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Abstract. Evaluation of climate model simulations is a crucial task in climate research. Here, a new statistical
framework is proposed for evaluation of simulated temperature responses to climate forcings against temperature
reconstructions derived from climate proxy data for the last millennium. The framework includes two types of
statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor
analysis (CFA) models and structural equation modelling (SEM) models. Each statistical model presented is
developed for use with data from a single region, which can be of any size. The ideas behind the framework
arose partly from a statistical model used in many detection and attribution (D&A) studies. Focusing on climato-
logical characteristics of five specific forcings of natural and anthropogenic origin, the present work theoretically
motivates an extension of the statistical model used in D&A studies to CFA and SEM models, which allow, for
example, for non-climatic noise in observational data without assuming the additivity of the forcing effects. The
application of the ideas of CFA is exemplified in a small numerical study, whose aim was to check the assump-
tions typically placed on ensembles of climate model simulations when constructing mean sequences. The result
of this study indicated that some ensembles for some regions may not satisfy the assumptions in question.

1 Introduction

Climate models are powerful tools used for investigating how
the climate system works, for making scenarios of the fu-
ture climate and for assessing potential impacts of climatic
changes (Flato et al., 2013). Using a numerical representa-
tion of the real climate system, climate models are designed
as systems of complex differential equations based on phys-
ical, biological, and chemical principles. In the virtual world
of climate models, scientists can perform experiments that
are not feasible in the real world climate system. For exam-
ple, one can neglect or simplify all but one process, in or-
der to identify the role of this particular process clearly, for

example, the influence of changes in solar irradiance on the
radiative properties of the atmosphere, or to test hypotheses
related to this process. In an analogous fashion, the overall
effect of several processes, acting jointly, can be investigated.

In order to assess the magnitude of the effects of the pro-
cesses in question on the climate, it is often convenient to
analyse their impact on the radiative balance of the Earth
(Goosse, 2015). The net change in the Earth’s radiative bal-
ance at the tropopause (incoming energy flux minus outgoing
energy flux expressed in watts per square metre (W m−2))
caused by a change in a climate driver is called a radiative
forcing (see, for example, Myhre et al., 2013; Liepert, 2010).
Sometimes scientists use the term climate forcing instead of
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radiative forcing (Liepert, 2010). We will generally do so in
our discussion, or we simply write just forcing.

Examples of external natural drivers of climate change,
which are capable of inducing climate forcing, are changes
in solar radiation, changes in the orbital parameters of the
Earth, and volcanic eruptions. There are also external drivers
of climate change of anthropogenic origin, for example, the
ongoing release of carbon dioxide to the atmosphere, primar-
ily by burning fossil fuels, the emissions of aerosols through
various industrial and burning processes, and changes in land
use (Jungclaus et al., 2017). Climate variability can also be
caused by various processes internal to the climate system
itself (Kutzbach, 1976). Ocean and atmosphere circulation
and their variations and mutual interactions are examples of
processes that are clearly internal to the climate system.

The range of types of climate models is very wide. Here,
our focus is on the most sophisticated state-of-the art cli-
mate models referred to as global climate models (GCMs)
or Earth system models (ESMs). As computing capabili-
ties have evolved during the past decades, the complexity of
GCMs and ESMs has substantially increased: for instance,
the number of components of the Earth system that can be
included and coupled in GCMs and ESMs has increased,
or the previously often performed equilibrium simulations
can now be replaced by transient simulations, driven, for ex-
ample, by temporal changes in the atmospheric greenhouse
gases (GHGs) and aerosol loading (see, for example, Cubash
et al., 2013; Eyring et al., 2016; McGuffie and Henderson-
Sellers, 2014; Jungclaus et al., 2017).

However, despite great advances achieved during the past
decades, some simplifications are unavoidable, for example,
due to the range of temporal and spatial scales involved
and/or incomplete knowledge about some processes. As a
consequence, the complexity of the most sophisticated cli-
mate models is still far from the complexity of the real cli-
mate system. Even a careful design cannot guarantee that
each component of climate modelling, for example, param-
eterisation of subgrid-scale processes, has been employed in
its optimal form. Also, our knowledge about various feed-
back processes, for example, cloud feedback (Gettelman,
2016), that may either amplify or damp the direct effect of
a given forcing is not complete.

Another type of complication is that forcing reconstruc-
tions too may be uncertain. As examples, uncertainties can
be large for such anthropogenic forcings as aerosol forcing
and land use forcing (Hegerl and Zwiers, 2011), and the am-
plitude of natural solar irradiance changes in the last millen-
nium has been disputed (Feulner, 2011).

All the above-mentioned issues together point naturally to
the importance of carefully undertaking evaluation of climate
model simulations by comparison against the observed cli-
mate state and variability. An important role in this context
has been played by so-called detection and attribution (D&A)
studies (e.g., Hegerl et al., 2007, 2010; Mitchell et al., 2001;
Santer et al., 2018; Wigley et al., 1990). Within these stud-

ies, the question of attribution of observed climate change
to real-world forcings is addressed simultaneously with the
question of consistency between simulated and observed cli-
mate change. That is, one of the goals of D&A studies is to
evaluate the ability of forced climate models to simulate ob-
served climate change correctly.

Based on the ideas of Hasselmann (1979), statistical meth-
ods used in D&A studies performed to date have been given
different representations (Hasselmann, 1993, 1997; Levine
and Berliner, 1998) and typically are referred to as “optimal
fingerprinting” techniques. In the present work, the focus is
on the representation associated with linear regression mod-
els, described by Allen and Stott (2003).

In terms of the near-surface temperature, which has been a
climatic variable of interest in many D&A studies, an advan-
tageous assumption made in Allen and Stott (2003) is that
neither the real temperature responses to particular forcings,
nor the simulated responses to imposed forcings obtained in
experiments with complex GCMs or ESMs are directly ob-
servable; that is, they are latent. This has motivated the use of
regression models with latent variables where both explana-
tory and response variables are contaminated with noise. In
the statistical literature, these regression models are known
as measurement error (ME) models (sometimes also-called
errors-in-variables models).

Being the simplest model among statistical models with
latent variables, the ME model specification has proved to
be a useful tool within many D&A studies that greatly con-
tributed to the understanding of the causes of climate vari-
ability. However, as recognised by several researchers, this
statistical model is associated with certain limitations, for
example, the inability to take into account the effects of pos-
sible interactions between forcings (see, for example, Mar-
vel et al., 2015; Schurer et al., 2014) or the inability to
account for non-climatic noise in the observational data.1

Nor does the simplicity of the ME model specification al-
low researchers to avoid the estimation issues that arise un-
der the so-called “weak-signal” regime (DelSole et al., 2019)
or to specify more complex latent structures for data that
are supposed to contain signals associated with complicated
climatological feedback mechanisms, for example, climate–
vegetation interactions.

Having a statistical framework that can address the ques-
tions posed in the D&A studies and, at the same time, lends
itself to flexible specifications of latent structures, depending
on hypotheses that researchers have and on the properties of
both the climate model and the forcings considered, may po-
tentially aid in overcoming the above-mentioned limitations

1Within the present work, observational data are defined as data
consisting of instrumental temperature measurements, when they
are available, and temperature reconstructions derived from cli-
mate proxy data, i.e. from indirect climate information from var-
ious natural archives such as tree rings, lake sediments, and cave
speleothems.
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of the ME model. All these points together may ultimately in-
crease our confidence in the final estimates and conclusions
drawn.

The goal of the present study is to formulate such a statis-
tical framework by investigating possible extensions of the
ME model specification to more complex statistical models
with latent variables.

To this end, we used the fact that a ME model is a special
case of a confirmatory factor analysis (CFA) model, which
in turn is a special case of a structural equation modelling
(SEM) model (Jöreskog and Sörbom, 1989). Regarding the
relationships between model variables, the differences be-
tween these three types of statistical models are as follows:

– ME model. Only latent variables are allowed to influ-
ence their observable indicators. Latent variables can be
related to each other only through correlations. All la-
tent variables are assumed to be correlated.

– CFA model. This is as a ME model above, but it is pos-
sible to introduce restrictions on model parameters, for
example, zero correlations.

– SEM model (standard representation). Latent variables
may influence not only observable variables, but also
each other (either unidirectionally or reciprocally). That
is, latent variables may be related to each other not only
through correlations, but also through causal relation-
ships, modelled by means of regression models.

– SEM model (alternative representation). This is as a
standard SEM model above. In addition, observable
variables are also allowed to influence latent variables.

As a matter of fact, the notion of causality is not new
to climate research. As examples, we can refer to Kodra et
al. (2016) and Stips et al. (2016), where the causal struc-
ture between atmospheric CO2, i.e. the forcing itself, and
global temperature has been studied by applying the meth-
ods based on Granger causality and the concept of informa-
tion flow, respectively. The latter concept was also used by
Liang (2014) to investigate the cause–effect relation between
the two climate circulation dynamic modes, El Niño and the
Indian Ocean Dipole. But our questions to be addressed here
and the methods we use for achieving our goals are different
compared to the works mentioned above.2

When formulating CFA and SEM models here, we also
used the ideas of another statistical framework developed by
Sundberg et al. (2012) (hereafter referred to as SUN12). The

2One of the major differences between the methods is that SEM
models test hypothesised causal relationships between model vari-
ables based on the (co)variances of the model variables, while the
methods mentioned above investigate the causality based on the in-
formation available at different time points of the time series anal-
ysed (for an overview of methods used for investigating the causal-
ity for time series see Runge et al., 2019).

SUN12 framework, which has so far only been used in just
a few studies (Hind et al., 2012; Hind and Moberg, 2013;
Moberg et al., 2015; PAGES2k-PMIP3 group, 2015; Feti-
sova, 2015), was designed to suit the comparison of climate
model simulations and temperature reconstructions derived
from climate proxy data for the last about 1 millennium. As
the main result, SUN12 formulated two test statistics: a cor-
relation and a distance-based test statistic, each of which is
based on one and the same ME model with a single latent
variable. Although SUN12, just as D&A studies, uses the ME
model specification, this framework has suggested another
approach of relating simulated temperatures to observational
data in terms of common latent factors. The approach sug-
gested, in our opinion, may enable the attribution of observed
climate change without simultaneous testing of the consis-
tency between simulated and observed climate change.

The statistical models considered here are intended to be
suitable for the type of observational and climate model data
that is typically available for the last millennium, as also ex-
emplified in some D&A studies (e.g. Hegerl et al., 2011;
PAGES2k-PMIP3 group, 2015; Schurer et al., 2013, 2014).
Nevertheless, the concepts proposed here are based on gen-
eral theory, and our ideas may therefore also be extended and
adapted for being used with modern data, like in most D&A
studies.

