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S1 Interpretation of the numerical results

This section complements Sect. 4 in Lashgari et al. (2022) (henceforth referred to as LAS22num) by providing details and

discussions of the numerical results for the Europe, Arctic, Asia, South America, Australasia and Antarctica regions. All

subsections have the same structure, namely:

1. The presentation of the data sets analysed.55

As motivated in Sect. 2 in LAS22num, some ensembles have been reduced by eliminating some of their members.

Therefore, we first present the remaining members of each ensemble, used to construct corresponding mean sequences.

2. The presentation of the preliminary analyses of the final single-forcing ensembles.

To get a preliminary idea about the magnitude of the effect of forcing f on the simulated temperature in each region,

each final ensemble is also analysed by means of the CFA(kf,1) model, where kf is the number of the remaining60

ensemble members, and f ∈ {Sol, Orb, Volc, Land (anthr), GHG, comb}. The CFA(kf,1) model is defined in Sect. 2.1

in Eq. (4). Here, the main model parameter of interest is the factor loading αf, representing the effect of forcing f on

the temperature. The resulting estimates of each αf is then used for assessing the reliability and appropriateness of the

estimates provided by the three statistical models of interest.

3. The presentation and interpretation of the numerical results for each of the three statistical models of interest.65

The statistical models, defined in LAS22num in Sect.3, are:

(a) the ME-CFA(6, 5) model from Table 3 in LAS22num, which is a ME model rewritten in the form of a CFA model,

(b) the CFA(7, 6) model from Table 5 in LAS22num, and

(c) the SEM model whose path diagram is depicted in Fig. 1 in LAS22num.

Prior to presenting the numerical results, let us emphasize that the main concepts and definitions of a general SEM model,70

including a general CFA model as a special case, are given here in Sect. S2. Since CFA and SEM models are closely related,

the way of assessing their overall fit to the data and determining their acceptability is the same (for the details see Sect. S2.4).

As follows from Sect. S2.4, the model overall fit is to be judged both statistically by means of the χ2 statistic, given in Eq.

(S18), and heuristically by means of the goodness-of-fit indices GFI, AGFI and SRMR, given in Eq. (S19), (S20), and (S21),

respectively.75

It is also worth emphasising that in our statistical analyses we have used the 5% significance level for making inferences

concerning various hypotheses.
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S1.1 Europe (summer, June-August, mean temperature)

The data sets analysed are presented in Table S1.1.1, from which it follows that seven data sets were analysed. Results for80

the three statistical models of interest are provided in Tables S1.1.2 - S1.1.4.

Table S1.1.1. Overview of replicates of each xf, used to construct seven regional Europe data sets. Each data set contains different x̄ comb

and τpseudo, where x̄ comb is constructed by averaging over three replicates randomly selected from the six that remained after x comb repl.i:s,

i= 1, 6, 8, have been eliminated and after one of x comb repl.i:s, i= 2,3,4,5,7,9,10, is chosen to represent τ , i.e. τpseudo.

Mean sequences
Data set xSol xOrb xVolc xLand (anthr), xGHG x comb x comb repl.i = τpseudo

1 1,3 1,2 1,2,3,4 all associated repl’s 4,7,10 2
2 1,3 1,2 1,2,3,4 all associated repl’s 4,5,10 3
3 1,3 1,2 1,2,3,4 all associated repl’s 2,7,9 4
4 1,3 1,2 1,2,3,4 all associated repl’s 2,3,7 5
5 1,3 1,2 1,2,3,4 all associated repl’s 2,3,9 7
6 1,3 1,2 1,2,3,4 all associated repl’s 3,5,10 9
7 1,3 1,2 1,2,3,4 all associated repl’s 3,5,7 10

S1.1.1 Preliminary analyses of final single-forcing ensembles by means of the CFA(kf,1) model

The analyses of the xOrb-, and xOrb ensembles, described in Table S1.1.1, indicated that the direct effect of the orbital respective

land use forcing is not detected in the simulated summer mean temperature in Europe during 850 –1849 AD (α̂Orb = 0.028

with the associated p value of 0.50, α̂Land (anthr) = 0.028 with the associated p value of 0.31). In contrast, the similar analyses85

of xSol-, xVolc-, and xGHG ensembles suggested that the (direct) effects of the solar, volcanic respective GHG forcing are well

pronounced in the simulated summer mean temperature in Europe during 850 –1849 AD (α̂Sol = 0.063 with p value= 2.1e–04,

α̂Volc = 0.134 with p value= 5.7e–26, and α̂GHG = 0.052 with p value= 0.001).

S1.1.2 The result of fitting the ME-CFA(6, 5) model to the Europe data

Knowing that Osim and Lsim may be arbitrarily near zero, it is reasonable to expect various consequences of empirical under-90

identifiability, when fitting the ME-CFA(6, 5) model to the Europe data. As one can see in Table S1.1.2, the results confirm

our apprehension. For those data sets, for which the estimation procedure has converged to a solution, the solutions obtained

are inadmissble. This is reflected by inadmissble values of some correlation coefficients, which exceed 1 in absolut value. For

example, for data set no. 1, it was observed φ̂OL = 5.99 and φ̂OG = 1.14.

Thus, the ME-CFA(6, 5) model has to be rejected for all data sets, despite its excellent fit to the data. For example, for data95

set no. 1, the p value for the χ2 statistic, 0.57, is much larger than 0.05, and the observed values of the heuristic indices are

within their acceptance areas: GFI = 1> 0.9, AGFI = 0.98> 0.80, and finally SRMR = 0.008 < 0.08.
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Table S1.1.2. The result of estimating the ME-CFA(6, 5) model fitted to the Europe data. The estimates marked in bold font are inadmissble.
• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value
Ssim 0.064 4.7e–06 Lsim 0.029 0.19 φSL -0.38 0.54
Strue 0.000 0.99 Ltrue 0.010 0.78 φSG 0.55 0.11
Osim 0.013 0.84 Gsim 0.051 2.7e–04 φOV 0.70 0.85
Otrue 0.004 0.87 Gtrue 0.032 0.72 φOL 5.99 0.84
Vsim 0.134 1.5e–26 φSO 0.16 0.92 φOG 1.14 0.85
Vtrue 0.130 5.3e–04 φSV -0.03 0.86 φV L 0.86 0.18

φV G 0.13 0.56 φLG 0.49 0.49

To assess the overall model fit:

Model χ2 = 0.315, df = 1, p value = 0.57, GFI = 1, AGFI = 0.98, SRMR = 0.008.

Inadmissble solutions have been observed for all data sets except data set no. 2, for which the estimation procedure failed to converge to a

solution.

