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S1 Assessing the overall forcing effect by using the Confirmatory Factor Analysis (CFA) model specification

This section complements Sect. 3 and 4 in the article devoted to presenting

– the ME model used in D&A studies for assessing the individual contribution of the forcings studied (Sect. 3),

– the corresponding basic CFA model suggested within our framework (Sect. 4).15

Here, we present the ME model used in D&A studies for assessing the overall effect of several forcings, and the corresponding

CFA model developed within our framework.

S1.1 The Measurement Error (ME) model used in D&A studies and its link to the CFA model specification

Combining the notations and definitions of our framework with those used in D&A studies, a ME model used in D&A studies

for assessing the overall response to the combination of the forcings of interest, is given by:20  xcomb t = ξScomb t+ νt.

yt = β · ξScomb t+ ν0 t,
(S1)

The model above corresponds to the ME model with a vector of explanatory variables given in Eq. (2) in the article. The

distributional assumptions of its variables are similar to those associated with the model in Eq. (2) in the article. The decom-

position of the overall temperature response to all forcings ξTALL t is also similar to that performed in the article (see Eq. 3), that

is, the extraction of ξScomb t from ξTALL t does not give rise to an error in the equation for yt over and above the random internal25

temperature variability ν0 t:

ξTALL t = β · ξScomb t, (S2)

of which, in addition, follows that the combination of the reconstructed forcings is supposed to represent the correponding true

combination of real-world forcings generating ξTALL t.

Both detection and consistency tests are analogous to those performed under the ME model defined in Eq. (2) in the article,30

that is, H0: β = 0 and H0: β = 1, respectively.

To see why the consistency between the simulated and true temperature responses is a necessary condition for performing

the attribution, note that the hypothesis of consistency implies the equality between ξTALL t and ξScomb t in Eq. (S2). Thus, model

(S1) under the hypothesis of consistency takes the following form: xcomb t = ξTALL t+ νt,

yt = ξTALL t+ ν0 t.
(S3)35

As follows from (S3), the observational data yt (and xt as well due to consistency) is a function of the true overall temperature

response, which makes it reasonable to attribute this detected temperature response to the real-world forcings under considera-

tion. Hence, model (S3) supports the idea of modelling ξTf , where fmay represent either an individual forcing or a combination
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of forcings, as a common latent factor for both observed and simulated temperatures. In addition, the model provides an al-

ternative interpretation of consistency, namely that the combination of the specified forcing(-s) exhibits an equal influence on40

both observed and simulated climate changes. We use this alternative interpretation within our CFA (and SEM).

In the matrix form given in Eq. (S1), the ME model is represented as an unstandardised CFA model with one common latent

factor and two observable indicators for this latent common factor. The standardisation of ξScombg leads to a 2-indicator 1-factor

CFA model, abbr. ME-CFA(2,1) model: xt = α · ξ̃Scomb t+ νt.

yt = κ · ξ̃Scomb t+ ν0 t,
(S4)45

where ξ̃Scombt = ξScombt

/√
σ2

comb, α=
√
σ2

comb, and κ= β ·
√
σ2

comb.

As indicated by its name, the ME-CFA(2,1) model is a ME model rewritten as a CFA model, and the model corresponds to

the ME-CFA(6,5) model in Eq. (6) in the article.

As follows from (S4), the ratio κ/α gives us back β in Eq. (S1). Thus, the hypotheses tested under the ME model specification

can also be tested under the CFA model specification. More precisely, the hypothesis H0: β = 0 corresponds to testing H0:50

κ= 0, while the hypothesis of consistency H0: β = 1 is equivalent to testing H0: κ/α= 1, or equivalently H0: κ= α.

