change) in the
late century period over seven locations, especially over the
northwestern inland location (location 2), Colorado Moun-
tains (location 4), and Lake Erie (OH; location 10), where the
standard deviations are reduced robustly, indicating that the
variability in the winter wind speed in the projections over
these locations are smaller or simply that the wind speed in
the future winter is weaker. The projected high wind speed
(95th percentile) over these locations also show a robust de-
crease (top right panel), suggesting lesser wind energy re-
sources in the future. In summer, both the yearly PCC vari-
ability and the projected changes in the standard deviation
and 95th quantiles are relatively small compared to those
statistics in winter. There are slight increases in the standard
deviation and wind speed 95th quantile over CA offshore (lo-
cation 1) and the Texas Great Plains (location 5); however,
these increases are not significant compared with the internal
variability.

Finally, we provide, in Table 2, the percentages of the rel-
ative changes between the historical and late century peri-
ods of the 25th, 50th, 75th, and 95th quantiles estimated by
both the Weibull distributional and quantile regression mod-
els for winter in order to provide additional information to the
winter changes. We notice that the lower the quantiles, the
smaller the relative change will be. In most cases of chang-
ing wind quantiles, several quantiles are affected simultane-
ously with different rates and signs of changes, suggesting a
more complex distortion of the wind distributions than sim-
ple shifts. In particular, some stations like Texas-SGP and
North Carolina (NC) exhibit a stretch in the 25th quantile but
a contraction in the upper tail.

To explore the future changes in wind speeds at higher
heights (e.g., wind turbine hub heights), we have conducted
the same analysis for three higher heights above the ground
level, at 28.48, 97.88, and 192.39 m, from the WRF runs. We
found similar conclusions to the near-surface wind speed (re-
sults are not shown). That is, while the mean wind speed
change is not robust with respect to the internal variability,
the changes in the standard deviation and 95th quantile are
robust over certain locations in winter. For example, the wind
speed is projected to decrease over the northwestern inland
and Colorado Mountains.

6 Summary and discussion

In this work, we study wind conditions (speed and direc-
tion) and their potential projected changes via a statistical
conditional framework, where the probability distributions
of the wind directions are modeled via von Mises mixture
distributions, and wind speed conditioned by direction dis-
tributions is characterized by two distributional regression
models, namely the quantile regression and Weibull regres-
sion models. The proposed framework allows us to better
characterize the wind direction distributions and wind speed
distributions conditioned on wind direction and, hence, pro-
vides the full description of the joint wind speed and direc-
tion distributions. In addition, we investigate the strength of
the projected wind speed distributional changes relatively to
the interval variability in the climate models. The extension
beyond the mean change to the changes and internal vari-
ability in standard deviation and 95th quantile provides a
more complete picture for assessing the significance of their
changes relative to their internal variability. Finally, future
works may consider the spatial aggregates of these quanti-
ties to reduce the noise of climate variability and potentially
observe stronger trends.

We also perform a comprehensive climate model evalu-
ation, where RCM outputs are evaluated against reanalysis
data and in situ measurements. Results from the WRF con-
figurations are consistent in both wind direction and speed.
Wind direction and speed in summer are generally less dis-
persed than the winter scenarios. We observe that the bench-
mark NARR and NLDAS data, corroborated by buoy and
ground station data, are mostly consistent with the WRF
outputs in most locations. Our evaluation study also high-
lights the challenges of finding appropriate benchmark data
for these high-resolution RCMs in some situations (e.g., off-
shore and mountain areas). Few data products are available
at high resolution, and in situ measurements are irregularly
available in space with varying time resolutions.

This study concludes that the changes between the his-
torical and future wind directions are usually small in the
locations that we examined, but wind speeds are generally
weakened in most of the locations we considered in the pro-
jected period, with some locations and directions becoming
intensified in the future. The projected climate changes in
the 95th quantile and standard deviation are significant over
the internal variability at some locations and decrease in lo-
cations such as the northwestern inland area, Colorado, and
Lake Erie, especially in the winter season.

The current implementation of our statistical framework
has some limitations. First, both distributional regression
methods require some tuning; the Weibull regression re-
quires choosing the binning and determining the complex-
ity regression functional form (via the number of the har-
monic terms), whereas the quantile regression requires the
selection of knots and the degree of freedom of the peri-
odic B splines. Further statistical studies of these modeling
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Table 2. Relative changes in different quantiles for CCSM-4 data in winter between projected period (2085–2094) and historical period
(1995–2004). Quantiles are estimated with a Weibull distributional regression, WDR (a), and quantile regression, QR (b).