S1.1.3 The result of fitting the CFA(7, 6) model to the Europe data

Supported by the preliminary estimates ofαf:s, all modified version of the CFA(7, 6) model were estimated under the restriction

Lsim = Osim = 0, which also required setting all associated correlation coefficients to zero. A positive consequence of these100

restrictions is that it gives us more degrees of freedom. The modified CFA model with the best overall model fit is shown in

Table S1.1.3.

Table S1.1.3. Estimated parameters of the modified version of the CFA(7, 6) model fitted to the Europe data.

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value
Ssim 0.047 1.1e–05 σ2

ηinternal pseudo 0.0227 3.1e–09 σδ̃Land (anthr) δ̃Volc
0.0029 0.039

Vsim 0.137 4.3e–32 σδ̃Sol δ̃GHG
0.0017 0.11 σδ̃Land (anthr) δ̃comb

0.0047 1.7e–03

Gsim 0.050 7.4e–07 σδ̃Land (anthr) δ̃Orb
0.0016 0.086 σδ̃Land (anthr) ηinternal pseudo

0.0041 0.027

To assess the overall model fit:

Model χ2 = 9.4, df = 19, p value = 0.97, GFI = 0.97, AGFI = 0.96, SRMR = 0.067.

• Summary of the results based on all 7 data sets
Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.038 0.043 0.047 σ̂δ̃Land (anthr) δ̃Orb
0.0015 0.0018 0.0020 Model χ2 9.4 13.5 18.8

V̂sim 0.136 0.137 0.139 σ̂δ̃Land (anthr) δ̃Volc
0.0026 0.0028 0.0029 p value 0.47 0.78 0.97

Ĝsim 0.046 0.049 0.050 σ̂δ̃Land (anthr) δ̃comb
0.0047 0.0057 0.0067 GFI 0.95 0.96 0.97

σ̂2
ηinternal pseudo 0.0227 0.0249 0.0306 σ̂δ̃Land (anthr) ηinternal pseudo

0.0015 0.0018 0.0020 AGFI 0.93 0.95 0.96

σ̂δ̃Sol δ̃GHG
0.0016 0.0016 0.0017 SRMR 0.063 0.072 0.089

The solution for each data set is admissible.
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According to Table S1.1.3, the estimation resulted in an admissible solution for each data set. Furthermore, the overall fit

of the model is quite good both statistically and heuristically. For example, for data set no. 1, p value for the χ2 statistic,

0.97, is much larger than 0.05, GFI = 0.97> 0.9, AGFI = 0.96> 0.80, and finally SRMR = 0.067< 0.08. The model also105

demonstrated a stable performance across all seven data sets both in terms of the parameter estimates and in terms of its overall

fit to the data.

Further, the parameter estimates seem to be interpretable from the climatological point of view. The effect of the solar,

volcanic and GHG forcings on the simulated summer mean temperature in Europe during the period 850 –1849 AD is estimated

as significant. For example, for data set no. 1, the following estimates were observed: Ŝsim = 0.047 with p value= 1.1e–05,110

V̂sim = 0.137 with p value= 4.3e–32, and Ĝsim = 0.050 with p value= 7.4e–07. Comparing Ŝsim, V̂sim and Ĝsim to each

other, one can conclude that the magnitude of the influence of the volcanic forcing is more than twice as large as that of the

solar and GHG forcings. Recall from LAS22num that coefficients in CFA and SEM models are standardised, which makes

comparisons between them meaningful.

Concerning the parameter Gsim, the presented CFA model tells us that Gsim represents the effect of anthropogenic changes115

in the reconstructed GHG forcing. This conclusion is motivated by the fact that ξSGHG is not related to the temperature responses

to the natural forcings, here ξSSol and ξSVolc. Climatologically, the significant effect of anthropogenic changes in the GHG forcing

can be justified by an effect in the last about one century of data in the analysed period.

However, it deserves to be noted that the effect of the solar forcing seems to be underestimated for all seven data sets. The

underestimation could be seen in the normalised residuals (the matrix with the normalised residuals is not shown here).120

Prior to drawing final conclusions, let us investigate the underlying latent structure of the data by means of the SEM model.

S1.1.4 The result of fitting the SEM model to the Europe data

The path diagram of the resulting SEM model is shown in Fig. S1.1.1. As one can see, the SEM model, just as the CFA model

above, hypothesises that the land use and orbital forcings have a negligible effect on the simulated summer mean temperature

in Europe during 850 –1849 AD. Therefore, both statistical models do not contain the forced components ξSLand (anthr) and ξSOrb,125

meaning that xLand (anthr) and xOrb represent the internal temperature variability generated by the corresponding single-forcing

climate model. That is, xLand (anthr) = δ̃Land (anthr) and xOrb = δ̃Orb.

However, unlike the CFA model, the SEM model contains two new observable variables, not presented even in the initial

SEM model described in LAS22num. The variables are x+
Land (anthr) and x+

Orb. They were constructed in an analogous way and

for the same reason as x+
Land (anthr) within the SEM model fitted to the North America data (see LAS22num). For the convenience130

of the reader, let us repeat here our way of reasoning.

So, initially, x+
f , where f ∈ {Land (anthr), Orb}, is constructed by equating it to the original xf by setting the disturbance

variance of x+
f to zero, and by relating it to xf through the regression coefficient equal to 1. Note that in the presence of x+

f in

the model, the corresponding xf is viewed as latent.

135
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Figure S1.1.1. Path diagram of the modified SEM model fitted to the Europe data.

As known, under the CFA model specification, specific factors, representing within our framework the internal random

temperature variability, can be statistically related only to each other, and only by means of covariances. Within the CFA model

above (see Table S1.1.3), δ̃Land (anthr) is related in this way to δ̃Orb, δ̃comb and to ηinternal pseudo, each of which represents the

internal temperature variability, generated by the corresponding climate model.

However, it turned out that a better overall model fit can be achieved if xLand (anthr) receives a causal input from xcomb and140

τpseudo, respectively. Statistically, these inputs relate δ̃Land (anthr) not only to δ̃comb and ηinternal pseudo, but also to the forced tempera-

ture variability, represented by ξSSol, ξ
S
Volc and ξSGHG.

Although no dynamical relationships between the reconstructions of the forcings and the internal processes were imple-

mented in the climate modelling experiment under consideration, the causal inputs to xLand (anthr) can be viewed as a statistical

8



Table S1.1.4. The result of estimating the SEM model presented graphically in Fig. S1.1.1 (region: Europe).