Finally, let us describe the structure of the present paper.
First, in Sect. 2, some main assumptions and definitions of
our framework will be described. Section 3 gives an overview
of the statistical model used in D&A studies and its link to the
CFA model specification. Section 4 provides a description
of our CFA models, while the SEM models are presented in
Sect. 5. Section 6 provides a brief practical demonstration
of fitting a simple CFA model to two ensembles of climate
model simulations using the R package sem. The paper is
concluded by an overview of the key characteristics of all the
statistical models presented (see Sect. 7).

2 Preliminaries: main assumptions and definitions

2.1 Near-surface temperature

Although both the real and simulated climate systems com-
prise several climate variables in a 3-dimensional spatial
framework in the atmosphere, in the oceans, and on land,
here we will only think in terms of air temperatures near the
Earth’s surface. Climate scientists often refer to this as either
surface air temperature or 2 m air temperature depending on
context. We will simply call this “temperature”.

2.2 Unforced versus forced climate models

The term “unforced climate model” or just “unforced model”
denotes here a simulation not driven by any external forcing.
That is, only internal factors influence the simulated tempera-
ture variations. More precisely, the boundary conditions that
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are associated with the forcing factors of interest are held
constant throughout the entire simulation time, at some level
selected by the researcher. Climate modellers often refer to
this kind of simulation as a control simulation.

When running the same climate model again, but with the
control boundary conditions replaced with a reconstruction
of temporal and spatial changes in a particular forcing f,
one obtains a forced climate model simulation. Climate mod-
ellers sometimes refer to this situation as a transient model
simulation, while we refer to it as a “forced climate model”
or just “forced model”.

2.3 Specifying forcings of interest

To make our way of reasoning as clear and concrete as pos-
sible, we focus on five specific forcings:

1. changes in the solar irradiance (abbr. Sol);

2. changes in the orbital parameters of the Earth (abbr.
Orb);

3. changes in the amount of stratospheric aerosols of vol-
canic origin (abbr. Volc);

4. changes in vegetation and land cover caused by natural
and anthropogenic factors (abbr. Land);

5. changes in the concentrations of greenhouse gases in the
atmosphere (abbr. GHGs), also of both natural and an-
thropogenic origin.

In the real-world climate system within a certain re-
gion and time period t , t = 1, 2, . . .,n, these forcings
generate the corresponding latent true temperature re-
sponses, which we denote as follows3: ξT

Sol t , ξT
Orb t ,

ξT
Volc t , ξT

Land t = ξ
T
Land (natur) t + ξ

T
Land (anthr) t , and ξT

GHG t =

ξT
GHG (natur) t + ξ

T
GHG (anthr) t . Note that due to the properties of

the Land and GHG forcings, ξT
Land t and ξT

GHG t are defined as
overall true temperature responses, each of which contains
two components, representing temperature responses to nat-
ural respectively anthropogenic changes. Importantly, we re-
gard anthropogenic changes, caused by human activity, as
physically independent processes of the natural forcings (we
do not discuss here any possible influence of the changed cli-
mate on the actions of humanity).

All the above-specified forcings are identified as drivers
of the climate change during the last millennium (Jungclaus
et al., 2017). Therefore, state-of-the-art Earth system model
(ESM) simulations driven by these (or some of these) forc-
ings both individually and jointly are already available (Otto-
Bliesner et al., 2016; Jungclaus et al., 2017), thereby making
the issue of their evaluation relevant.

3The superscript T stands for “true”.

Depending on the scientific question of interest, climate
models may be driven by different combinations of recon-
structed forcings. For the purpose of our theoretical discus-
sion, let us first assume that the following temperature data
from climate model simulations are available:

{xSol t } is forced by the reconstruction of the solar forc-
ing, which generates the simulated counterpart to
ξT

Sol t , denoted4 ξS
Sol t .

{xOrb t } is forced by the reconstruction of the orbital forc-
ing, which generates the simulated counterpart to
ξT

Orb t , denoted ξS
Orb t .

{xVolc t } is forced by the reconstruction of the volcanic
forcing, which generates the simulated counterpart
to ξT

Volc t , denoted ξS
Volc t .

{xLand t } is forced by the reconstruction of the Land forc-
ing of both natural and anthropogenic origin, which
generates the two-component simulated counterpart
to ξT

Land t , i.e. ξS
Land t = ξ

S
Land (natur) t + ξ

S
Land (anthr) t . In

contrast to anthropogenic changes in land cover,
which are reconstructed, natural changes in vegeta-
tion can be simulated in climate models by involv-
ing dynamic land vegetation models. In practice, this
means that climate model simulations driven only by
the reconstructed anthropogenic land-use forcing or
only by natural changes in vegetation can be avail-
able.

{xGHG t } is forced by the reconstruction of the GHG forc-
ing of both natural and anthropogenic origin, which
generates ξS

GHG t = ξ
S
GHG (natur) t + ξ

S
GHG (anthr) t . Un-

like the Land forcing, the GHG forcing is not as-
sumed to possess available climate model simula-
tions driven only by natural changes in the forcing.

{xcomb t } is forced by all reconstructed forcings above,
generating the overall simulated temperature re-
sponse ξS

comb t .

Note that we do not assume that climate model simulations
driven by all possible combinations of forcings, for example,
the combination of solar and volcanic forcings or the combi-
nation of solar and Land forcing, are available.

3 Overview of the statistical model used in
detection and attribution (D&A) studies and its
link to CFA models

A general statistical model, used for assessing the individual
contribution of m forcings in many D&A studies made after
2003, is given by the following ME model with a vector ex-
planatory variable (see, for example, Allen and Stott, 2003;

4The superscript S stands for “simulated”.
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Huntingford et al., 2006; Schurer et al., 2014):

yg =

m∑
i=1

βi (xi g − νi g)+ ν0 g, (1)

where yg is the mean-centred observed/reconstructed tem-
perature, where the index g reflects the fact that the {yg} se-
quence is allowed to be a temperature field, arrayed in space
and in time; xi g is the mean-centred simulated temperature,
generated by the climate model forced only by a reconstruc-
tion of forcing i; νi g is the simulated internal temperature
variability associated with the climate model driven by forc-
ing i; ν0 g is the real internal temperature variability, i.e. the
real latent unforced component embedded in yg; xi g−νi g is
the simulated latent temperature response to forcing i, em-
bedded in xi g; and βi is a scaling factor associated with forc-
ing i.

For the purpose of our analysis let us rewrite model (1)
with respect to the specified forcings and partly by using
our notations. Moreover, realising that the ME model in the
form presented does not take into account the initial space-
time dimensionality of data but simply presupposes that each
model variable is associated with a single vector of val-
ues of the same length across all variables, we replace the
subindex g by the subindex t , representing the time point t ,
t = 1,2, . . .,n. So for the time point t and any region, we get
the following model:

yt = βSol ξ
S
Sol t +βOrb ξ

S
Orb t +βVolc ξ

S
Volc t

+βLand ξ
S
Land t +βGHG ξ

S
GHG t + ν0 t ,

xf t = ξ
S
f t + νf t , (2)

where f ranges over {Sol,Orb,Volc,Land,GHG}. In statis-
tical literature, this kind of a ME model is known as a ME
model with no error in the equation (see, for example, Fuller,
1987; Cheng and van Ness, 1999). To enable the inferences,
one typically assumes that the error vectors (ν0 t ,νf t )′ are
normally and independently distributed under a wide range
of distributional assumptions for ξS

f t . Also, one assumes that
the errors are uncorrelated with ξS

f t , associated in their turn
with a non-singular variance–covariance matrix.

In the case of Eq. (2), the term “no error in the equation”
refers to the fact that the overall true temperature response
to all forcings, acting in the real-world climate system and
embedded in yt , is modelled as an error-free linear function
of the five simulated temperature responses of interest, that
is

ξT
ALL t =

∑
f

βf · ξ
S
f t , (3)

where f ranges over {Sol,Orb,Volc,Land,GHG}, and ξT
ALL t

is our notation for the overall true temperature response to
all forcings acting in the real-world climate system. From
Eq. (3), it also follows that for each individual forcing f,

ξT
f t = βf · ξ

S
f t , (4)

where ξT
f t is a real-world counterpart to ξS

f t .
Equations (3) and (4) are justified by the assumption, made

in D&A studies, that the (large-scale) shape of the true tem-
perature response is correctly simulated by the climate model
under consideration (see, for example, Hegerl et al., 2007;
Hegerl and Zwiers, 2011). Hence, we may say that model
(2) assumes that the simulated temperature response ξS

f t can
differ from the corresponding ξT

f t only in its magnitude, rep-
resented by the parameter βf.

The introduction of an error into Eq. (3) would entail an-
other structure of the variable representing the random vari-
ability in yt . In other words, ν0 t would only be a part of
the random component of yt . The structure of the random
component may be even more complex if one wishes to take
into account a non-climatic noise, which can constitute quite
a large part of temperatures reconstructed from proxy data
(Hegerl et al., 2007; Jones et al., 2009) and which can also
exist in varying amounts in instrumental temperature obser-
vations (Brohan et al., 2006; Morice et al., 2012). According
to Allen and Stott (2003), the main reason for excluding the
corresponding error term, known as observation error, is that
its autocorrelation structure is assumed to differ from that as-
sociated with the internal temperature variability.

From the estimation point of view, a consequence of
adding various error terms to ν0 is that one may need to use
another estimator of βfs instead of that used in D&A stud-
ies. The estimator used is known as the total least squares
(TLS) estimator, and it requires the knowledge of the ratios
of the variances of νf and ν0, which can be quite challenging
to derive if ν0 is replaced by a multi-component variable.

Importantly, the TLS estimator remains unchanged if the
whole error variance–covariance matrix is known a priori. In
practice, this knowledge permits us to check for model va-
lidity, provided one derives this a priori knowledge from a
source independent of the sample variance–covariance ma-
trix of the observed variables. In D&A studies, such a source
is unforced (control) climate model simulations.

We would also like to emphasise the fact that the TLS esti-
mator is obtained under the condition that all latent variables
are correlated. This entails that if some ξS

f s are highly mutu-
ally correlated or at least one of ξS

f s does not vary much,
unreliable estimates are expected. Thus, it is important to
check whether the variance–covariance matrix of the latent
variables is singular or not.