S1.2 The CFA(2,1) model

To formulate the corresponding CFA model, the first step is to express ξScomb t, embedded in xcomb, and ξTALL t , embedded in yt,

as a linear function of the true temperature response ξTcomb t in a similar way as it was done in Eq. (8) and (9) in the article. We

get:55

xcomb t = ξScomb t+ δ̃comb t = γ1 · ξTcomb t+ ζScomb t+ δ̃comb t︸ ︷︷ ︸
=δ combt

, (S5)

yt = ξTALL t+ ν̃t = γ2 · ξTcomb t+ ζTALL t+ ν̃t︸ ︷︷ ︸
=νt

, (S6)

Eq. (S5) and (S6) together constitute an 2-indicator 1-factor CFA model, abbr. CFA(2,1) model, with ξTcomb t as a common

latent factor:60  xcomb t = γ1 · ξTcomb t + δcomb t

yt = γ2 · ξTcomb t + νt
(S7)

where the specific factors δcomb t and νt are assumed to be both mutually independent and independent of ξTcomb t. This model

corresponds to the CFA(7,6) model given in Table 2 in the article. Importantly, in both CFA models, the overall temperature

response ξTcomb t (and ξScomb t as well) is treated as a repeatable outcome of a random variable, assumed to have a zero-mean and

the variance σ2
ξTcomb

(and σ2
ξScomb

, respectively).65
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Due to the simplicity of the CFA(2,1) model, we can exemplify the process of determining the model identifiability alge-

braically. To begin with, the covariance structure equations, Σ = Σ(θ), under the CFA(2,1) model are given by the following

three unique (nonduplicated) equations:

σ2
xcomb

= γ21 ·σ2
ξTcomb

+σ2
δcommb

σxcomb y = γ1 · γ2 ·σ2
ξTcomb

σ2
y = γ22 ·σ2

ξTcomb
+σ2

ν .

(S8)70

It is clear that none of the five model parameters, γ1, γ2, σ2
ξTcomb

, σ2
δcomb

and σ2
ν , can be determined (identified) from the

three equations. However, by introducing the restriction σ2
ξTcomb

= 1 and treating σ2
δcomb

as known a priori, the remaining model

parameters, i.e. γ1, γ2, and σ2
ν , become identified.

Standardising latent factors to have unit variance is a typical restriction in CFA used to assign a scale to latent factors to fully

interpret the factor loadings. As we see, it aids the identification as well. Another way of establishing a scale for a latent factor75

is to fix a factor loading to unity with respect to one of its indicators.

Under the above-specified restrictions, each parameter is not only identified but is just-identified. This means that there

is only one distinct subset of equations in Eq. (S8) that is uniquely solvable for γ1, γ2, and σ2
ν , respectively. The resulting

solutions are:

γ1 =
√
σ2
xcomb
−σ2

δcomb

γ2 = σxcomb y/
√
σ2
xcomb
−σ2

δcomb

σ2
ν = σ2

y − (σxcomb y)
2/(σ2

xcomb
−σ2

δcomb
),

(S9)80

provided σ2
xcomb ≥ σ

2
δcomb

and σ2
y ≥ (σxcomb y)

2/(σ2
xcomb
−σ2

δcomb
). The solution is unique, apart from a possible change of sign of

the factor loadings γ1 and γ2, which merely corresponds to changing the sign of the latent factor. If σxcomb y > 0, the sign for

both factor loadings should be the same.

Replacing the population variances and covariance of the indicators in Eq. (S9) by their unbiased estimates, s2xcomb
, sxcomb y

and s2y , the exact ML solution of the model parameters is obtained:85

γ̂1 =
√
s2xcomb

−σ2
δcomb

γ̂2 = sxcomb y

/√
s2xcomb

−σ2
δcomb

σ̂2
ν = s2y − γ̂2

2,

(S10)

provided the conditions for admissible estimates analogous to those in Eq. (S9) are met.