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Ssim 0.054 7.5e–06 CL+ 0.157 0.017 Var(ξSGHG (anthr)) 0.0028 0.014

Vsim 0.137 1.3e–31 TL+ 0.024 0.65 SG+ -0.149 0.28

σ2
ηinternal pseudo 0.023 4.7e–09 LO+ 0.244 0.030 σδ̃Sol δ̃GHG

0.0030 0.10√
V̂ar(ξSGHG) = ĜsimSEM =

√
(ŜG+)2 ·

(
Ŝsim

2
+σ2∗

δ̃Sol

)
+ V̂ar(ξSGHG (anthr)) = 0.057 (p value= 0.030)

To assess the overall model fit:

Model χ2 = 6.09, df = 19, p value = 0.998, GFI = 0.98, AGFI = 0.98, SRMR = 0.044.

• Summary of the results based on all 7 data sets

Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.048 0.052 0.054 σ̂δ̃Sol δ̃GHG
0.0031 0.0034 0.0036 Model χ2 6.10 12.2 15.6

V̂sim 0.134 0.136 0.139 ŜG+ -0.195 -0.170 -0.140 p value 0.69 0.84 1.00

ĜsimSEM 0.057 0.058 0.060 ĈL+ 0.049 0.168 0.244 GFI 0.96 0.97 0.98

σ̂2
ηinternal pseudo 0.023 0.025 0.030 T̂L+ -0.004 0.050 0.168 AGFI 0.94 0.95 0.98

V̂ar(ξSGHG (anthr)) 0.0028 0.0030 0.0032 L̂O+ 0.24 0.24 0.24 SRMR 0.044 0.055 0.069

The solution for each data set is admissible.

An important note on Table S1.1.4 is that σ2∗
δ̃Sol

denotes the variance of the mean sequence x̄Sol, i.e. σ2∗
δ̃Sol

is in effect σ2∗
δ̃Sol

/kSol, where kSol=2 and σ2∗
δ̃Sol

is estimated a

priori by means of our estimator (3) from LAS22num. Since we do not use the bar notation to designate the mean sequences (see Sect.3 in LAS22num), it is motivated to

apply a conformable notation for their variances. Similar notations are applied throughout the rest of the Supplement.

description of complicated climatological processes, which may occur in the real-world climate system and which may be145

reflected both in the forcing reconstructions and in the physical basis for the internal processes that are implemented in the

climate model.

Indeed, in the real-world climate system, the causal inputs to xLand (anthr) could arise as a result of various interactions, or

equivalently climate feedback mechanisms, occuring in the climate system, namely (i) interactions between the internal pro-

cesses and the forcings, in particular the volcanic, solar and GHG forcings, and (ii) interactions between the internal processes150

themselves. Let us note that statistically, the co-relation between xLand (anthr) and xcomb (or τpseudo) could also be analysed by

means of the input from xLand (anthr) to xcomb, but it is difficult to accept that in the real-world climate system, the internal

processes may be a cause of the variations in the external forcings, in particular the solar and volcanic forcings.

A disadvantage of letting xcomb and τpseudo influence xLand (anthr) is that it would change the interpretation of the latter from

the climate modelling perspective. More precisely, this would mean that xLand (anthr) was generated by the climate model driven155

by the volcanic, solar and GHG forcings, which is not the case. Therefore, our goal is to formulate a SEM model, which, on

one hand, unambiguously indicates that xLand (anthr) was generated by the xLand (anthr) climate model, and, on the other hand, links

xLand (anthr) to other model variables generated by other climate models analysed. This goal can be achieved by creating a new
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variable, representing a copy of xLand (anthr), and let xVolc influence this new variable instead of xLand (anthr). In Fig. S1.1.1, the

associated regression coefficients correspond to the paths CL+ and TL+, respectively.160

One can also see in Fig. S1.1.1 that the paths CL+ and TL+ go through x+
Land (anthr) further to x+

Orb, or equivalently δ̃Orb, along

the path LO+. Hence, the SEM model relates not only δ̃Land (anthr), but also δ̃Orb to the forced and internal temperature varia-

tions, embedded in xcomb and τpseudo. The main advantage of using regressions in this case is that a large number of observed

covariances could be statistically explained by estimating a smaller number of parameters. More precisely, 11 (nonduplicated)

observed covariances, namely cov(x+
Land (anthr), x

+
Orb), cov(x+

f , xcomb), cov(x+
f , τpseudo), cov(x+

f , xVolc), cov(x+
f , xSol), cov(x+

f ,165

xGHG), where f ∈ {Land (anthr), Orb}, were explained by means of three parameters: CL+, TL+, and OL+. As a result, a better

overall model fit was achieved without losing 11 degrees of freedom but only three.

An additional improvement in the model overall fit was achieved by freeing the causal input from xSol to ξSGHG, denoted SG+.

In the real-world climate system, this input can be associated with interactions between the concentrations of greenhouse gases

in the atmosphere and the climate system (in particular the solar forcing and the internal processes), which may be reflected in170

the reconstructed GHG forcing history used to drive the climate model under consideration. Based on the estimates of SG+,

presented in Table S1.1.4, we may say that the natural component in the overall temperature response to the reconstructed

GHG forcing is not well seen in the simulated summer mean temperature in Europe during 850 –1849 AD. For example, for

data set no. 1, ŜG+ =−0.132 with p value= 0.33.

The path SG+ also tells us that the solar forcing exerts not only a direct influence, represented by the parameter Ssim,175

but also an indirect influence, represented by the product Ssim·SG+. The sum of the direct and indirect effects gives a total

effect. Although, it would of great interest to provide estimates of indirect and total effects, we refrain from such calculations.

As explained in LAS22num, the aim of the present analysis is to compare the performance of three statistical models, two

of which are capable of estimating only direct effects. In addition, it is not possible to provide within the confines of the

present analysis the complete theoretical background of calculating indirect and total effects, which can arise in SEM models180

of different degrees of complexity. Therefore, we here focus only on the estimation and comparison of direct effects, provided

by the three statistical model under consideration.

Turning back to the estimates provided by the SEM model, we note that the estimate of Var(ξSGHG (anthr)) is significant for data

set no. 1 (V̂ar(ξSGHG (anthr)) = 0.0028 with the associated p value of 0.014). Together with the insignificant estimates of SG+, this

result suggests that the effect of anthropogenic global-scaled variations, which may be reflected in the actual reconstruction of185

the GHG forcing, is better pronounced in the simulated summer mean temperature in Europe during 850 –1849 AD than the

effect of natural global-scaled variations. Importantly, the same conclusion has been suggested by the CFA model above.

The overall effect of (anthropogenic and natural variations in) the GHG forcing is represented by the parameter ĜsimSEM,

which is the standard deviation of ξSGHG, calculated afterwards by means of the delta method described here in Sect.S2.5.