(a) Quantile (WDR) CA ID OR CO Texas-SGP ND-NGP NC FL NE Erie, OH

95 % −0.04 −0.07 −0.04 −0.11 −0.02 −0.04 −0.08 −0.03 −0.01 0.02
75 % −0.05 −0.08 −0.04 −0.11 0.00 −0.04 −0.06 −0.03 −0.02 0.04
50 % −0.06 −0.09 −0.04 −0.11 0.01 −0.04 −0.03 −0.02 −0.02 0.06
25 % −0.07 −0.10 −0.04 −0.11 0.02 −0.04 0.01 −0.02 −0.02 0.09

(b) Quantile (QR) CA ID OR CO Texas-SGP ND-NGP NC FL NE Erie, OH

95 % −0.05 −0.08 −0.04 −0.12 −0.03 −0.03 −0.06 −0.04 −0.02 0.03
75 % −0.06 −0.07 −0.05 −0.07 0.01 −0.05 −0.01 −0.02 0.00 0.04
50 % −0.05 −0.09 −0.03 −0.13 0.04 −0.05 0.02 −0.01 −0.03 0.05
25 % −0.05 −0.09 −0.03 −0.12 0.01 −0.03 0.10 −0.01 −0.05 0.08

Figure 10. Box plot of the standard deviation (a, c) and 95th quantile (b, d) yearly PCC variability with a corresponding IV in 10 locations
from WRF-CCSM. The boxes and whiskers are statistics based on 1 year for 10 years in the historical and future periods, indicating the yearly
PCC variability in each 10-year period. The red lines represent the median statistic± the IV for each location. If the difference between the
two means from historic and late century are larger than the IV, then we consider that the future changes in these statistics are robust.

choices can be found in Murphy et al. (2022). Second, all
the statistical analyses are performed pointwise for simplic-
ity, while spatiotemporal-dependent structures are not con-
sidered here. In order to assess the regional wind fields and
their future predictability, it is critical to explore their spa-
tiotemporal structures in future work.

Appendix A: Quantile regression method

In this work, we model the τ quantile of the wind speed
(WS) conditioning on the wind direction (WD), using a
quantile regression with periodic B spline. The estimator of
QWS|WD(τ |wd) takes the following form:

Q̂WS|WD(τ |wd)= Z(wd)>β̂(τ ). (A1)
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The vector Z(wd) is a periodic B spline with the degree of
freedom s evaluated at wind direction value wd. The peri-
odic B spline, instead of a more commonly used B spline, is
used to preserve the periodic circular property of the wind
speed distribution conditioned on wind direction. We select
the degree of freedom (s = 8) by finding the elbow point of
the mean absolute error (MAE) of the regression residuals
versus degree of freedom ratio. The coefficient vector β̂(τ )
is the QR estimator of β(τ ), as follows:

β̂(τ )= argmin
β

n∑
i=1

ρτ

(
wsi −Z(wdi)>β(τ )

)
, (A2)

where ρτ is a loss function for τ th quantile. It can usually be
expressed as follows:

ρτ (y)= y(τ − I(y < 0)). (A3)

We seek to minimize quantile loss by differentiating Eq. (A4)
with respect to ŷ, as follows:

Eρτ (Y − ŷ)= (τ − 1)

ŷ∫
−∞

(y− ŷ)dF (y)

+ τ

∞∫
ŷ

(y− ŷ)dF (y). (A4)

Appendix B: Summary metrics WIRE

We propose a weighted integrated relative error (WIRE) of
the estimated distribution of model output (mod) to the esti-
mated distribution of reanalysis (obs). The weights are com-
ing from the wind direction density of the reanalysis data.