Applying the principles of CFA and the previously mentioned alternative interpretation of the consistency (see Sect. 1.1),

the hypothesis of consistency is tested by investigating whether γ1 equals γ2. In practice, it means that the model parameters

are estimated under the restriction γ1 = γ2. Imposing this equality-constraint makes the model overidentified with 1 degree of90

freedom because the two remaining free parameters, i.e. γ2 and σ2
ν , become overidentified.
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Overidentifiability means that one can find more than one subset of the equations in Σ = Σ(θ) by which one can solve

uniquely for free model parameters. In our CFA(2,1) model, when σ2
ξTcomb

= 1 and σ2
δcomb

is treated as known a priori, constraining

γ1 to γ2 leads to two distinct solutions for γ2 and to two distinct solutions for σ2
ν :

γ2 =
√
σ2
xcomb −σ2

δcomb
or γ2 =

√
σxcomb y,

σ2
ν = σ2

y − (σ2
xcomb −σ

2
δcomb

) or σ2
ν = σ2

y −σxcomb y.
(S11)95

provided σ2
xcomb ≥ σ

2
δcomb

, σxcomb y ≥ 0, σ2
y ≥ (σ2

xcomb −σ
2
δcomb

) and σ2
y ≥ σxcomb y .

Given that the model is correct, the multiple solutions for each overidentified parameter in the population are equal so each

of the parameters has a unique solution. For a given sample, however, the two estimates of each parameter will not be exactly

the same. Therefore, the ML-method seeks the optimal values for the parameters by minimising numerically the discrepancy

function defined in Eq. (A2) in the Appendix in the article.100

Under overidentifiability, Σ(θ̂) does not fit the data, i.e. the sample variance-covariance matrix S, perfectly. This permits us

to assess the overall model fit. Provided that the solution obtained is admissible, which here means that σ̂2
ν > 0 1, the model fit

can be assessed statistically by means of the χ2 test statistic, given in Eq. (A5) in the Appendix, and heuristically by various

goodness-of-fit indexes, e.g. those defined in Eqs. (A6) - (A8) in the Appendix. If the model fits adequately, we may say that

there is not enough evidence to reject the hypothesis of consistency.105

Note that even if the hypothesis of consistency turns out to be rejected, it is still possible to draw conclusions about the effect

of the real-world forcing f on the temperature by using the estimate of γ2 obtained by fitting the CFA(2,1) model without

hypothesising γ1 = γ2.

Other hypotheses, under which the CFA(2,1) model remains identified, are:

• H0 : γ1 = γ2 = 0. The resulting factor model has zero latent factors and one free parameter, σ2
ν , which gives us two110

degrees of freedom;

• H0 : γ2 = 0. Under this restriction, one needs to estimate two free parameters, γ1 and σ2
ν , which give us 1 degree of

freedom. The resulting factor model hypothesises that the overall effect of the true forcing f is not detected in observational

data. Although the model does not hypothesise consistency, it nevertheless has implications for consistency, provided the model

is not rejected. If the estimate of γ1 turns out to be insignificant, we may say that consistency is compatible with the data, while115

it is suspect if the estimate of γ1 differs significantly from zero.

At this point, it is important to clarify that the rejection of any overidentified CFA model does not unambiguosly point to

any particular constraint as at fault (Mulaik, 2010).

The CFA(2,1) model becomes underidentified under the hypothesis H0: γ1 = 0. This is because both free parameters, γ2

and σ2
ν , are to be determined from one and the same equation for σ2

y in Eq. (S8).120

The question remains whether it is possible to get a priori knowledge about σ2
δcomb

. As follows from Eq. (S5), σ2
δcomb

is a sum

of two variances: the variance of ζScomb and the variance of δ̃comb . Knowledge about the latter is possible to derive from xcomb

ensemble, containing simulations forced by an identical reconstruction of forcing f under different initial conditions.

1In statistical literature, a negative solution for a specific-factor variance is termed Heywood case.
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The variance of ζScomb, on the other hand, cannot be a priori estimated due to the absence of appropriate sources. Ensemble

simulations cannot be used because time series {ζScomb t} is the same for each of them due to treating ξScomb ts as repeatable.125

Given this limitation, the identifiability of the CFA(2,1)- model can be achieved only by setting the variance of δcomb to

the variance of δ̃comb . Consequently, the variance of ζScomb has to be assumed to be negligible. Importantly, this assumption

does not make the model disadvantageous, rather the other way round. This is because setting σ2
ζScomb

to zero corresponds to

hypothesising that the (large-scale) shape of the simulated temperature response to forcing f is correctly represented in the

climate model under consideration. So, if model (S7) estimated under the restriction γ1 = γ2 is not rejected then we have no130

reasons to reject the hypotheses that both magnitude and shape of the simulated temperature response are correctly simulated

by the climate model under consideration.