For data set no. 1, GsimSEM is estimated to be 0.057 with the associated p value of 0.03. A similar result was observed for190

the remaining data sets as well. Thus, we may say that the SEM model detects a moderately significant overall effect of

anthropogenic and natural changes in the GHG forcing in the simulated summer mean temperature in Europe during 850 –

1849 AD.
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Concerning the effect of the volcanic and solar forcing, the SEM model, just as the CFA model above, suggests that the

effect of the volcanic forcing is estimated as the largest and the most significant compared to the effect of the solar forcing (see,195

for example the result for data set no. 1: Ŝsim = 0.054 with p value= 7.5e–06, V̂sim = 0.137 with p value= 1.3e–31).

S1.1.5 Summary and conclusion (region: Europe)

The first statistical model, the ME-CFA(6, 5) model, has to be rejected due to inadmissble solutions.

In contrast to the ME-CFA(6, 5) model, the CFA and SEM models have admissible and climatologically defensible solutions.

Importantly, in terms of the direct effects of the forcings, the interpretations of both statistical models are basically the same200

(see the overview in Table 9 in LAS22num). In addition, both models demonstrated a stable performance across all seven data

sets.

Nevertheless, the SEM model fits the data better than the CFA model, albeit both statistical models have the same number

of degrees of freedom (df=19). The better fit of the SEM model is especially reflected in the smaller SRMR values than those

observed for the CFA model. Compare the observed range of the SRMR values for the CFA model, (min(SRMR)=0.063,205

mean(SRMR)=0.072, max(SRMR)=0.089), to the corresponding range observed under the SEM model: (min(SRMR)=0.044,

mean(SRMR)=0.065, max(SRMR)=0.069). Motivated by the better overall model fit of the SEM model, our suggestion is

to choose the SEM model as a statistically adequate and climatologically defensible approximation of the underlying latent

structure of the Europe data.

11



S1.2 The Arctic (annual mean temperature)210

The data analysed are presented in Table S1.2.1, from which it follows that five data sets were analysed. Results for the three

statistical models of interest are provided in Tables S1.2.2 - S1.2.4.

Table S1.2.1. Overview of replicates of each xf , used to construct five regional Arctic data sets (annual mean temperature). Each data

set contains different x̄ comb and τpseudo, where x̄ comb is constructed by averaging over four replicates randomly selected from the four that

remained after x comb repl.i:s, i= 1,3,6,8,10, have been eliminated and after one of x comb repl.i:s, i= 2,4,5,7,9, is chosen to represent τ , i.e.

τpseudo.

Mean sequences

Data set xSol, xOrb,xGHG, xLand (anthr) xVolc x comb x comb repl.i = τpseudo

1 1,3,4 all associated repl’s 1,3 1,2 4,7 2

2 1,3,4 all associated repl’s 1,3 1,2 5,9 4

3 1,3,4 all associated repl’s 1,3 1,2 2,7 5

4 1,3,4 all associated repl’s 1,3 1,2 4,9 7

5 1,3,4 all associated repl’s 1,3 1,2 2,4 9

S1.2.1 Preliminary analyses of final single-forcing ensembles by means of the CFA(kf,1) model

Each single-forcing ensemble in Table S1.2.1 was analysed by means of the CFA(kf, 1) model.

When analysing the xLand (anthr) ensemble, the CFA(kf = 2, 1) model was estimated under the restriction Lsim = 0, which215

corresponds to hypothesising that the effect of anthropogenic changes in the land-use forcing is not detectable in the simulated

annual mean temperature in the Arctic during the period of study. The hypothesis is motivated by the reconstruction of the land-

use forcing, which does not show any variability over the Arctic on an annual basis during the analysis period (see Fig. S4.5 in

Fetisova et al., 2017). It turned out that there was no reason to reject this hypothesis because the resulting the CFA(kLand (anthr),0)

model fitted the data well both statistically and heuristically (the result is not presented here).220

Concerning the remaining forcings, the results suggested that the effects of the solar, orbital, volcanic and GHG forcings are

well detectable in the simulated annual mean temperature in the Arctic during 850 –1849 AD (α̂Sol = 0.097 with p value= 2.1e–

04, α̂Orb = 0.0932 with p value= 0.0024, α̂Volc = 0.202 with p value= 3.4e–19, and α̂GHG = 0.113 with p value= 5.4e–06).

Once again, let us emphasise that analysing the xGHG ensemble without combining it with the ensembles, associated with other

forcings, does not make it possible to get any idea about the character of the GHG forcing.225

S1.2.2 The result of fitting the ME-CFA(6, 5) model to the Arctic data

According to Table S1.2.2, the ME-CFA(6, 5) model has demonstrated an unstable performance across the five data sets

available. For the three data sets, the model could be rejected either due to the nonconvergence of the estimation procedure

(Data sets no. 1 and 2) or due to an unacceptable fit (data set no. 3, for which both the p value for the χ2 statistic, 0.012, was
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quite low, and AGFI = 0.62 was less then the recommended cutoff value of 0.8). All these together makes it doubtful to accept230

the ME-CFA(6, 5) model as an appropriate and adequate description of the underlying structure of the data even if the model

could be accepted for the two of the five data sets.

Table S1.2.2. The result of estimating the ME-CFA(6, 5) model, fitted to the Arctic data.

• The result for data set no. 3

Parameter Estimate p value Parameter Estimate p value
Ssim 0.101 1.2e–05 φSO 0.49 0.15
Strue -0.084 0.55 φSV 0.25 0.33
Osim 0.101 1.0e–04 φSL 0.41 0.33
Otrue 0.118 0.31 φSG 0.54 0.72
Vsim 0.203 3.1e–12 φOV 0.41 0.12
Vtrue 0.083 0.55 φOL 0.21 0.64
Lsim 0.100 0.01 φOG 0.19 0.57
Ltrue 0.113 0.47 φV L 0.57 0.11
Gsim 0.111 1.9e–06 φV G 0.12 0.61
Gtrue 0.034 0.80 φLG 0.40 0.33

To assess the overall model fit:

Model χ2 = 6.3, df = 1, p value = 0.012, GFI = 0.98, AGFI = 0.62, SRMR = 0.042.

The estimation procedure failed to converge to a solution for Data sets no. 1 and 2. For Data sets no. 3, 4 and 5, the solution is admissible.

For the last two data sets, the model could be accepted both statistically and heurustically.

S1.2.3 The result of fitting the CFA(7, 6) model to the Arctic data

Even the CFA model has demonstrated a highly unstable performance, which could be explained by a substantial variability in

the estimates of several specific-factor covariances across the five data sets available. For example, the estimate of σδ̃Land (anthr) δ̃comb
235

was significant for Data set no. 3, but for the other four data sets the estimate was clearly insignificant. In order to avoid the

nonconvergence of the estimation procedure, only some specific-factor covariances, which turned out to be significant only for

one data set, could be freed up for all data sets. As a result, no version of the basic CFA model demonstrated an adequate fit to

the data.