The main parameters of interest, estimated within D&A
studies, are the coefficients βf. They are involved in two im-
portant hypotheses. The first one concerns the detection of
the corresponding simulated temperature response in the ob-
served climate record yt . The rejection of H0: βf = 0 indi-
cates that ξS

f is detected in yt . The rejection also indicates the
so-called “strong-signal regime” (DelSole et al., 2019), asso-
ciated with high reliability of all the parameter estimates and
their associated confidence intervals (provided, of course, the
variance–covariance matrix of latent variables is still non-
singular).
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The detection of a simulated temperature response, how-
ever, in the observed climate record is not sufficient for at-
tributing this detected simulated temperature signal to the
corresponding real-world forcing f. For this, one needs to
show that ξS

f t is consistent with ξT
f t , i.e., that Eq. (4) holds

with βf = 1. Thus, the second hypothesis of interest in D&A
studies is H0: βf = 1, known as the hypothesis of consis-
tency. However, as emphasised by Hegerl et al. (2007), the
test for consistency, referred to by the authors as “attribution
consistency test”, does not constitute a complete attribution
assessment, though it contributes important evidence to such
an assessment.

Another important feature of model (2) is that it does not
take into account the effect of possible interaction(s) between
forcings. Instead, the model assumes the additivity of forcing
effects. The issue of additivity has been recognised and dis-
cussed by many researchers within the D&A field. Several
analyses have been performed to investigate the significance
of interactions in simulated climate systems (see, for exam-
ple, Gillett et al., 2004b; Marvel et al., 2015; Schurer et al.,
2014). The results seem to support the assumption of additiv-
ity when it concerns temperature. Nevertheless, it would be
beneficial to develop a statistical model permitting a simul-
taneous assessment of the magnitude of both individual and
interaction effects of forcings on temperature.

Summarising the overview above, we may say that it is
highly motivating to investigate possibilities of extending the
ME model representation to more complex statistical models
in order to overcome the limitations of the ME model.

To achieve this aim, we suggest using the close link be-
tween ME, CFA, and SEM models. To see that the ME model
in Eq. (2) can be viewed as a CFA model, let us first rewrite
this model in the matrix form as shown in Eq. (5).

(5)

In the matrix form given in Eq. (5), the ME model is rep-
resented as an unstandardised CFA model, that is, a CFA
model with unstandardised latent factors. The pattern of the
model coefficients, also-called factor loadings in CFA liter-
ature, reflects our conviction that observations on xf were
generated by the climate model driven only by forcing f. In
other words, model (5) tells us that each xf t only has one
common latent factor with yt , that is ξS

f t .

Note also that an unstandardised factor model is associated
with an unstandardised solution. However, a standardised so-
lution is preferred because its model coefficients (hereafter
called standardised coefficients) make it possible to judge the
relative importance of latent factors. The standardisation of
the latent factors in model (5) is accomplished by standardis-
ing their variances to 1. The resulting CFA model is given in
Eq. (6). Since the model has been derived from a ME model,
we call model (6) a six-indicator and five-factor ME-CFA
model, abbr. ME-CFA(6, 5) model.

In model (6), the ratio κf/αf gives us back βf, associated
with the ME model in Eq. (2), for each forcing f. Thus, the
hypotheses concerning βf are applicable to the parameters
κf and αf. In particular, the hypothesis H0: βf = 0 corre-
sponds to H0: κf = 0, while the hypothesis of consistency is
equivalent to H0: κf/αf = 1 or equivalently H0: κf = αf.

In practice, it is not difficult to test various equality con-
straints within a CFA model – one simply fits the associ-
ated factor model under the constraints of interest. That is,
one fits and tests simultaneously (for more theoretical details
about the estimation of CFA models, see the Appendix). In
the same manner, one may introduce restrictions on the cor-
relations among the latent factors.

(6)

where ξ̃S
f t = ξ

S
f t

/√
σ 2
f , αf =

√
σ 2
f , and , κf = βf ·

√
σ 2
f for

each forcing f.
Another advantage of thinking in the spirit of CFA is

that the factor model specification makes it possible to take
into account the lack of additivity, which may arise due to
possible interactions between forcing. This can be accom-
plished by adding observable variables associated with vari-
ous multi-forcing climate model simulations (provided such
simulations are available). Finally, this model specification
seems to permit a complete attribution assessment, provided
one uses ξT

f s as common factors instead of ξS
f s.

4 Confirmatory factor analysis (CFA) models

In this section, our aim is to formulate a basic CFA model
with respect to the five specified forcings. The model is called
basic because it is supposed to be modified depending on
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the climate-relevant characteristics of the specified forcings
for the region and period of interest. Note also that we focus
on a CFA model with standardised latent factors in order to
enable meaningful comparisons of estimated effects of latent
factors. For a brief account of general CFA models and the
associated definitions, used in the following sections, see the
Appendix.

As mentioned in the Introduction, one of the starting points
for our framework is the SUN12 framework. Within the con-
fines of the present work, we combine some of the definitions
in SUN12 that are relevant for our work with our definitions.

Like D&A studies, decomposing the climate variability
within the ME model into forced and unforced components,
SUN12 also implements the same decomposition within its
statistical model. However, unlike D&A studies, SUN12 al-
lows more complex structures of random components both
in yt and in xf. Using this feature of SUN12, our initial
model for the mean-centred yt for a given region and time
t , t = 1, . . .,n, is as follows:

yt = ξ
T
ALL t + ν̃t , (7)

where the forced component ξT
ALL t was defined in Eq. (3),

and the random component ν̃t , assumed to be independent
of ξT

ALL t , contains, for each t , (1) the internal random vari-
ability of the real-world climate system, including any ran-
dom variability due to the presence of the forcings, and (2)
the non-climatic noise. Although SUN12 allows the non-
climatic variability to vary depending on the time period, in
this work, for simplicity, we will assume that the variance of
ν̃t is constant for each time point.

Since there are five forcings under investigation, the next
step is to rewrite yt in Eq. (7) under the assumption that only
these five true forcings may systematically contribute to the
variability in yt . In doing so, we also want to allow a term for
the lack of additivity, due to possible interactions between
the forcings. The resulting equation is as follows:

yt =Strue · ξT
Sol t +Otrue · ξT

Orb t +Vtrue · ξT
Volc t

+Ltrue · ξT
Land t +Gtrue · ξT

GHG t + Itrue · ξT
interact t

+ ζT
ALL t + ν̃t︸ ︷︷ ︸
=νt

, (8)

where (i) ξT
interact denotes the overall temperature response to

all possible interactions between the forcings under consid-
eration; (ii) the parameters Strue, Otrue, and so on are stan-
dardised coefficients, denoting the magnitude of the individ-
ual contribution from the associated real-world forced pro-
cesses to the variability in yt ; and (iii) ζT

ALL t , assumed to be
independent of all ξT

t s in the equation, represents residual
variability arising after extracting the six specified true tem-
perature responses from ξT

ALL t . As one can see, the random
component νt in Eq. (8) has a more complex structure than
the corresponding random component ν0 t in model Eq. (2).

In a similar way, our initial model for xf t is given by

xf t = ξ
S
f t + δ̃f t , (9)

where ξS
f t was defined in Sect. 2, and δ̃f t , assumed to be in-

dependent of ξS
f t , represents the simulated internal random

temperature variability, including any random variability due
to the presence of the forcing f. Hence, Eq. (9) does not re-
quire the same random variability for forced climate model
simulations generated by the climate model under consider-
ation when it is driven by different forcings.

The next step is to rewrite each xf t as a function of the
corresponding ξT

f t . The idea of modelling true temperature
responses as common factors for xf t and yt was suggested
in SUN12 but without exploring its consequences. Here, it
should be realised that the replacement of ξS

f s by correspond-
ing ξT

f s is not only a question of different notation. This re-
placement entails different structures and interpretations of
error terms, called specific factors in CFA literature. As a re-
sult, different factor models arise.

Let us describe this process by example of xSol t . The ex-
traction of ξT

Sol t from ξS
Sol t leads to the following equation:

xSol t = Ssim · ξT
Sol t + ζ

S
Sol t + δ̃Sol t︸ ︷︷ ︸
=δSol t

, (10)

where the residual term ζ S
Sol t , assumed to be independent of

ξT
Sol t , arises as a result of extracting ξT

Sol t from ξS
Sol t and is

supposed to represent the large-scale shape of ξS
Sol t . Further,

the coefficient Ssim reflects the idea that the magnitude of the
common factor ξT

Sol t , extracted from ξS
Sol t , is not necessarily

the same as its true magnitude, represented by the coefficient
Strue in Eq. (8).

Assuming that both magnitude and the large-scale shape
of the true temperature response are correctly simulated,
Eq. (10) transforms to

xSol t = Strue · ξT
Sol t + δ̃Sol t . (11)

Thus, the meaning of the consistency within our framework
is that a simulated temperature response ξS

f t can be repre-
sented as an error-free function of the corresponding real-
world temperature response ξT

f t with the same magnitude as
that observed in yt .

An important feature of our framework is that it involves
x comb as an additional observable variable, assumed to con-
tain the simulated counterparts to each ξT

f and to ξT
interact. Our

initial model for x comb t is

x comb t = ξ
S
comb t + δ̃ comb t , (12)

which after extracting the six true temperature responses
from ξS

comb t transforms to
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x comb t = Ssim · ξT
Sol t +Osim · ξT

Orb t +Vsim · ξT
Volc t

+Lsim · ξT
Land t +Gsim · ξT

GHG t + Isim · ξT
interact t

+ ζ S
comb t + δ̃ comb t︸ ︷︷ ︸
=δ comb t

. (13)

Notice that each ξT
f t in Eq. (13) is associated with the same

coefficient as that representing the magnitude of ξT
f t within

xf t (see, for example, Eq. 10). These equalities are justified
by the fact that the underlying ξS

f , embedded in xf and in
x comb, has been generated by the same implementation of
forcing f and that the same climate model is used in both
cases. Statistically, this repeatedness of each ξS

f allows us to
treat them (and ξT

f s as well) as a repeatable outcome of ran-
dom variables, each of which is assumed to be normally and
independently distributed with zero mean and its own vari-
ance.

It is also important to highlight that under the CFA (and
ME) model specification, all common latent factors can be
related to each other only through correlations. Climatolog-
ically, this corresponds to viewing all underlying forcings
as physically independent processes not capable of caus-
ing changes in each other but giving rise to temperature re-
sponses that can be either mutually correlated or not.