One way to estimate σ2
δ̃comb

is to use one of the estimators definied in Eqs. (14) and (15), accompanied by the CFA(kcomb,1)

model given in Eq. (18) and its modified version the CFA(kcomb,0) model, respectively.

S2 Theoretical definition of Structural Equation Model (SEM)135

S2.1 A standard representation of SEM

A structural equation model consists of two submodels: a latent variable model, linking latent variables to each other, and a

measurement model, linking latent variables to their indicators.

Submodel 1: Latent Variable Model

A structural equation for the latent variable model is as follows (Bollen, 1989; Jöreskog and Sörbom, 1988):140

η =Bη+Γξ+ ζ, (S12)

where

η an m× 1 vector of latent endogenous (dependent) variables, i.e. the variables that are determined within the model;

ξ an n× 1 vector of latent exogenous (independent) variables, i.e. the variables whose causes lie outside the model;

ζ an m× 1 vector of latent errors in equations (random disturbance terms). Each ζi represents influences on ηi that are

not included the structural equation for ηi;

B an m×m matrix of coefficients, representing direct effects of η-variables on other η-variables.B always has zeros on

the diagonal, which ensures that a variable is not an immediate cause of itself;

Γ an m×n matrix of coefficients, representing direct effects of ξ-variables on η-variables.

Further, model (S12) assumes that145

• E(η) = 0, E(ξ) = 0, E(ζ) = 0,

• ζ is uncorrelated with ξ (otherwise, inconsistent coefficient estimators are likely),
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• I −B is nonsingular,

• ζi t, i= 1,2, . . . ,m, is homoscedastic, meaning that the associated covariance matrix of ζ, Ψ, is the same for all time points

t. It is also assumed no autocorrelation among the observations on ζi.150

Importantly, the structure of Ψ depends on whether a model is recursive or nonrecursive. Recursive models are systems of

equations that contain no reciprocal causation, implying that the B matrix can be written as a lower triangular matrix. In this

case, the errors in equations are assumed to be uncorrelated, entailing that Ψ is diagonal.

Unlike recursive models, nonrecursive models contain reciprocal causation and/or feedback loops, entailing that B is not

lower triangular. Under such models, ζ-disturbances can be assumed either correlated or not.155

The variance-covariance matrix of ξ is a n×n symmetrical matrix denoted Φ. That is, exogenous latent variables can be

correlated, implying that Φ in that case is not diagonal. Notice that the covariance matrix of η is not a free parameter matrix in

the model. However, one can calculate this matrix afterwards (if required) according to the following formula:

Cov(η) = (I −B)−1
(
ΓΦΓ′+Ψ

)[
(I −B)−1

]′
. (S13)

160

Submodel 2: Measurement model

As a matter of fact, vectors η and ξ are not observed. Instead, vectors y′ = (y1, y2, . . . , yp) and x′ = (x1, x2, . . . , xq) are

observed, such that

y = Λyη+ ε, (S14)

x= Λxξ+ δ, (S15)165

where

y a p× 1 vector of observed indicators of η;

x a q× 1 vector of observed indicators of ξ;

ε a p× 1 vector of measurement errors for y with the associated covariance matrix Θε(p× p);

δ a q× 1 vector of measurement errors for x with the associated covariance matrix Θδ(q× q);
Λy a p×m matrix of coefficients relating y to η;

Λx a q×n matrix of coefficients relating x to ξ.