As an example, consider the CFA model, presented in Table S1.2.3. Although this model demonstrated the most stable240

performance and the best overall fit among several CFA models, one can see that its overall fit is quite poor, especially in terms

of the SRMR values. More precisely, the range of the observed SRMR values exceed the recommended cutoff value of 0.08

(min(SRMR)=0.091, max(SRMR)=0.100).

At the same time, the modification indices indicated that an improvement of the model fit is possible by freeing up some

causal inputs to ξSGHG. Therefore, let us investigate the structure of the data by means of the SEM specification.245
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Table S1.2.3. Estimates of the first modified version of the CFA(7, 6) model fitted to the Arctic data.
• The result for data set no. 5

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value
Ssim 0.088 1.5e–05 φSG 0.34 0.38 σ2

ηinternal pseudo 0.063 1.3e–09

Osim 0.081 2.9e–04 σδ̃Sol δ̃Land (anthr)
0.0045 0.21 σδ̃Land (anthr) δ̃comb

-0.0016 0.82
Vsim 0.206 5.8e–20 σδ̃Sol δ̃Orb

0.0047 0.14 σδ̃Land (anthr) ηinternal pseudo
0.013 0.12

Gsim 0.083 1.5e–05 σδ̃Land (anthr) δ̃Volc
0.0093 0.12

To assess the overall model fit:

Model χ2 = 22.8, df = 17, p value = 0.15, GFI = 0.95, AGFI = 0.91, SRMR = 0.091.

• Summary of the results based on all 5 data sets
Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.071 0.084 0.089 σ̂δ̃Sol δ̃Land (anthr)
0.0043 0.0049 0.0060 Model χ2 19.0 24.1 29.0

Ôsim 0.081 0.089 0.100 σ̂δ̃Sol δ̃Orb
0.0047 0.0049 0.0054 p value 0.03 0.15 0.33

V̂sim 0.188 0.199 0.206 σ̂δ̃Land (anthr) δ̃Volc
0.0083 0.0089 0.0095 GFI 0.92 0.94 0.95

Ĝsim 0.073 0.078 0.083 σ̂δ̃Land (anthr) δ̃comb
-0.0016 0.0054 0.0173 AGFI 0.88 0.90 0.92

φ̂SG 0.07 0.25 0.34 σ̂δ̃Land (anthr) ηinternal pseudo
0.0003 0.0082 0.0220 SRMR 0.091 0.094 0.100

σ̂2
ηinternal pseudo 0.064 0.077 0.096

The solution for each data set is admissible.

S1.2.4 The result of fitting the SEM model to the Arctic data

The path diagram of the resulting SEM model is depicted in Fig. S1.2.1. The first thing to note is that the SEM model, just as the

CFA model above, hypothesises that the land-use forcing has a negligible effect on the simulated summer mean temperature

in Europe during 850 –1849 AD. That is, neither statistical model contains the forced component ξSLand (anthr), meaning that

xLand (anthr) represents the internal temperature variability generated by the xLand (anthr) climate model. In terms of the model250

variables, it means that xLand (anthr) = δ̃Land (anthr).

However, unlike the CFA model, the SEM model contains a new observable variable, denoted x+
Land (anthr). The variable was

constructed in the same way and for the same reason as the variable x+
Land (anthr) in the SEM model applied to the Europe data

(for the details, see Sect.1.1. and Fig. S1.1.1).

Prior to discussing their interpretation, let us evaluate the overall model fit. Based on Table S1.2.4, we may conclude that the255

SEM model fits all data sets well both statistically and heuristically. For example, for data set no. 5, for which the model was

initially formulated, the p value for the χ2 statistic, 0.58, is much larger than 0.05, GFI = 0.96> 0.9, AGFI = 0.94> 0.80,

and finally SRMR = 0.072 < 0.08. For the sake of comparison, let us examine the corresponding result for the CFA model in

Table S1.2.3: the p value= 0.15, GFI = 0.95, AGFI = 0.91, and SRMR = 0.091. Taking into account that both models have

the same number of degrees of freedom (df= 17), this comparison indicates that the SEM specification is more appropriate for260

the data analysed than the CFA specification. However, prior to drawing final conclusions, the interpretation of the SEM model

needs to be discussed.
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As one can see in Fig. S1.2.1, x+
Land (anthr) receives three causal inputs: the input CL+ from xcomb, the input TL+ from τpseudo,

and the input SL+ from ξSSol. These inputs tell us that the internal temperature variability, generated by the xLand (anthr) climate

model, exhibits a co-relation with the forced temperature variability, associated with the solar, volcanic, orbital and GHG forc-265

ings, and with the internal temperature variability (generated by the multi-forcing climate model). In the real-world climate

system, such co-relations are quite expected because they may arise as a result of interactions between the internal processes

and the climate system, which may be reflected in the forcing reconstructions and the theoretical physical basis of internal

processes, implemented in the climate model under consideration. Although no dynamical relationships between the internal

processes and the forcings are implemented in the climate model under study, observing these co-relations in the simulated cli-270

mate system, in our opinion, speaks in favor of the climate model under consideration, in particular the forcing reconstructions

and the theoretical physical basis of internal processes, implemented in this climate model.
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Figure S1.2.1. Path diagram of the SEM model fitted to the Arctic data.
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Table S1.2.4. The result of estimating the SEM model presented graphically in Fig. S1.2.1 (region: the Arctic).

• The result for data set no. 5

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value
Ssim 0.091 5.5e–06 GG 0.109 0.72 SL+ 0.024 0.52
Osim 0.082 1.5e–04 SG+ 0.420 0.44 CL+ -0.059 0.48
Vsim 0.211 9.9e–23 SG -0.084 0.60 TL+ 0.130 0.04

σ2
ηinternal pseudo 0.098 1.9e–09 σδ̃Sol δ̃Orb

0.0053 0.096√
V̂ar(ξSGHG) = ĜsimSEM =

√(
(ŜG+)2 · (Ŝsim

2
+σ2∗

δ̃Sol
)+ ŜG

2
+ ĜG

2
·σ2∗
δ̃GHG

)
/(1− ĜG)2 = 0.127 (p value = 0.79)

To assess the overall model fit:

Model χ2 = 15.22, df = 17, p value = 0.58, GFI = 0.96, AGFI = 0.94, SRMR = 0.068.