Given the preliminaries above, we can finally formulate
our basic CFA model that hypothesises the consistency be-
tween the simulated and true temperature responses. The pa-
rameters of the resulting CFA model with seven indicators
and six common factors are given in Table 1. Importantly,
the CFA model presented hypothesises not only the consis-
tency, but also zero correlation between ξT

Sol, ξ
T
Orb, and ξT

Volc.
Our motive for these zero correlations is that the forcings that
generate these temperature responses are acting on different
timescales and with different character of their temporal evo-
lutions. It is thus reasonable to expect that their temperature
responses will not demonstrate a similar temporal pattern. On
the other hand, we find it difficult to hypothesise zero corre-
lations between ξT

interact and ξT
Sol, ξ

T
Orb, and ξT

Volc. Thus each
of the last three responses is allowed to be correlated with
ξT

interact.
Another feature of the model is that the variances of the

specific factors δ̃fs, where f represents either one of the in-
dividual forcings or their combination, are treated as known
a priori, i.e. as fixed parameters. To obtain an a priori esti-
mate of each σ 2

δ̃f
, we suggest using the following estimator if

the xf ensemble of interest contains at least two members or
replicates:

σ 2
δ̃f
=

∑n
t=1
∑kf
i=1(xf repl.i t − x̄f. t )2

n(kf− 1)
,kf ≥ 2, (14)

where x̄f. t is the average of the observations at time t . In
case it is climatologically justified to assume that the forc-
ing of interest has a negligible influence on the temperature

variability, one can use instead the sample variance of all nkf
observations, i.e.

σ 2
δ̃f
=

∑n
t=1
∑kf
i=1(xf repl.i t − x̄f. .)2

nkf− 1
, (15)

where x̄f. . is the average of all observations. In Sect. 6, we
discuss the assumptions associated with the estimators above
and demonstrate in practice how these assumptions may be
checked using the ideas of CFA.

The advantage of treating σ 2
δ̃f

s as fixed parameters is that
it enables the estimation, i.e. identifiability, of a CFA model
without hypothesising the consistency for each ξS

f and the
uncorrelatedness between ξT

Sol, ξ
T
Orb, and ξT

Volc (in case the
latter is climatologically motivated for the region and period
of study). The resulting CFA model is given in Table 2. This
CFA model is just-identified with 0 degrees of freedom. As a
consequence, it is not possible (and unmotivated) to test for
lack of fit to the data.

In contrast, the CFA model in Table 1 is over-identified
with 9 degrees of freedom, which makes it meaningful to
test whether the empirical data conform to the hypothesised
latent structure. If all the estimates of this CFA model are
admissible and interpretable, and if the model fits the data
adequately both statistically or heuristically (see Eqs. A5–A8
in the Appendix), then one may say that there is no reason to
reject the hypotheses that both magnitude and shape of the
simulated temperature response are correctly simulated by
the climate model under consideration.

In addition, the estimates of the factor loadings can be used
for assessing the contribution of the real-world forcings to the
variability in yt . For example, provided that the parameter
estimates of the CFA model in Table 2 are admissible and
climatologically interpretable, the rejection of H0: Strue=0
indicates that the true temperature response to the real-world
solar forcing is detected in observational data. That is, the
attribution to the real-world forcings is possible, even if the
hypothesis of consistency is relaxed.

Both above-presented CFA(7, 6) models can be modified
by setting desirable and climatologically justified constraints
on the parameters. For example, for testing that the effect of
interactions is negligible, one needs to set Itrue (and Isim,
depending on which CFA model is considered) to zero. Im-
portantly, one also needs to set each of the five associated
correlations to zero in order to avoid under-identifiability. As
a result, one gains 6 additional degrees of freedom if the over-
identified CFA model from Table 1 is analysed. In the case
of the CFA model from Table 2, the zero constraints imposed
makes the model over-identified with 7 degrees of freedom.

Similar constraints can be placed on the parameters asso-
ciated with other common factors, if one expects negligible
forcing effects for the region of interest. Otherwise, the esti-
mation procedure may become unstable, which may lead to
an inadmissible solution or even the failure to converge to a
solution.
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Table 1. Parameters of the seven-indicator and six-factor model, abbr. CFA(7, 6) model, hypothesising the consistency and the uncorrelat-
edness between three latent factors.

Indicators Common factors Specific factor

ξT
Sol ξT

Orb ξT
Volc ξT

Land ξT
GHG ξT

interact variances

1. xSol Strue 0 0 0 0 0 σ 2∗
δ̃Sol

2. xOrb 0 Otrue 0 0 0 0 σ 2∗
δ̃Orb

3. xVolc 0 0 Vtrue 0 0 0 σ 2∗
δ̃Volc

4. xLand 0 0 0 Ltrue 0 0 σ 2∗
δ̃Land

5. xGHG 0 0 0 0 Gtrue 0 σ 2∗
δ̃GHG

6. x comb Strue Otrue Vtrue Ltrue Gtrue Itrue σ 2∗
δ̃comb

7. y Strue Otrue Vtrue Ltrue Gtrue Itrue σ 2
ν

Correlations among common factors
1 0 0 φSL φSG φSI

1 0 φOL φOG φOI
1 φVL φVG φVI

1 φLG φLI
1 φGI

1

∗ The parameter assumed to be known a priori.

Another reason to modify the CFA models presented
arises when instead of xLand climate model simulations only
xLand (anthr) or xLand (natural) climate model simulations are
available. When replacing the indicator xLand by xLand (anthr)
or xLand (natural), one needs to replace the common factor ξT

Land
as well with ξT

Land (anthr) and ξT
Land (natural), respectively.

Such replacements may change the latent structure of the
model. In case only xLand (anthr) is available, it seems reason-
able to let ξT

Land (anthr) be uncorrelated with ξT
Sol, ξ

T
Orb, ξT

Volc,
and ξT

interact. because anthropogenic changes in land use can
be viewed as processes independent of the natural forcings.

In case ξT
Land is replaced by ξT

Land (natur), it seems climato-
logically justified to let ξT

Land (natur) be correlated with other
common factors, provided one does not expect a negligi-
ble effect of natural changes in the Land forcing within the
region and period of interest. In this case, to avoid under-
identifiability, one may set all the parameters, associated with
ξT

Land (natural), to zero. This would correspond to viewing nat-
ural changes in Land cover as an internal climate process,
contributing to the temperature variability randomly.

Regardless of the latent structure hypothesised, it is im-
portant to emphasise that xf in all possible CFA models can
represent the mean sequence as well. As known (e.g. Deser
et al., 2012), averaging over replicates of the same type of
forced model leads to a time series with an enhanced forced
climate signal and a reduced effect of the internal tempera-
ture variability of the corresponding forced climate model.
This may considerably contribute to the stability of the es-
timation procedure, especially when the forcing of interest
is weak rather than strong. Given kf replicates of xf, the

replacement of xf t by x̄f t implies that σ 2
δ̃f

is replaced by

σ 2
δ̃f
/kf.

If the solution obtained is admissible and climatologically
defensible, the overall model fit to the data can be assessed
both statistically and heuristically. In case of rejecting the hy-
pothesised model, it is important to realise that the rejection
does not unambiguously point to any particular constraint as
at fault.

We also present the CFA model from Table 1 graphi-
cally by means of a path diagram. This would simplify a
movement from the CFA model specification to the SEM
model specification and makes it easier to overview (com-
plex) causal relationships within SEM models. To understand
a path diagram, let us explain its symbols:

– A one-headed arrow represents a causal relationship be-
tween two variables, meaning that a change in the vari-
able at the tail of the arrow will result in a change in the
variable at the head of the arrow (with all other vari-
ables in the diagram held constant). The former type
of variable is referred to as exogenous (Greek: “of ex-
ternal origin”) or independent variables because their
causes lie outside the path diagram. Variables that re-
ceive causal inputs in the diagram are referred to as en-
dogenous (“of internal origin”) or dependent variables
because their values are influenced by variables that lie
within the path diagram.

– A curved two-headed arrow between two variables indi-
cates that these variables may be correlated without any
assumed direct relationship.
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Table 2. Parameters of the seven-indicator and six-factor model, abbr. CFA(7, 6) model, arising as a result of relaxing the hypotheses of
CFA(7, 6) model in Table 1.

Indicators Common factors Specific factor

ξT
Sol ξT

Orb ξT
Volc ξT

Land ξT
GHG ξT

interact variances

1. xSol Ssim 0 0 0 0 0 σ 2∗
δ̃Sol

2. xOrb 0 Osim 0 0 0 0 σ 2∗
δ̃Orb

3. xVolc 0 0 Vsim 0 0 0 σ 2∗
δ̃Volc

4. xLand 0 0 0 Lsim 0 0 σ 2∗
δ̃Land

5. xGHG 0 0 0 0 Gsim 0 σ 2∗
δ̃GHG

6. x comb Ssim Osim Vsim Lsim Gsim Isim σ 2∗
δ̃comb

7. y Strue Otrue Vtrue Ltrue Gtrue Itrue σ 2
ν

Correlations among common factors
1 φSO φSV φSL φSG φSI

1 φOV φOL φOG φOI
1 φVL φVG φVI

1 φLG φLI
1 φGI

1

∗ The parameter assumed to be known a priori.

– Two single-headed arrows connecting two variables sig-
nify reciprocal causation.

– Latent variables are designated by placing them in cir-
cles and observed variables by placing them in squares,
while disturbance/error terms are represented as latent
variables, albeit without placing them in circles.

The path diagram for the CFA model in Table 1 is depicted
in Fig. 1.

The CFA model specification can also be used for assess-
ing the overall forcing effect. For this purpose, we formulated
a two-indicator one-factor CFA model, which we present in
the Supplement, together with the corresponding ME model
used in D&A studies.

5 Structural equation modelling

In CFA, latent variables can be related to each other exclu-
sively in terms of correlations, which says nothing about the
underlying reasons for the correlation (association). Indeed,
an association between two variables, say A and B, may arise
because of the following:

1. A influences (or causes) B.

2. B influences A.

3. A and B influence each other reciprocally.

4. A and B depend on some third variable(s) (spurious cor-
relation).

To express such relationships statistically, one needs to move
from the CFA model specification to the SEM model speci-
fication. A theoretical description of a general SEM model
(both standard and alternative representations) is provided
in the Supplement to this article. The estimation, hypothesis
testing, identifiability, and model evaluation of SEM models
parallel those of CFA models (see the Appendix).

An example of physically complicated climatological re-
lationships is climate–vegetation interactions. To reflect (to
some extent) this climatological mechanism statistically, we
recall first that ξT

Land t is a two-component temperature re-
sponse, containing ξT

Land (natur) t and ξT
Land (anthr) t . Further, we

note that natural changes in the Land cover and vegetation
are processes that physically depend on the solar, orbital, and
volcanic forcings and their interactions. From the perspective
of structural equation modelling this means that ξT

Land (natur) t
can be described as causally dependent on ξT

Sol t , ξ
T
Orb t , ξ

T
Volc t ,

and ξT
interact t .

In addition, we note that natural changes in the Land cover
and vegetation may also be caused by natural changes in the
levels of GHGs in the atmosphere. In terms of the common
factors, the latter means that ξT

Land (natur) t may also causally
depend on ξT

GHG (natur) t . Summarising what has been said, we
may write a basic equation for ξT

Land t as follows:

ξT
Land t = ξ

T
Land (natur) t + ξ

T
Land (anthr) t = SL · ξT

Sol t

+OL · ξT
Orb t +VL · ξT

Volc t + IL · ξT
interact t

+GL · ξT
GHG t + ξ

T
Land (anthr) t . (16)
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Figure 1. Path diagram of the CFA model from Table 1.