The model assumptions are:

• E(η) = 0, E(ξ) = 0, E(ε) = 0, and E(δ) = 0,170

• ε is uncorrelated with η, ξ, and δ, and

• δ is uncorrelated with ξ, η, and ε.
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To summarise, the full SEM is defined by three equations:

Latent variable model: η =Bη+Γξ+ ζ

Measurement model for y : y = Λyη+ ε

Measurement model for x : x= Λxξ+ δ

(S16)

Rewriting η in the reduced form, that is,175

η = (I −B)
−1

(Γξ+ ζ) . (S17)

and substituting (S17) for η in Eq. (S16) permits us to derive the expression for the covariance matrix of the observed variables

as a function of the model parameters, Σ(θ) (Bollen, 1989, p. 325):

Σ(θ) =

Σyy(θ)

Σxy(θ) Σxx(θ)

 , (S18)180

where

Σyy(θ) = ΛyA
(
ΓΦΓ′+Ψ

)
A′Λ′y +Θε

Σxy(θ) = ΛxΦΓ′A′Λ′y

Σxx(θ) = ΛxΦΛ′x+Θδ ,

where A= (I −B)−1.185

The full SEM model reduces to a general CFA model if one sets all elements in B, Γ, Θε, Λy and Ψ to 0. Note that in

practice setting all those matrices to zero does not necessarily mean that all η-variables are literally eliminated from the model.

They can instead be regarded as ξ-variables.

This straightforward connection between SEM and CFA immediately implies that the issues of estimation, hypothesis test-

ing, identifiability, and model evaluation for SEM parallel those associated with CFA, discussed in the Appendix in the article.190

However, due to the higher complexity of SEM, the determination of its identifiability status algebraically can be much more

tedious and thus more error-prone. In case the model of interest is very complex, researchers may resort to several rules that

aid in the identification of the model, or, as advised by Jöreskog and Sörbom (1988), confine themselves to determining which

of the parameters can be solved for and which cannot without solving the equations explicitly.

Another feature associated with SEM only is the notions of indirect and total effects. In CFA, it is relevant to talk only about195

direct effects, more precisely, direct effects of ξ-variables on their indicators, x-variables. In SEM models, ξ-variables may, in

addition, have direct effects on η-variables, meaning that they indirectly affect the indicators of η-variables. Direct and indirect

effects together constitute the total effect. In this work, we do not proceed with discussing this topic in greater depth because

(i) the hypothesis of primary interest, i.e. the hypothesis of consistency between the latent simulated and true temperature

responses to forcings, concerns only direct effects of latent variables, and (ii) without knowing the ability of the suggested200
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SEM model to address the question of interest in practice, it is quite unmotivated to discuss what additional questions can be

addressed by means of this model.

S2.2 An alternative representation of SEM

The representation of a general structural equation model given above is known as a standard representation. Being sufficient

for capturing the relation between variables within some analyses, the standard representation might be insufficient within other205

analyses due to its restrictions. For example, it is not allowed that observed variables influence latent variables, in particular

the endogenous ones, which in the context of the present work would prevent climatologically defensible causal links from

observable temperatures (simulated and/or observed) to the latent temperature responses due to the Land and GHG forcings.

To overcome those restrictions, a two-equation model has been suggested (see Bollen, 1989, Ch.9):

η+ =B+η+ + ζ+ (S19)210

y+ = Λ+
y η

+, (S20)

where η+,B+, ζ+, and y+ are related to the variables from the standard representation in the following way:

η+ =


y

x

η

ξ

 , ζ+ =


ε

δ

ζ

ξ

 , y+ =

y
x

 (S21)

B+ =


0 0 Λy 0

0 0 0 Λx

0 0 B Γ

0 0 0 0

 , Λ+
y =

[
Ip+q 0

]
215

where Ip+q is an order-(p+ q) identity matrix picking out the observed variables from η+. The Λ+
y is consequently (p+ q)×

(p+ q+m+n). Further,

• η+ and ζ+ are (p+ q+m+n)× 1,

• y+ is (p+ q)× 1, and

• B+ is (p+ q+m+n)× (p+ q+m+n).220

The final matrix for this alternative representation is the covariance matrix for ζ+ denoted Ψ+. Its relation to the standard

parameters is

Ψ+ =



Θε

0 Θδ

0 0 Ψ

0 0 0 Φ


. (S22)
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Substituting the reduced form of η+, given by

η+ =
(
I −B+)−1

ζ+, (S23)225

into (S19), the reproduced covariance matrix of η+ is derived:

Ση+(θ) =
(
I −B+)−1

Ψ+ ((I −B+)−1)′ . (S24)

Inserting (S23) into (S20) gives the reproduced covariance matrix of the observed variables only:

Σy+(θ) =
(
Λ+
y

(
I −B+)−1

)
Ψ+

(
Λ+
y

(
I −B+)−1

)′
(S25)

The matrices B+ from Eq. (S21) and Ψ+ from Eq. (S22) make explicit the implicit constraints of the standard represen-230

tation. However, by changing the fixed zero elements in these matrices we can relax many of those constraints. An important

point to keep in mind, when relaxing the assumptions of the standard representation, is that the resulting model should be

identified.
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S3 Equations for the basic nonrecursive SEM model, presented in the article, using the standard representation235

For the sake of convenience, we reproduce here the path diagram of the SEM model presented in Fig. 2 in the article.
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Figure S1. Path diagram of a nonrecursive (i.e. containing reciprocal relationships) SEM model under the hypothesis of consistency. The

variance of each specific factor δ̃f is assumed to be known a priori.

Combining our notations used in Fig. S1 and the notations associated with the standard general representation of a structural

equation model, the structural equation model depicted in Fig. S1 can be represented by the following equations:
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240

1. The latent variable model:
ξTLand

ξTGHG

x comb

y


︸ ︷︷ ︸

=η

=


0 GL 0 0

LG 0 0 0

1 1 0 0

1 1 0 0


︸ ︷︷ ︸

=B

·


ξTLand

ξTGHG

x comb

y


︸ ︷︷ ︸

=η

+


SL OL VL IL

SG OG VG IG
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
︸ ︷︷ ︸

=Γ

·


ξTSol

ξTOrb

ξTVolc

ξTinteract


︸ ︷︷ ︸

=ξ

+


ξTLand (anthr)

ξTGHG (anthr)

δ̃comb

ν


︸ ︷︷ ︸

=ζ

,

where the variance-covariance matrices of ξ and ζ are given by

Φξ =


1 0 0 φSI

1 0 φOI

1 φV I

1

 and Ψζ =


σ2
ξTLand (anthr)

σξTLand (anthr) ξ
T
Land (anthr)

0 0

σ2
ξTGHG (anthr)

0 0

σ2∗
δcomb

0

σ2
ν

 , respectively,245

and where σ2∗
δcomb

is assumed to be known a priori.

2. The measurement model for x-variables, i.e. the indicators of the latent exogenous variables ξ:


xSol

xOrb

xVolc


︸ ︷︷ ︸

=x

=


Ssim 0 0 0

0 Osim 0 0

0 0 Vsim 0


︸ ︷︷ ︸

=Λx

·


ξTSol

ξTOrb

ξTVolc

ξTinteract


︸ ︷︷ ︸

=ξ

+


δ̃Sol

δ̃Orb

δ̃Volc


︸ ︷︷ ︸

=δ̃

,

where the variance-covariance matrix of δ̃ is given by Θδ̃ = diag
(
σ2∗
δ̃Sol
, σ2∗

δ̃Orb
, σ2∗

δ̃Volc

)
. Each of the three variances is assumed to

be known a priori.250

3. The measurement model for y-variables, i.e. the indicators of the latent endogenous variables η:
xLand

xGHG

x+comb

v+


︸ ︷︷ ︸

=y

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

=Λy

·


ξTLand

ξTGHG

x comb

v


︸ ︷︷ ︸

=η

+


δ̃Land

δ̃GHG

0

0


︸ ︷︷ ︸

=ε

,

where the variance-covariance matrix of ε is given by Θε = diag(σ2∗
δ̃Land

, σ2∗
δ̃GHG

, 0, 0), where σ2∗
δ̃Land

and σ2∗
δ̃GHG

are regarded as

known a priori.