• Summary of the results based on all 5 data sets
Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.078 0.087 0.093 ŜL+ 0.022 0.031 0.042 Model χ2 12.4 16.5 21.3

Ôsim 0.082 0.091 0.104 ĈL+ -0.069 0.045 0.244 p value 0.21 0.50 0.78
V̂sim 0.191 0.203 0.211 T̂L+ -0.099 0.055 0.222 GFI 0.94 0.96 0.97

ĜG 0.079 0.106 0.151 σ̂δ̃Sol δ̃Orb
0.0053 0.0058 0.0066 AGFI 0.90 0.93 0.94

ŜG+ 0.300 0.370 0.430 σ̂2
ηinternal pseudo 0.067 0.079 0.098 SRMR 0.068 0.071 0.076

ŜG -0.089 -0.077 -0.057 ĜsimSEM 0.097 0.114 0.128

The solution for each data set is admissible.

Further, according to Fig. S1.2.1, the SEM model also suggests co-relations which may be viewed as a counterpart of

real-world interactions between the concentrations of greenhouse gases in the atmosphere and the climate system. These co-275

relations are represented by the inputs from ξSSol, xSol, and xGHG to ξSGHG (see the path denoted SG, SG+ and GG, respectively).

Although according to Table S1.2.4 the estimates of these parameters are not significant, freeing up these paths contributed to

a better explanation of several observed variances and covariances, e.g. var(xSol), var(xGHG), cov(xSol, xGHG), cov(xSolxcomb),

cov(xSol, τpseudo), cov(xGHG, xcomb), cov(xGHG, τpseudo), cov(xLand (anthr), xcomb), cov(xGHG, τpseudo).

The insignificance of these paths also led to an insignificant estimate of GsimSEM, representing the standard deviation of ξSGHG280

and calculated afterwards. For example, for data set no. 5, GsimSEM is estimated to be 0.127 with the associated p value of 0.79.

This result suggests that the overall (direct) effect of global-scaled variations in the Ghg forcing is not detected in the simulated

annual mean temperature in the Arctic during the period of the study. Here, we would like to emphasise that the analysis of

the xGHG ensemble by means of the CFA(kGHG, 1) model suggested the opposite conclusion. Recall from the beginning of this

section that the estimate of αGHG, provided by the CFA(kGHG, 1) model, was highly significant. A possible explanation for285

this difference could be that the CFA(kGHG, 1) model is a model with much fewer parameters, so it is not unreasonable for the

estimate of αGHG to absorb information from different parameters in the larger model, for example GG, SG+ and SG.
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It is also worth noting that the SEM model does not contain the disturbance term ξSGHG (anthr). Thus, we may say that the effect

of anthropogenic global-scaled changes is not detected at all in the simulated annual mean temperature in the Arctic during

850 –1849 AD. In our opinion, this conclusion is somewhat surprising, albeit the effect of anthropogenic changes may have290

been detected if the analysis period had extended longer after 1849 AD.

Concerning the external natural forcings, namely the solar, orbital and volcanic forcings, the estimates in Table S1.2.4

indicate that their (direct) effects are detected in the simulated annual mean temperature in the Arctic during 850 –1849 AD.

For example, for data set no. 5, Ŝsim = 0.091 with p value= 5.5e–06, Ôsim = 0.082 with p value= 1.5e–04, and V̂sim = 0.211

with p value= 9.9e–23.295

S1.2.5 Summary and conclusion (region: the Arctic)

The first statistical model, the ME-CFA(6, 5) model, is rejected due to inadmissble solutions.

It is also difficult to accept the modified CFA(7, 6) model due to its poor fit to the data.

In contrast, the SEM model demonstrated a much better fit to the data, which could be accepted both statistically and

heuristically. In addition, the solutions observed were admissible for each data set analysed. Importantly, the interpretation of300

the SEM model, suggested quite a complex underlying data structure, seems to be reasonable from the climatological points of

view for the period under consideration. Therefore, our suggestion is to choose the SEM model as a statistically adequate and

climatologically defensible approximation of the underlying latent structure of the Arctic data.
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S1.3 Asia (summer, June-August, mean temperature)

The data analysed are presented in Table S1.3.1, from which it follows that 10 data sets were analysed. Results for the three305

statistical models of interest are provided in Tables S1.3.2 - S1.3.4.

Table S1.3.1. Overview of replicates of each xf, used to construct 10 regional Asia data sets. Each data set contains different x̄ comb and

τpseudo, where x̄ comb is constructed by averaging over five replicates randomly selected from the nine that remained after one of x comb repl.i:s,

i= 1, . . . ,10, is chosen to represent τ , i.e. τpseudo.

Mean sequences
Data set xSol xOrb xVolc xLand (anthr) xGHG x comb x comb repl.i = τpseudo

1 1,2,3 2,3 all associated repl’s 1,2 2, 3 (2,3,6,7,9) 1

2 1,2,3 2,3 all associated repl’s 1,2 2, 3 (3,4,5,8,9) 2

3 1,2,3 2,3 all associated repl’s 1,2 2, 3 (1,2,5,6,7) 3

4 1,2,3 2,3 all associated repl’s 1,2 2, 3 (1,3,6,7,9) 4

5 1,2,3 2,3 all associated repl’s 1,2 2, 3 (1,3,6,8,10) 5

6 1,2,3 2,3 all associated repl’s 1,2 2, 3 (1,4,5,8,9) 6

7 1,2,3 2,3 all associated repl’s 1,2 2, 3 (1,3,4,6,10) 7

8 1,2,3 2,3 all associated repl’s 1,2 2, 3 (2,3,4,5,7) 8

9 1,2,3 2,3 all associated repl’s 1,2 2, 3 (1,2,4,6,7) 9

10 1,2,3 2,3 all associated repl’s 1,2 2, 3 (1,3,5,6,8) 10

S1.3.1 Preliminary analyses of final single-forcing ensembles by means of the CFA(kf,1) model

The analysis of the the xOrb- and xVolc ensembles by means of the CFA(kf,1) model indicated that the effects of these forcings

may be well detected in the simulated summer JJA mean temperature in Asia during 850 –1849 AD. The associated coefficients

were estimated to be α̂Orb = 0.036 with p value= 1.9e–04, α̂Volc = 0.202 with p value= 1.3e–38. The analysis of the xLand (anthr)310

ensemble also revealed a strong systematic signal in the simulated data (α̂Land (anthr) = 0.047 with p value= 6.1e–08). Under our

assumption that the (systematic) effect of the seasonal and interannual changes in the vegetation phenology on the temperature

is negligible regardless the region, the strong signal observed is to be attributed to the antropogenic land-use forcing.

In contrast to the volcanic, orbital and land-use forcings, the effect of the solar forcing was not detected in the temperature

generated by the xSol climate model (α̂Sol = 0.012 with p value= 0.5). Finally, the analysis of the xGHG ensemble indicated315

that the effect of the GHG forcing is weak, rather than strong (α̂GHG = 0.025 with p value= 0.06).