Notice that ξT
Land (natur) t in Eq. (16) is influenced by ξT

GHG t
instead of ξT

GHG (natur) t . To avoid this undesirable feature,
one needs to treat ξT

GHG (natur) t and ξT
GHG (anthr) t as separate

common factors, which could be possible if xT
GHG (natur) t and

xT
GHG (anthr) t were available. However, climate model simula-

tions, driven by the natural respectively anthropogenic GHG
forcings, are not available.

By reasoning in a similar way, we may also formulate a
corresponding basic equation for ξT

GHG t , whose natural com-
ponent can also be caused by the specified natural forcings
and by natural changes in the land cover and vegetation:

ξT
GHG t = ξ

T
GHG (natur) t + ξ

T
GHG (anthr) t = SG · ξT

Sol t

+OG · ξT
Orb t +VG · ξT

Volc t + IG · ξT
interact t

+LG · ξT
Land t + ξ

T
GHG (anthr) t . (17)

Notice that Eqs. (16) and (17) together also reflect the idea
that ξT

GHG (natur) t and ξT
Land (natur) t can be causally dependent

on each other, which gives rise to a loop. Put climatologi-
cally, this loop reflects the fact that natural changes in one
of these forcings can lead to subsequent changes in the same
forcing by initially causing natural changes in the other forc-
ing.

Another important comment on Eqs. (16) and (17) is that
the interpretation of the interaction term ξT

interact t differs from
that associated with the basic CFA model (see Eq. 8). This is
because within the CFA model specification, all the tempera-
ture responses are assumed to be generated by causally inde-
pendent climate processes, while the SEM model specifica-
tion allows for distinguishing between physically dependent
and physically independent climate processes. Thus, ξT

interact t
under the SEM model presented represents the overall effect
of possible interactions between the solar, orbital, and vol-
canic forcings and the processes of anthropogenic character.
Interactions between physically dependent and independent
climate processes are assumed to give rise to temperature re-
sponses, whose statistical relationships within SEM models
are modelled through causal inputs. Notice also that under
both CFA and SEM models, it is not possible to separate
the natural component of ξT

interact t from the anthropogenic
because only one type of multi-forcing climate model sim-
ulations, namely xcomb, is available. Within the SEM model,
it means that the causal inputs from ξT

interact t to ξT
Land (natural) t

and ξT
GHG (natural) t are not of a purely natural origin, as we

would like.
The easiest way to get an overview of the above-discussed

relationships is to represent them graphically by means of
a path diagram. Using the path diagram for the CFA(7, 6)
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model in Fig. 1 as a starting point, we modify it by replacing
some correlations by causal inputs. The result is depicted in
Fig. 2. A complete set of the equations, associated with the
SEM model in Fig. 2, is given in the Supplement.

The important features of the SEM model in Fig. 2 are as
follows:

1. The latent variables ξT
Sol, ξ

T
Orb, ξT

Volc, and ξT
interact are

still exogenous and standardised variables.

2. The latent variables ξT
Land and ξT

GHG are endogenous
variables. Since the variances of endogenous variables
are not model parameters, ξT

Land and ξT
GHG cannot be

standardised. Instead, their coefficients in relation to
their indicators are fixed to 1. Importantly, the variances
of endogenous variables can be calculated afterwards
(for details, see the Supplement), which makes it possi-
ble to compare the effect of the Land and GHG forcings
on the temperature to the effect of other forcings un-
der study. When relaxing the hypothesis of consistency
in regard to ξT

Land and/or ξT
GHG, one allows these latent

factors to influence y with a magnitude equal to Ltrue
and Gtrue, respectively, and, at the same time, keeps the
magnitude of their impact on xcomb, xLand, and xGHG at
1.

3. The common factors ξT
Sol, ξ

T
Orb, ξT

Volc and ξT
interact are still

uncorrelated to each other. In addition, they are mod-
elled as causally independent of ξT

Land and ξT
GHG. This

is because it is physically unjustified to assume that any
changes in the Land and GHG forcing are capable of
causing changes in the solar irradiance, the Earth’s or-
bit, or the occurrence of volcanic eruptions.

4. There are two “new” observable variables, namely
x+comb and y+. Neither of these two variables contains
a disturbance term, implying that x+comb = xcomb and
y+ = y. The difference is that xcomb and y are regarded
as latent variables, while x+comb and y+ are regarded as
observable. The introduction of the new variables al-
lows us to satisfy the requirement of the SEM theory
of disjoint sets of observable indicators for latent ex-
ogenous and for latent endogenous variables.

5. The anthropogenic components ξT
Land (anthr) and

ξT
GHG (anthr) are modelled as disturbance terms of ξT

Land
and ξT

GHG, respectively. Treating them as separate latent
factors is not possible due to the assumption that only
xLand and xGHG are available. For the same reason, they
are related to each other through correlation. That is,
they are modelled as if they were causally independent
of each other, although it is climatologically motivated
to assume their causal mutual dependence due to the
common source that is human activity.

Just as the previously presented CFA models, the SEM
model in Fig. 2 is a basic model, constituting a point of de-

parture for constructing different SEM models. This can be
accomplished either by deleting some of the depicted paths
or by adding new ones. For example, in order to reflect the
idea that the changing climate itself can cause subsequent
changes, one can introduce causal paths from xcomb and/or
y back to ξT

Land and/or ξT
GHG or more precisely to ξT

Land (natur)
and ξT

GHG (natur) embedded in ξT
Land and ξT

GHG, respectively.
Note that these paths also express the idea that the internal
processes can randomly contribute to natural changes in the
Land and GHG forcings.

The same ideas can also be expressed by letting the ob-
servable xf variables impact ξT

Land and/or ξT
GHG. From the

perspective of structural equation modelling, freeing paths
from observed variables to latent ones entails the movement
from the general standard representation of a SEM model to
its alternative representation (for details of both representa-
tions, see the Supplement). The identifiability status of each
initial model should be determined on a case-by-case basis.

An initial SEM model, formulated on the basis of the basic
SEM model, in accordance with climatological knowledge
may also be modified empirically. Useful means in provid-
ing clues to specific model expansions are modification in-
dices (for the details see Appendix A5). The main statistical
advantage of model expansions is that they improve (to var-
ious extent) the overall model fit to data. Nevertheless, such
modifications should be made judiciously as they lead to a
reduction in the degrees of freedom. If an initial SEM model,
on the other hand, demonstrates a reasonable fit both statis-
tically and heuristically, model simplifications might be of
more interest than model expansions.

In connection with empirical data-driven modifications of
SEM (and CFA) models, we would also like to emphasise
that the choice of a final or tentative model should not be
made exclusively on a statistical basis – any modification
ought to be defensible from the climatological point of view
and reflect our knowledge about both the real-world climate
system and the climate model under consideration. Also, a
final SEM (and CFA) model should not be taken as a correct
model, even if the model was not obtained as a result of em-
pirical modifications. When accepting a final model, we can
only say that “the model may be valid” because it does not
contradict our assumptions and substantive knowledge.

6 Applying the ideas of CFA for checking the
assumptions of estimators (14) and (15)

In Sect. 4, we suggested estimators (14) and (15) for obtain-
ing a priori estimates of the simulated internal temperature
variability. Both estimators are associated with the following
assumptions:

i. The variances of δ̃f repl.i :s within an ensemble are equal.

ii. The δ̃f repl.i t sequences within an ensemble are mutually
uncorrelated across all kf replicates.

Adv. Stat. Clim. Meteorol. Oceanogr., 8, 225–248, 2022 https://doi.org/10.5194/ascmo-8-225-2022



K. Lashgari et al.: Evaluation of simulated responses to climate forcings 237

Figure 2. Path diagram of a non-recursive (i.e. containing reciprocal relationships) SEM model under the hypothesis of consistency. The
variance of each specific factor δ̃f is assumed to be known a priori.

iii. The magnitude of the forcing effect is the same for each
ensemble member.

Each assumption is justified, both from the climate modelling
perspective and statistically. However, if at least one of them
is violated, the estimators may result in biased estimates. As
a consequence, inferences about systematic influence of forc-
ings on the temperature may be (seriously) flawed. In addi-
tion, it may deteriorate the overall fit of the previously pre-
sented CFA and SEM models to the data so they may be
falsely rejected.

A possible way to check the validity of the estimators is to
analyse the ensemble members by means of an appropriate
CFA model. To this end, two simple CFA models were for-
mulated. Their description is given in Sect. 6.1. In Sect. 6.2,
we illustrate a practical application of one of these mod-
els, thereby demonstrating practical details of fitting a CFA
model.

6.1 CFA models for analysing members of an ensemble

Using the definition of xf in Eq. (9), and without assuming
that the forcing f has a negligible effect on the temperature
variability, the xf ensemble can be analysed by the following
CFA(kf,1) model with a standardised latent factor:

xf repl.1 t = αf · ξ̃
S
f t + δ̃f repl.1 t

xf repl.2 t = αf · ξ̃
S
f t + δ̃f repl.2 t

...
...

...

xf repl.kf t = αf · ξ̃
S
f t + δ̃f repl.kf t ,

(18)

where ξ̃S
f t = ξ

S
f t/
√
σ 2
ξS
f

, αf =
√
σ 2
ξS
f

, and ξ̃S
f t is assumed to

be uncorrelated with all δ̃f repl.i . The CFA(kf,1) model is as-
sociated with the same assumptions applied to estimator (14).
Notice that since observational data are not involved, the spe-
cific factor includes only δ̃f without involving ζ S

f (compare,
for example, to Eq. 10).

Model (18) has two free parameters, αf and σ 2
δ̃f

. They are
estimable if at least two replicates are available. The more
replicates, the more degrees of freedom the model χ2 test
statistic, defined in Eq. (A5), has.

If the model fits the data adequately both statistically or
heuristically, and the resulting estimate of αf is admissible
and climatologically defensible, we may say that there is no
reason to reject the associated assumptions. In that case, the
whole ensemble is accepted for building the mean sequence,
and the resulting estimate of σ 2

δ̃f
is expected to be approxi-

mately the same as the estimate provided by estimator (14).
Consequently, any of the two variance estimates can be used
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in the further analysis of the CFA and SEM models presented
in the previous sections.

A corresponding CFA model associated with estimator
(15) is obtained by imposing the restriction αf = 0 in the
CFA(kf,1) model (provided, of course, this restriction is cli-
matologically justified). The resulting model has no latent
factors; thus, it is called the CFA(kf,0) model.