Having elucidated the correspondence between our notations and the notations associated with the general SEM given255

in Sect. S2.1 and S2.2, it is not difficult to rewrite the equations above in accordance with the alternative representation

summarised in Eqs. (S19) - (S21). However, we omit here the alternative representation of the SEM model in Fig. S1 due to

the considerable size of the resulting matrices.
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S4 Fitting the CFA(kf,1) model, defined in Eq. (18) in the article, to an ensemble with five replicates in the R

package sem260

Let us repeat the definition of the CFA(kf,1) model, given in Eq. (18) in the article. Given an xf ensemble containing kf

members, the CFA(kf,1) model is given by:

xf repl.1t = αf · ξ̃Sft + δ̃f repl.1t

xf repl.2t = αf · ξ̃Sft + δ̃f repl.2t

...
...

...

xf repl.kf t = αf · ξ̃Sft + δ̃f repl.kf t,

(S26)

where ξ̃Sft = ξSft/
√
σ2
ξSf

, αf =
√
σ2
ξSf

, and ξ̃Sf t is assumed to be uncorrelated with all δ̃f repl.i. The CFA(kf,1) model is formulated

under the following assumptions:265

(i) the variances of δ̃f repl.i:s are equal,

(ii) the δ̃f repl.i t sequences are mutually uncorrelated across all kf replicates, and

(iii) the magnitude of the forcing effect is the same for each ensemble member.

Below the main steps of fitting the CFA(kf,1) model, where kf = 5, are provided.

Step 1. Specify the model of interest in an R-file:270

# Define the latent factors with the corresponding factor loadings
xi_f -> x_repl1, alpha, NA

xi_f -> x_repl2, alpha, NA

xi_f -> x_repl3, alpha, NA275

xi_f -> x_repl4, alpha, NA

xi_f -> x_repl5, alpha, NA
# where NA denotes an arbitrary starting value for the parameter α. But one can also specify a starting value instead of NA.

# Define the variance of the latent factor280
xi_f <-> xi_f, NA, 1

# Define the specific factors with the corresponding variances, i.e. σ2
δ̃f

for each replicate
285

x_repl1 <-> x_repl1, sigma2_delta, NA

x_repl2 <-> x_repl2, sigma2_delta, NA

x_repl3 <-> x_repl3, sigma2_delta, NA

x_repl4 <-> x_repl4, sigma2_delta, NA

x_repl5 <-> x_repl5, sigma2_delta, NA290

# Note that specific factors are not represented explicitly.

Step 2. Save the file above, e.g. Model_1.R

14



Step 3. Construct the data set for the analysis295
MYDATA<-cbind(x_1, x_2, x_3, x_4, x_5)

# Name the observed variables in the same way as in Step 1.
300

colnames(MYDATA)<-c("x_repl1","x_repl2", "x_repl3","x_repl4","x_repl5")

# Compute the variance-covariance matrix of the observed variables
S2<-cov(MYDATA);305

Step 4. Estimation

# Load the sem package
library(sem)

310 # Define the heuristic indices of interest
opt <- options(fit.indices = c("GFI", "AGFI","SRMR"))

# Read in the model of interest315
model_1<-specifyModel("Model_1.R")

# Fit the model and save the results to a model fit object
320

result_model_1<- sem(model_1, S2, N=100, fit.indices=TRUE)

# where N is a number of observations

# To see the result of the estimation
325

summary(result_model_1)
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S5 Figures

Here the plots of data analysed in Sect. 6 in the article are provided.330
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Figure S2. Original time series of the five replicates within the xVolc ensemble for two regions. All time series have the time unit of 1 year

and cover the period 850− 1849 AD.
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Figure S3. Decadally resolved residual series, defined in Eq. (6.2.1) in the article and associated with two xVolc ensembles for two regions.

All time series have the time unit of 10 year and cover the period 850− 1849 AD.
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Figure S4. Autocorrelation functions (the left column) and density functions (the right column) of decadally resolved residual series, defined

in Eq. (19) in the article and associated with two xVolc ensembles for two regions. The residual time series have the time unit of 10 year and

cover the period 850−1849 AD. The two-sided 95% and 99% bounds in the left column, denoted by dashed lines, are equal to±1.96/
√

100

and ±2.58/
√

100, respectively.
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