S1.3.2 The result of fitting the ME-CFA(6, 5) model to the Asia data

As follows from Table S1.3.2, the ME-CFA(6, 5) model should be rejected as an adequate description of the underlying latent

relationships. For two of 10 datasets, no solution could be observed. For the remaining eight data sets, the solutions were

inadmissble. This is illustrated by the example of data set no. 1, for which the estimates of the three correlation coefficients,320

relating ξSSol to ξSOrb, ξSVolc and ξSLand (anthr), respectively, have inadmissible values, that is, they are larger than 1 in absolute value.
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Table S1.3.2. The result of estimating the ME-CFA(6, 5) model fitted to the Asia data. The estimates marked in bold font are inadmissble.

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value
Ssim 0.001 5.4e–01 Lsim 0.047 3.6e–10 φSG 0.43 0.71
Strue -0.039 6.6e–01 Ltrue 0.148 0.21 φOV 0.11 0.53
Osim 0.038 1.2e–06 Gsim 0.023 0.18 φOL 0.61 0.01
Otrue -0.034 0.73 Gtrue 0.114 0.08 φOG 0.21 0.63
Vsim 0.119 1.3e–38 φSO 1.32 0.54 φV L 0.13 0.41
Vtrue 0.091 6.3e–02 φSV 1.07 0.52 φV G 0.51 0.08

φSL 1.98 0.51 φLG 0.05 0.88

To assess the overall model fit:

Model χ2 = 0.16, df = 1, p value = 0.69, GFI = 1.00, AGFI = 0.99, SRMR = 0.008.

A similar result was observed for each data set except Data sets no. 2 and 7, for which the estimation procedure failed to converge to a solution.

S1.3.3 The result of fitting the CFA(7, 6) model to the Asia data

The insignificant estimate of αSol motivated us to estimate any version of the basic CFA model under the restriction Ssim = 0.

This made it possible to avoid the effects of the empirical underidifiability, observed in the case of the ME-CFA(6, 5) model,

and aided to gain additional degrees of freedom1. Setting Ssim to zero implies that xSol = δ̃Sol, that is, xSol represents the325

internal temperature variability generated by the xSol-climate model.

The numerical results for the final version of the CFA(7, 6) model, demonstrated the best fit to the data and the most stable

performance, are given in Table S1.3.3. Examining the table, we first of all note that the resulting CFA model fits the data very

well both according to the χ2-statistic and to the heuristic indices. Importantly, this conclusion can be drawn across all data

sets analysed.330

Further, the resulting CFA model suggests that the (direct) effects of the orbital, volcanic, land-use and Ghg forcings are very

well pronounced in the simulated summer JJA mean temperature in Asia during 850 –1849 AD. Once again, the effect of the

volcanic forcing is estimated as the strongest. To see it, compare the estimates of Osim, Vsim, Lsim and Gsim to each other. For

example, for data set no. 1, it was observed: Ôsim=0.025 (p value= 5.4e–05), V̂sim=0.117 (p value= 1.2e–39), L̂sim = 0.050,

p value= 5.7e–18, and Ĝsim = 0.032, p value= 1.7e–07. These results seem to be supported by the temporal evolutions of the335

corresponding forcings, shown in Figures S4.2-S4.5 in Fetisova et al. (2017).

In the case of the GHG forcing, two aspects should be highlighted. The first one is that the CFA model also detected a weak

correlation between ξSGHG and ξSVolc. Together with the significant estimate of Gsim, this result within our framework indicates

that the significant effect of global-scale variations in the GHG forcing, detected by the CFA model in the simulated summer

1Here, we would like to emphasise that even if the effect of the solar forcing was expected to be strong, we would still set the correlation between ξSSol

and ξSLand (anthr) to zero. This is because within our framework anthropogenic forcings are not related to the natural ones, which implies the uncorrelatedness

between accosiated temperature responses.
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Table S1.3.3. The results of estimating the modified version of the CFA(7, 6) model fitted to the Asia data.

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Osim 0.025 5.4e–05 σ2
ηinternal pseudo 0.007 2.9e–10 σδ̃Land (anthr) δ̃Sol

0.0008 0.014

Vsim 0.117 1.2e–39 φV G 0.30 0.08 σδ̃Land (anthr) δ̃Orb
0.2052 0.010

Lsim 0.050 5.7e–18 σδ̃Sol δ̃comb
0.0027 6.7e–06 σδ̃Sol δ̃Volc

0.0014 0.013

Gsim 0.032 1.0e–07 σδ̃Sol ηinternal pseudo
0.0035 9.1e–08

To assess the overall model fit:

Model χ2 = 14.42, df = 17, p value = 0.64, GFI = 0.96, AGFI = 0.94, SRMR = 0.060.

• Summary of the results for all 10 data sets
Min Mean Max Min Mean Max Min Mean Max

Ôsim 0.021 0.025 0.027 σ̂δ̃Sol δ̃comb
0.0026 0.0028 0.0030 Model χ2 10.6 13.2 18.7

V̂sim 0.117 0.117 0.118 σ̂δ̃Sol ηinternal pseudo
0.0025 0.0028 0.0035 p value 0.34 0.71 0.88

L̂sim 0.047 0.049 0.051 σ̂δ̃Land (anthr) δ̃Sol
7.2e–04 8.0e–04 8.4e–04 GFI 0.95 0.96 0.97

Ĝsim 0.032 0.033 0.035 σ̂δ̃Land (anthr) δ̃Orb
0.205 0.208 0.212 AGFI 0.92 0.94 0.95

σ2
ηinternal pseudo 0.005 0.006 0.007 σ̂δ̃Sol δ̃Volc

0.0013 0.0013 0.0014 SRMR 0.058 0.061 0.064

φ̂V G 0.277 0.297 0.326

The solution for each data set is admissible.

JJA mean temperature in Asia during 850 –1849 AD, is mostly of anthropogenic character. Climatologically, the significant340

effect of anthropogenic changes in GHG forcing can be justified by an effect in the last about one century of data in the analysed

period.

Another aspect is that the significant estimate of Gsim is not supported by the results of estimating the CFA(kGHG = 2,

1) model, which did not detect a strong systematic signal in the members of the xGHG ensemble. This discrepancy in the

conclusions makes the highly significant estimate of Gsim dubious. In addition, it gives rise to a question as to what conclusion345

can be drawn if ξSGHG is modelled as an endogenous variable in a SEM model, receiving causal inputs from other model

variables. The SEM specification allows one to relate an endogenous latent variable to other model variables even if the variance

of this endogenous variable, calculated afterwards, is expected to be weak, rather than strong. In other words, insignificant

variability of an endogenous variable does not lead to the underidentifiability of the SEM model under consideration.