6.2 Numerical example

6.2.1 Data

We have analysed simulated near-surface temperatures gen-
erated with the Community Earth System Model (CESM)
version 1.1 for the period 850–2005, the CESM-LME (Last
Millennium Ensemble), which includes single-forcing en-
sembles with each of solar, volcanic, orbital, land, and GHG
forcing alone, as well as several simulations where all forc-
ings are used together. The CESM-LME experiment used 2◦

resolution in the atmosphere and land components and 1◦

resolution in the ocean and sea ice components. A detailed
description of the model and the ensemble simulation exper-
iment can be found in Otto-Bliesner et al. (2016) and refer-
ences therein.

For the purpose of illustrating a practical application of
a CFA model, we analyse xVolc ensembles for two regions,
namely the region of the Arctic and Asia. The regions were
defined as in PAGES 2k Consortium (2013) and also used
by PAGES2k-PMIP3 group (2015). As seen in Fig. 1 in the
former paper, the region of Arctic includes both land and sea
surface temperatures, while Asia includes land-only temper-
atures. Each ensemble contains five replicates, each of which
was forced only with a reconstruction of the transient evo-
lution of volcanic aerosol loadings in the stratosphere, as a
function of latitude, altitude, and month.

Annual-mean temperatures are used for the Arctic and the
warm-season temperatures (JJA) for Asia. This choice de-
pends on what was considered by the PAGES 2k Consor-
tium (2013) as being the optimal calibration target for the
climate proxy data they used. To extract seasonal temper-
ature data from this simulation experiment such that they
correspond to the regions defined in the PAGES 2k Consor-
tium (2013) study, we followed exactly the same procedure
as in the model vs. data comparison study undertaken by the
PAGES2k-PMIP3 group (2015). After extraction, our raw
temperature data sequences have a resolution of one tempera-
ture value per year, covering the 1000-year-long period 850–
1849 AD. The industrial period after 1850 AD has been omit-
ted in order to avoid a complication due to the fact that the
CESM simulations for this last period include ozone–aerosol
forcing, which is not available for the time before 1850. The
plots of the raw data are given in Fig. S2 in the Supplement.
The set of simulation temperature data sequences that we use
here is a subset of the dataset published by Moberg and Hind
(2019).

Two important aspects to remember when applying CFA
and SEM models (as well as ME models) are that these mod-
els assume that data are normally distributed and do not ex-
hibit autocorrelation. Since the forced component of simu-
lated temperatures, i.e. ξS

f t , is treated as repeatable, the as-
sumptions above concern the δ̃f repl.i sequences, which, how-
ever, are not directly observable. Consequently, the series to
check are

{xf repl.i t − x̄f.t }, (19)

where x̄f.t denotes the average of kf replicates at time t .
Here, to avoid autocorrelation, all raw xVolc sequences

were time-aggregated by taking 10-year non-overlapping av-
erages. The same approach of avoiding autocorrelation was
applied in SUN12. The resulting time series, each of which
contains 100 observations of 10-year mean temperatures, are
shown in Fig. S3 in the Supplement.

As supported by Fig. S4 in the Supplement, the assump-
tion of time-independent observations is satisfied (because
at least 91 % of the autocorrelation coefficients are insignifi-
cant as they are within the 90 % confidence bounds). Further,
Fig. S4 in the Supplement also suggests that the decadally re-
solved residual sequences also demonstrate reasonable com-
pliance with a normal distribution. This conclusion was
also supported by the Shapiro–Wilk test (Shapiro and Wilk,
1965), whose results, however, are not shown.

6.2.2 Results

In the present work, we have used the R package sem (see
Fox et al., 2014, http://CRAN.R-project.org/package=sem,
last access: 11 November 2022), which, in contrast to other
broadly used software designed to do CFA and SEM (e.g.
LISREL, Mplus, Amos), is an open-source alternative. The
distinguishing feature of sem is that it requires latent variable
variances of 1 to be represented explicitly. In other words, la-
tent variables and coefficients in statistical models analysed
are standardised.

The main steps of the estimation procedure in sem are de-
scribed in the Supplement by the example of our CFA model
in Eq. (18). The associated resulting outputs, produced by
sem, are shown here in Table 3, for the sake of convenience.

According to Table 3, the solution for the Asia data con-
verged in 14 iterations, yielding an admissible (i.e. σ̂ 2

δ̃Volc
=

0.0058> 0) and climatologically reasonable solution. The
latter follows from the fact that α̂Volc, equal to 0.1190 with
a p value of less than 0.01, is statistically significant at all
significance levels, which coincides with our expectations of
a well-pronounced effect of the volcanic forcing, especially
in the region of Asia.

Concerning the overall model fit, the output indicates that
the model fits the data very well, both statistically and heuris-
tically. Indeed, the model χ2 statistic of 9.23 with 13 degrees
of freedom is associated with the p value of 0.75, which
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Table 3. (A part of) Outputs produced by the R package sem as a result of fitting the CFA(5, 1) model from Eq. (18) to two xVolc ensembles
belonging to the region Asia and the Arctic, respectively.

Region: Asia

summary(result_model_1)
Model Chisquare = 9.231 Df = 13 Pr(>Chisq) = 0.7553
GFI = 0.9637 AGFI = 0.9581 SRMR = 0.05154

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

alpha 0.1190 0.0091 13.00 1.275e-38 x_repl1 <--- xi_f
sigma2_delta 0.0058 0.0004 14.07 5.705e-45 x_repl1 <--> x_repl1
Iterations = 14

modIndices(result_model_1)
5 largest modification indices, A matrix:
x_repl5<-x_repl4 x_repl1<-x_repl5 x_repl2<-x_repl1 x_repl3<-x_repl2 x_repl5<-x_repl2

2.624 1.652 1.535 1.495 1.465
5 largest modification indices, P matrix:
x_repl5<->x_repl4 x_repl5<->x_repl1 x_repl2<->x_repl1 x_repl4<->x_repl2 x_repl5<->x_repl2

3.374 2.196 1.217 1.117 1.039

Region: the Arctic

summary(result_model_1)
Model Chisquare = 24.57 Df = 13 Pr(>Chisq) = 0.02626
GFI = 0.9113 AGFI = 0.8976 SRMR = 0.1449

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

alpha 0.19788 0.019778 10.01 1.449e-23 x_repl1 <--- xi_f
sigma2_delta 0.07687 0.005463 14.07 5.705e-45 x_repl1 <--> x_repl1
Iterations = 125

modIndices(result_model_1)
5 largest modification indices, A matrix:
x_repl2<-x_repl4 x_repl5<-xi_f x_repl5<-x_repl1 x_repl4<-x_repl2 x_repl2<-xi_f

5.104 4.178 4.154 3.823 3.030
5 largest modification indices, P matrix:
x_repl4<->x_repl4 x_repl4<->x_repl2 x_repl4<->x_repl1 x_repl3<->x_repl3 x_repl5<->x_repl5

7.063 3.198 3.026 2.955 2.834

is far above the 5 % significance level. Further, the heuris-
tic goodness-of-fit indices, GFI (goodness-of-fit index; see
Eq. A6 in the Appendix) and AGFI (GFI adjusted for de-
grees of freedom; see Eq. A7 in the Appendix) (both equal
to 0.96), are not only larger than the recommended cut-off
limits of 0.90 and 0.80, respectively, but are also close to 1.
A small SRMR value of 0.052, which is less than the rec-
ommended cut-off of 0.08, also indicates adequate fit to the
data.

The output also contains information about the modifica-
tion indices. The A matrix concerns coefficients associated

with different paths, while the P matrix contains informa-
tion about variances, covariances, and correlations. An en-
try in the A matrix is of the form <endogenous variable>:
<exogenous variable>; i.e. the first variable is the variable
the path goes to. Each of the variables can be either latent
or observable. Thus, when updating a CFA model to another
CFA model, one is looking only at paths from a latent vari-
able to an observable variable. In the output associated with
the Asia data, none of the five suggested paths is such. More-
over, none of them suggest a substantial reduction in the
model χ2 statistic – the largest modification index of 2.62
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is less than the 5 % tabular value of χ2 with 1 degree of free-
dom, that is 3.84.

For the Arctic data, the conclusions are opposite. That is,
the CFA(5, 1) model is rejected both statistically and heuris-
tically. The model χ2 statistic of 24.57 with 13 degrees of
freedom is associated with a p value of 0.026, which is less
than 0.05. Probably, one could accept the model statistically
at the 1 % significance level, but the heuristic indices, in par-
ticular the very high SRMR value (0.145> 0.08), indicate an
inadequate model fit to the data.

The same conclusion is indicated by the modification in-
dices, suggesting that the model fit can be substantially im-
proved. The largest modification index of 7.063 (with 1 df)
suggests that the replicate number 4 differs from the other
replicates in terms of the internal variability. In addition, the
largest modification index for the A matrix that is applicable
within the CFA specification (see the index equal to 4.178, la-
belled x_repl5<−xi_f) also suggests that the replicate num-
ber 5 differs in terms of the estimated magnitude of the sim-
ulated temperature response to the volcanic forcing.

We refrain from discussing possible reasons for the ob-
served differences between the replicates and whether the
reasons, suggested by the modification indices, are true or
not. We can only say that if one wishes to continue the anal-
ysis of all ensembles by means of the CFA and/or SEM mod-
els suggested here, it is then motivating to try refitting the
CFA(kVolc,1) model to a reduced xVolc ensemble, where kVolc
equals either 4 or 3, depending on the number of replicates
eliminated.

7 Discussion and conclusions

The present paper provides a theoretical background of a
new statistical framework for the evaluation of simulated
responses to climate forcings against observational climate
data. A key idea of the framework, comprising two groups
of statistical models, is that the process of evaluation should
not be limited to a single statistical model. The models sug-
gested here are CFA and SEM models, each of which is based
on the concept of latent variables. Although they are closely
related to each other, there are several differences between
them, which allow for a statistical modelling of climatologi-
cal relationships in various ways.

The idea of using CFA and SEM models originates from
D&A fingerprinting studies employing statistical models
known as measurement error (ME) models (or equivalently
errors-in-variables models). As a matter of fact, an ME model
is a special case of a CFA model, which means that an ME
model is a special case of a SEM model as well. In the present
work, using this close connection between the three types of
statistical models, the ME model specification has been ex-
tended first to the CFA and SEM model specifications.

The theoretical results of this work have demonstrated that
both CFA and SEM models, just as ME models in D&A stud-

ies, are, first of all, capable of addressing the questions posed
in D&A studies, namely the assessment of the contribution
of the forcings to the temperature variability (the questions
of detection and attribution) and the evaluation of climate
model simulations in terms of temperature responses to forc-
ings (the question of consistency). In addition, the extensions
have provided the following advantageous possibilities:

– The structure of the underlying relationships can be var-
ied between latent temperature responses to forcings in
accordance to their properties and interpretations. For
example, one may assume that latent temperature re-
sponses to some forcings among those considered are
mutually uncorrelated. Such restrictions are especially
desirable for analysing climate data associated with the
so-called weak-signal regime.