WIRE=

∫ π
φ=−π

tobs(φ)|fmod(r|φ)−fobs(r|φ)
fobs(r|φ) |dφ∫ π

φ=−π
tobs(φ) dφ

,

where φ represents wind direction, and r represents wind
speed. f (·) represents the corresponding models (quantile
regression or Weibull WDR for wind speed and von Mises
distribution for wind direction), and t(φ) represents the den-
sity of the wind direction. Table B1 provides WIRE for all
stations in winter and summer seasons during 1995–2008 at
the 95 % quantile level via quantile regression, Weibull direc-
tional models for wind speed, and von Mises distribution for
wind direction. Taking Fig. B1 as an example, when WIRE
is high, such as for CCSM at CO in winter for which the
quantile regression is 0.407, we can see the huge discrepancy
between CCSM and the benchmark curve at the southwest-
ern direction where the wind direction density is the highest.
When WIRE is small, such as for Texas-SGP in winter for
which the quantile regression is 0.132, the curves are very
close to each other.

Table B1. Summary metrics with WIRE for all stations in winter
and summer seasons during 1995–2008 at 95 % quantile level via
quantile regression, Weibull directional models for wind speed, and
von Mises distribution for wind direction.

Periodic quantile regression

Winter Summer

CCSM GFDL HadGEM CCSM GFDL HadGEM

CA 0.246 0.234 0.210 0.155 0.347 0.546
ID 0.200 0.356 0.349 0.273 0.153 0.145
OR 0.339 0.225 0.158 0.381 0.261 0.201
CO 0.407 0.111 0.148 0.390 0.094 0.102
Texas-SGP 0.132 0.227 0.245 0.136 0.088 0.062
ND-NGP 0.464 0.117 0.131 0.415 0.136 0.116
NC 0.407 0.294 0.284 0.361 0.299 0.360
FL 0.222 0.075 0.080 0.189 0.502 0.450
NE 0.089 0.242 0.199 0.082 0.604 0.539
Erie 0.275 0.137 0.090 0.296 0.720 0.832

Weibull distributional regression

Winter Summer

CCSM GFDL HadGEM CCSM GFDL HadGEM

CA 0.249 0.231 0.198 0.163 0.370 0.559
ID 0.200 0.337 0.335 0.257 0.172 0.173
OR 0.356 0.242 0.174 0.361 0.239 0.209
CO 0.466 0.091 0.129 0.443 0.134 0.149
Texas-SGP 0.181 0.202 0.227 0.198 0.073 0.056
ND-NGP 0.499 0.102 0.122 0.462 0.082 0.074
NC 0.487 0.301 0.290 0.419 0.253 0.324
FL 0.197 0.073 0.077 0.156 0.512 0.511
NE 0.103 0.236 0.203 0.100 0.625 0.580
Erie 0.305 0.124 0.079 0.327 0.686 0.800

Von Mises distribution

Winter Summer

CCSM GFDL HadGEM CCSM GFDL HadGEM

CA 0.996 0.754 1.124 0.311 0.182 0.268
ID 1.069 0.784 0.909 0.400 0.303 0.399
OR 0.377 0.350 0.313 0.968 1.133 1.029
CO 0.503 0.284 0.563 0.443 0.555 0.645
Texas-SGP 0.237 0.177 0.113 0.502 0.472 0.527
ND-NGP 0.171 0.204 0.227 0.250 0.335 0.358
NC 0.368 0.573 0.427 0.404 0.431 0.404
FL 0.357 0.293 0.191 0.455 0.245 0.523
NE 0.199 0.336 0.163 0.460 0.373 0.399
Erie 0.311 0.341 0.281 0.318 0.354 0.361

Code and data availability. The source code is avail-
able in the GitHub Wind Project repository https:
//github.com/QiuyiWu/Wind-Project (last access: 26 Novem-
ber 2022) and Zenodo https://doi.org/10.5281/zenodo.7358862
(Wu, 2022). The data used in this study are available at
https://doi.org/10.5281/zenodo.6425797 (Wu et al., 2022).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/ascmo-8-205-2022-supplement.

Adv. Stat. Clim. Meteorol. Oceanogr., 8, 205–224, 2022 https://doi.org/10.5194/ascmo-8-205-2022

https://github.com/QiuyiWu/Wind-Project
https://github.com/QiuyiWu/Wind-Project
https://doi.org/10.5281/zenodo.7358862
https://doi.org/10.5281/zenodo.6425797
https://doi.org/10.5194/ascmo-8-205-2022-supplement


Q. Wu et al.: A conditional approach for joint estimation of wind speed and direction under future climates 221

Figure B1. Quantile regression in winter during 1995–2004 at two selected locations as an example for the summary metrics table.
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