– The assumption of the additivity of forcing effects can
be relaxed. At this point, let us remark that according to
Bollen (1989, p. 405), it does not seem completely im-
possible to incorporate term(s) representing the effect of
various interactions within ME models. But the methods
suggested are definitely more complicated than to fit a
CFA model, and, what is more important, they do not
allow for the evaluation of multi-forcing climate model
simulations.

– Multi-forcing climate model simulations can be evalu-
ated not only in terms of the overall forcing effect to
a combination of forcings (see Sect. 1.2 in the Supple-
ment), but also in terms of individual forcing effects.

– Non-climatic noise in observational data can be taken
into account.

– The contribution of each forcing to the observed tem-
perature variability can be assessed and the simulated
responses to climate forcings evaluated, not only simul-
taneously but also separately if needed.

– Complicated climatological feedback mechanisms
within the SEM model specification can be statistically
modelled, which allows for various causal relationships
not permitted within either ME or CFA models.

It can also be noted that the application of SEM in general is
possible under a wide range of distributional assumptions;
see, for example, Finney and DiStefano (2006), or Bollen
(1989, pp. 415–445). In the framework presented, the climate
variable of interest is temperature, assumed to have a nor-
mal distribution. However, the ideas of the framework may
pave the way for future studies focusing on other climate
variables, for example, precipitation or drought/wetness in-
dices, that may require other distributional assumptions and
other estimation methods than likelihood estimation.

Here, we would like to point out that the underlying la-
tent causal structures suggested in this work are only rough
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approximations of the real-world climatological feedback
mechanisms. The degree of approximation depends directly
on the availability of climate model simulations driven by
various combinations of the forcings of interest. In the
present work, it was assumed that only one type of multi-
forcing simulations is available, namely a simulation gen-
erated by a climate model driven by all forcings of interest
simultaneously. As a result, the departure from the additiv-
ity of individual forcing effects could be modelled only by
a single latent variable, which represented an overall effect
of possible interactions of the forcings of interest, regard-
less of their origin. The impossibility to split this interaction
term into several subcomponents, each of which is either of
natural or anthropogenic character, entails certain interpreta-
tion difficulties of some relationships within our SEM model.
However, the issue can be resolved as soon as more multi-
forcing simulations, driven by various combinations of forc-
ings, are available. The issue also becomes irrelevant under
the assumption of additivity.

Other limitations of the presented statistical models pre-
sented here are as follows:

– They are formulated under the assumption of no auto-
correlation, which is unrealistic in the case of climate
data. To overcome this issue, it was suggested here to
perform a time aggregation of the data (both simulated
and real-world), which unavoidably reduces the sample
size. Depending on the period of interest, the reduction
may be substantial, which may lead to unreliable sta-
tistical inferences. In such situations, to accept larger
sample sizes, however, would mean that one has to ac-
cept a certain autocorrelation. Thus, in future work, it is
of interest to investigate the impact of various levels of
autocorrelation on the validity of significance tests. An-
other research question of interest concerns other ways
of compensating for the presence of autocorrelation, for
example, by replacing the sample size by the effective
sample size (Faes et al., 2009).

– They are formulated under the assumption of a time-
constant variance of observational data. This assump-
tion is likely to be violated when data cover both pre-
industrial and industrial periods. Some research on this
topic has already been done (Fetisova, 2015, Sect. 2.4).
However, it may be of interest to investigate other pos-
sible methods of taking time-varying variances into ac-
count.

– They are suitable for analysing data from a single re-
gion only. That is, they do not allow for a simultane-
ous assessment of a given forcing’s contribution within
each region under consideration. To be able to perform
such multi-regional analyses, meaning that the resulting
variance–covariance matrix of observed variables com-
prises several regional variance–covariance matrices in
a block manner, the CFA (and SEM) models need to

be extended accordingly. Conceivable starting points for
this work can be found in Fuller (1987, pp. 325–327)
and Wall (2012).

– The methods presented here do not involve dimension-
ality reduction (including pre-whitening), which is per-
formed in D&A studies (Allen and Stott, 2003; Gillett
et al., 2004a; Shiogama et al., 2016; Tett et al., 1999).
The main reason for not addressing this issue here is
our wish to avoid excessive complexity in a first work
describing a new framework. However, keeping in mind
the close statistical relations between the ME, CFA, and
SEM models, we see no obvious obstacles (at least, the-
oretically) to applying the method of dimensionality re-
duction (including pre-whitening), used in D&A stud-
ies, to the models within our framework. This issue can
certainly be investigated in depth in future research. The
range of research questions may include both those that
are pertinent to D&A studies, such as the issues of es-
timating the pre-whitening matrix (Ribes et al., 2013)
and the impact of using an estimate of this matrix on
the coverage rate of the confidence intervals (Li et al.,
2021), and the questions motivated by our framework,
for example, possible modifications of our CFA and
SEM models in order to take into account the difference
in the interpretations of unforced variability (compare
(νg , ν′0 g) in Eq. 1 to (δt , νt )′, defined in Eqs. 10 and 8,
respectively).

– In practice, fitting large over-identified CFA and SEM
models (with many observable variables) is expected to
be challenging, both from the statistical and climatolog-
ical perspective, compared to ME models used in D&A
studies, which ultimately may require close collabora-
tion between statisticians, paleoclimatologists, and cli-
mate modellers.

Despite the above-mentioned limitations of our frame-
work, we firmly believe that the framework has a capacity
to become a powerful and flexible tool for deriving valu-
able insights into the properties of climate models and the
role of climate forcings in climate change, which ultimately
may improve our understanding of various mechanisms and
processes in the real-world climate system. Moreover, its de-
gree of flexibility in forming an appropriate statistical model
can further be increased by viewing the ME model specifica-
tion as a part of the framework. According to the principle of
parsimony, it is always motivating to prefer a simpler model
demonstrating an acceptable and adequate performance to a
more complicated one.

Our concluding remark is that the characteristics of the
statistical models within our framework, capable of address-
ing the questions posed in D&A studies, were discussed only
theoretically. Prior to employing them in practical analyses
involving real-world observational data, their performance
needs to be evaluated in a controlled numerical experiment,
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within which it is known that the simulated temperature re-
sponses to forcings of interest are correctly represented, both
in terms of their magnitude and shape. This will be the pur-
pose of the analysis presented by Lashgari et al. (2022).

Appendix A: A general confirmatory factor analysis
(CFA) model

A1 The definition of a CFA model

A general CFA model with q observed mean-centred vari-
ables and p latent common factors,

xt =3ξ t + δt , (A1)

in which xt is a q × 1 vector of observed variables at time
point t , ξ t is a p× 1 vector of latent common factors that
are assumed to be responsible for the correlation among the
observed variables, 3 is a q ×p matrix of coefficients con-
necting ξ t to xt , and δt is a q × 1 vector of errors.

In the terminology of factor analysis, the observed vari-
ables are called indicators or manifest variables. The coeffi-
cients 3 are referred to as factor loadings. The δt variables
are often called specific factors because they are specific to
the particular indicator they are associated with. They are as-
sumed to be identically and independently distributed, more
precisely N (0,diag6δ). In addition, they are assumed to be
uncorrelated with ξ t , which in turn can be treated either as
random (typically normally distributed with zero mean) or as
a fixed unknown constant. In contrast to the specific-factor
variables, common factors can be either correlated or uncor-
related with each other.

The main characteristic of CFA is that the researcher for-
mulates a factor model, or a set of models, in accordance
with a substantive theory about the underlying common fac-
tor structure. That is, the number of latent factors, their inter-
pretation, and the nature of the factor loadings are specified
a priori. In addition, researchers can have certain hypothe-
ses, which results in additional restrictions on the parameter
space. A typical classification of parameters within CFA is
the following (Jöreskog, 1969, 1976):

– A free parameter is a parameter to be estimated. Since
free parameters are not associated with anything spe-
cific about them, they are not a part of the hypotheses
associated with a factor model.

– A fixed parameter is a parameter whose value is prespec-
ified by hypothesis, and this value remains unchanged
during the iterative estimation process.

– A constrained-equal parameter is a parameter that is
estimated, but its value is constrained to be equal
to another parameter (or parameters). Because only
one value needs to be determined for each group of
constrained-equal parameters, only one parameter from

this group is counted when counting the number of dis-
tinct estimated parameters. In contrast to free parame-
ters, constrained-equal parameters are a part of the hy-
potheses associated with a factor model, although both
types of parameters are estimated.

A2 Estimation of the parameters

The estimation of parameters in CFA is based on the idea that
the population variance–covariance matrix of the indicators,
6, can be represented as a function of the model parameters
θ , denoted 6(θ ). The matrix 6(θ ) is called the implied (or
model’s reproduced) variance–covariance matrix of the indi-
cators. The objective of CFA is to empirically confirm or dis-
confirm the hypothesised latent structure or equivalently the
hypothesised variance–covariance matrix of the indicators.
Thus, the parameters are estimated such that the discrepancy
between the sample variance–covariance matrix of the indi-
cators, S, and the estimated model’s reproduced variance–
covariance matrix,6 (̂θ ), is as small as possible. In particular,
under the assumption of normality of the data, the estimates
are obtained by minimising the following discrepancy func-
tion with respect to the free parameters, conditional on the
explicitly constrained parameters (Bollen, 1989; Jöreskog,
1969; Mulaik, 2010):

F (θ )= log|6(θ )| + tr(S6(θ )−1)− log|S| − q. (A2)

As shown by Jöreskog (1969), minimising Eq. (A2) is
equivalent to maximising the maximum likelihood (ML)
function, which implies that the estimates obtained are ML
estimates. According to the general theory, the ML estimates
are consistent, jointly asymptotically normally distributed
with the asymptotic variance expressed as being the inverse
of the Fisher information. In CFA, the Fisher information
matrix is defined as follows:

n− 1
2
·E

[
∂2F (θ )
∂θ∂θ ′

]
. (A3)

The inverse of Eq. (A3), evaluated at the values for the
parameters that minimise the F function, gives an estimate
of the variance of the asymptotic distribution of the model
estimates.

One can use the estimated variances to test each estimated
parameter θi by means of the z statistic θ̂i

/√
V̂ar(θ̂i), which

has approximately a standard normal distribution. The re-
sults of tests that θi = 0 are provided in the form of two-
sided p values by all statistical packages designed to do
CFA, regardless of whether a model is just-identified or over-
identified. In addition, one also can construct the approxi-
mate 100(1−p)% Wald confidence interval for each param-
eter θi to test H0 : θi = θ

0
i :

θ̂i± zp/2 ·

√
V̂ar(θ̂f), (A4)

where zp/2 is the 100(1−p/2) percentile of the standard nor-
mal distribution.
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A3 The concept of identifiability

A key concept in CFA is identifiability of parameters. Identi-
fiability is closely related to the ability to estimate the model
parameters from a sample generated by the model, given re-
strictions imposed on the parameters. The general identifi-
ability rule states that if an unknown parameter θi can be
written as a function of one or more elements of 6, that pa-
rameter is identified (see Bollen, 1989, p. 89). If all unknown
parameters in θ are identified, then the model is identified.

Based on this definition of identifiability, a factor model
can be classified as under-identified, just-identified, or over-
identified. Obviously, free parameters cannot be estimated
from any 6 if their number exceeds the number of the non-
duplicated (unique) elements in6 equal to q(q+1)/2. There-
fore, such a factor model is called under-identified. Just-
identified models have as many parameters as the number
of the unique equations in 6, and, most importantly, each
parameter can be explicitly solved in terms of the variances
and covariances of the indicators.

For over-identified models, the number of free parameters
is smaller than the number of unique equations σij = σij (θ ),
and more than one distinct equation is solvable for (some) θi .
As a consequence, over-identified parameters have multiple
solutions, implying that the minimisation of the discrepancy
function in question is performed numerically. This entails
that S does not fit 6 (̂θ ) perfectly, thus making it meaningful
to assess the fit of the model to the data. For just-identified
models, assessing the overall fit and hypothesis testing are
senseless because of the fact that 6 (θ )= S is a mathemati-
cal necessity, not an empirical finding.

Notice that even if the number of free parameters is
smaller than or equal to the number of unique equations in
6 =6 (θ ), but at least one free parameter cannot be writ-
ten as a function of the elements of 6, the associated factor
model is clearly under-identified.

One way to establish the identifiability is to solve struc-
tural covariance equations 6 =6(θ ) for unknown parame-
ters in θ algebraically. However, for large models with many
indicators, the attempts of establishing their identifiability
algebraically are very likely to be error-prone and time-
consuming. Given such a situation, researchers may resort
to empirical tests for identifiability.

One of them is the empirical test of the matrix of second-
order derivatives of the discrepancy function in Eq. (A2) used
to estimate the model. According to Jöreskog and Sörbom
(1989), “if the model is identified, the information matrix is
almost certainly positive definite. If the information matrix
is singular, the model is under-identified”. The test is auto-
matically calculated in all statistical packages developed to
estimate structural equation models, for example, LISREL,
EQS, and the R package sem.

According to Jöreskog and Sörbom (1989), identifiability
can also be checked by the following two-step test. The
first step is to analyse the sample variance–covariance

matrix, S, as usual and to save the predicted covariance
matrix based on the estimates of the model parameters,
i.e. 6 (̂θ ). Next, substitute 6 (̂θ ) for S, and rerun the same
program. If the model is identified, the new estimates
should be identical to the first ones that were generated.

Yet another possible check for identifiability is to estimate
the model with different starting values for free parameters
in the iterative estimation algorithm to see whether or not the
algorithm converges to the same parameter estimates each
time. This empirical test, however, should be used with great
care. Choosing inappropriate starting values may cause the
failure of convergence, although the model is theoretically
identified.

In practice, the estimation procedure may produce param-
eter estimates, although the model is theoretically under-
identified. Such a phenomenon is known as empirical under-
identifiability (Rindskopf, 1984), causing inadmissible solu-
tions. One way to check whether a solution is admissible or
not is to look at the completely standardised solution. This
type of solution standardises the solution such that the vari-
ances of the latent factors and the indicators are 1. Inadmissi-
ble solutions are indicated by factor loadings and correlation
coefficients exceeding 1 and by specific-factor variances that
are negative or are greater than 1. Inadmissible estimates of
correlation coefficients can also be detected by means of the
standardised solution, associated with a CFA model, where
only latent factors are standardised to have their variances
equal to 1.

In order to avoid empirical under-identifiability, and in
order to undertake justified empirical modifications of the
model in case they are needed, it is important to identify the
causes of the model’s theoretical under-identification prior
to estimating a CFA model. To this end, it would be suffi-
cient to ensure that each parameter is solvable from structural
covariance equations, without deriving closed analytical ex-
pressions of the solution.

Examining the variance–covariance matrix of the asymp-
totic distribution of the model estimates is also helpful for re-
vealing empirical under-identifiability. If the model is nearly
under-identified, it will be reflected in high covariances be-
tween two or more parameter estimates.

Even if estimates are admissible, one should also ensure
that they have the anticipated signs and magnitudes.

A4 Assessing the overall model fit

For just-identified CFA models, the function F (̂θ ), evalu-
ated at the minimum, is equal to zero, since 6 (̂θ )= S and
tr(S6 (̂θ )−1)= q. That is, a just-identified model has an ex-
act solution in terms of the variances and covariances among
indicators, but nothing is hypothesised, and nothing can be
tested.

For over-identified models, arising due to additional con-
straints imposed on some model parameters, at least one
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(free) parameter can be expressed by more than one dis-
tinct equation in terms of the variances and covariances of
indicators. Therefore, the fit between 6 (̂θ ) and the sample
variance–covariance matrix, in general, will not be perfect,
thus motivating assessment of the model fit to the data.

To this end, one uses the fact that the discrepancy function
(A2) is related to the log-likelihood ratio χ2 goodness-of-fit
test of the model’s 6(θ ) to S (Jöreskog, 1969). The relation
is given by

χ2
=−2 · (logL(H0)− logL(HA))= (n− 1) ·F (̂θ ), (A5)

where logL(H0)=− 1
2 · (n−1) ·

{
log|6 (θ ) |+tr(S6(θ )−1)

}
is the logarithm of the likelihood function under the null
hypothesis H0 :6 =6(θ ), while logL(HA)=− 1

2 · (n− 1) ·{
log|S|+q

}
is the logarithm of the likelihood function under

the alternative hypothesis HA of unrestricted 6, i.e. 6 = S.
In large samples, the χ2 test statistic is approximately

distributed as χ2 with df= q(q + 1)/2−m degrees of free-
dom, where q(q + 1)/2 is the number of the unique (non-
duplicated) equations in the variance–covariance matrix of
the indicators, and m is the number of distinct free parame-
ters.

If the solution obtained is admissible and interpretable, the
statistical assessment of the overall model fit is performed by
means of the χ2 test statistic. Note that failure to reject the
null hypothesis is desired, as it leads to the conclusion that
the hypothesised model is consistent with the data.

When applying the χ2 test statistic, it should be kept in
mind that in large samples even small differences between
S and 6 (̂θ ) can be statistically significant, although the dif-
ferences may not be practically meaningful. Consequently, a
number of goodness-of-fit indices, serving as heuristic mea-
sures of model fit, have been proposed in the factor analy-
sis literature (see, for example, Hu and Bentler, 1998; Mu-
laik, 2010; Sharma, 1996). Some of them are as follows:
a goodness-of-fit index (GFI), GFI adjusted for degrees of
freedom (AGFI), and standardised root-mean-square resid-
ual (SRMR). Their definitions are the following (Hu and
Bentler, 1999; Sharma, 1996):

GFI= 1−
tr(6̂−1S− I )2

tr(6̂−1S)2
, (A6)

AGFI= 1−
q(q + 1)

2 · df
(1−GFI) , (A7)

where df is the degrees of freedom, q is the number of indi-
cators, and

SRMR=

√√√√√√
q∑
i=1

∑i

j=1

[(
sij − σ̂ij

)/
(siisjj )

]2

q(q + 1)/2
, (A8)

where sij := observed (co)variances, σ̂ij := reproduced
(co)variances, and sii and sjj := observed standard devia-
tions.

As for cut-off values of the indices, the following rules
of thumb have been recommended. The GFI for good-fitting
models should be greater than 0.90, while for the AGFI
the suggested cut-off value is 0.8 (Sharma, 1996). For the
SRMR, a perfect model fit is indicated by SRMR= 0. Conse-
quently, the larger the SRMR, the less fit between the model
and the data. According to Hu and Bentler (1999), a cut-off
value close to 0.08 for SRMR indicates a good fit.

Notice that the goodness-of-fit indices can be used both
for assessing the fit of a single CFA model and for a number
of competing models fitted to the same data set.

A5 Empirical data-driven modifications of CFA models

According to the “pure” confirmatory approach, the rejec-
tion of the hypothesised model, whose estimated parame-
ters are judged to be admissible and interpretable, means that
one rejects the model and the associated underlying hypothe-
ses, without proceeding with any updating of this hypoth-
esised structure. However, in practice, researchers do pro-
ceed. The first aspect to check is whether no key elements
of the underlying hypotheses are missing. Further, this mo-
tivates a check of other possible reasons of the poor model
fit, such as small sample size, non-normality, or missing data
(Boomsma, 2000). Finally, a typical approach to arriving at
a CFA model with an adequate fit is to free some constrained
parameters with the aid of modification indices.

Developed by Sörbom (1989), modification indices at-
tempt to estimate which missing parameter, if added to the
current CFA model, would result in the greatest reduction
of the discrepancy between model and data. The way to use
these indices is to free the fixed parameter associated with the
largest reduction and reanalyse the resulting model. Hence,
modification indices help us to establish the identifiability of
modified models. If a modification index for a fixed parame-
ter is not zero and positive, this indicates that this parameter
will be identified if it is set free.

Modified models suggested by modification indices are so-
called nested models, fitted to the same data. That is, each of
them is a special case of the initial model, where the parame-
ter suggested to be estimated, is constrained to zero. Accord-
ing to statistical theory in Steiger et al. (1985), for nested
models, one can treat the difference in the two χ2 values as
a χ2 difference statistic with degrees of freedom equal to the
difference in their degrees of freedom.

Code and data availability. The present work employed the R
package sem (Fox et al., 2014; Fox, 2006) (http://CRAN.R-project.
org/package=sem, https://doi.org/10.1207/s15328007sem1303_7)
using R version 3.0.2 (R Core Team, 2013) (http://www.R-project.
org/, last access: 6 December 2022). The R package sem was used
for the estimation of the CFA(kf, 1) model, given in Eq. (18). The
R code is given in the Supplement to this article (see Sect. S4).
The simulation data used in this study are available from the Bolin
Centre Database, Stockholm University (Moberg and Hind, 2019,
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https://doi.org/10.17043/moberg-2019-cesm-1). The data are the
same as used in Fetisova (2017) (http://su.diva-portal.org/smash/
record.jsf?pid=diva2:1150197&dswid=9303, last access: 6 Decem-
ber 2022).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/ascmo-8-225-2022-supplement.
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