S1.3.4 The result of fitting the SEM model to the Asia data350

The path diagram of the resulting SEM model is depicted in Fig. S1.3.1. As one can see, the SEM model, just as the CFA

model above, also hypothesises that the solar forcing has a negligible effect on the simulated summer mean temperature in

Asia during 850 –1849 AD. That is, xSol represents the internal temperature variability generated by the xSol-climate model,

denoted δ̃Sol.
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The absence of ξSSol makes it possible to relate δ̃Sol to other model variables through regressions instead of covariances, as355

it was done under the above presented CFA model. To be able to implement the desired causal relationships without changing

the interpretation of xSol, a new observable variable, denoted x+
Sol, was constructed. The construction principles were the same

as those used for constructing the variable x+
Land (anthr) in the SEM model applied to the Europe data (for the details, see Sect.

S1.1. and Fig. S1.1.1).
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Figure S1.3.1. Path diagram of the SEM model fitted to the Asia data.

360

As follows from Fig. S1.3.1, x+
Sol receives the three causal inputs from xcomb, τpseudo and ξSVolc, respectively. Hence, the

SEM model relates δ̃Sol to all forced components, included in the SEM model, and to the internal variability generated by the

multi-forcing climate model. In the real-world climate system, these relationships could be explained by interactions between

the internal processes and the climate system, which may be reflected in the forcing reconstructions and the physical basis for

describing the internal processes in the climate model under consideration.365

Further, the SEM model suggests complex reciprocal relationships between ξSGHG and some other model variables, including

all the forced components. As one can see, ξSGHG receives three causal inputs from xcomb, τpseudo and xSol, respectively (see the

paths CG, TG, and SG). In the real-world climate system, the counterpart of these relationships can be reciprocal interactions

between the climate system and the concentrations of the greenhouse gases in the atmosphere.
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Table S1.3.4. The result of fitting the SEM model depicted in Fig. S1.3.1 (region: Asia).

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Osim 0.032 6.8e–09 CS+ 0.303 0.003 CG -0.042 0.47

Vsim 0.117 1.6e–39 TS+ 0.119 0.033 TG 0.125 0.012

Lsim 0.047 5.7e–18 VS+ -0.042 0.001 SG -0.028 0.004

σ2
ηinternal pseudo 0.007 6.0e–10 σδ̃Land (anthr) δ̃Orb

0.001 0.023

√
V̂ar(ξSGHG) = ĜsimSEM =

√(
(L̂sim · (ĈG+ T̂G))2 +(Ôsim · (ĈG+ T̂G))2 +(V̂sim · (ĈG+ T̂G))2

)/(
ĈG+ T̂G− 1

)2
+

+
(

ŜG
2
·σ2∗
δ̃Sol

+ ĈG
2
·σ2∗
δ̃comb

+ T̂G
2
· σ̂2
ηinternal pseudo

)/(
ĈG+ T̂G− 1

)2|
= 0.022 (p value = 0.020)

To assess the overall model fit:

Model χ2 = 10.20, df = 17, p value = 0.90, GFI = 0.97, AGFI = 0.96 SRMR = 0.057.

• Summary of the results for all 10 data sets

Min Mean Max Min Mean Max Min Mean Max

Ôsim 0.032 0.033 0.034 ĈS+ 0.303 0.360 0.424 Model χ2 10.2 12.60 19.20

V̂sim 0.117 0.117 0.117 T̂S+ 0.026 0.075 0.119 p value 0.32 0.75 0.90

L̂sim 0.045 0.047 0.049 V̂S+ -0.047 -0.044 -0.042 GFI 0.95 0.97 0.97

ĈG -0.042 0.083 0.202 σ̂δ̃Land (anthr) δ̃Orb
0.001 0.001 0.001 AGFI 0.92 0.95 0.96

T̂G -0.111 0.007 0.125 σ̂2
ηinternal pseudo 0.005 0.006 0.007 SRMR 0.056 0.058 0.062

ŜG -0.111 -0.272 -0.254 ĜsimSEM 0.020 0.021 0.022

The solution for each data set is admissible.

Unlike the CFA model above, the SEM model suggests that the overall (direct) effect of the GHG forcing is not strongly370

pronounced in the simulated summer (JJA) mean temperature in Asia during 850 –1849 AD. This conclusion is based on the

moderately significant estimate of the parameter GsimSEM (see Table S1.3.4). For example, for Data set no. 1, for which the

SEM model was initially formulated, the estimate of ĜsimSEM is 0.022 with the associated p value of 0.020. Notice that this

conclusion is in concert with the conclusion provided by the CFA(kGHG,1) model.

Concerning the character of the GHG forcing, the SEM model describes it mostly as natural. Indeed, most of the inputs,375

received by ξSGHG directly or indirectly, represent the effects of either the natural forcings or the internal processes. However,

despite the fact that the disturbance term ξSGHG (anthr) is not in the SEM model, the anthropogenic impact can still be traced

through the indirect influence from ξSLand (anthr).

The estimates of the Osim and Vsim indicate that the (direct) effects of the orbital respective volcanic forcings are well

detected in the simulated summer (JJA) mean temperature in Asia during 850 –1849 AD. For example, for data set no. 1, Ôsim380

is 0.024 with the associated p value of 1.0e–04, and V̂sim is 0.117 with p value of 1.2e–39. Hence, just as in the previously
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analysed regional data, we are once again observing that the volcanic forcing exhibits the strongest impact on the simulated

temperature.

Even the (direct) effect of the anthropogenic land-use forcing is estimated as significant both for data set no. 1 and on

average. For data set no. 1, L̂sim is estimated to be 0.048 with the associated p value= 1.7e–17.385

The statistical and heuristical measures of the overall model fit, given in Table S1.3.4, assess the overall model fit as very

good both for data set no. 1 and on average. For example, the χ2 statistic for data set no. 1 is 10.20 with the p value of 0.90,

which is much larger than 0.05, and the SRMR value is 0.057, which is less than 0.08.

S1.3.5 Summary and conclusion (region: Asia)

The first statistical model, the ME-CFA(6, 5) model, is rejected due to inadmissble solutions.390

Both modified CFA(7, 6)- and SEM models demonstrated a very good overall fit to the data. Importantly, they fit to

the data to a similar degree both statistically and heuristically. Compare, for example, the range of the χ2 statistic, ob-

served under the CFA model (min(χ2)=10.6, mean(χ2)=13.2, max(χ2)=18.7), to the corresponding range, obtained under

the SEM model (min(χ2)=10.2, mean(χ2) = 12.60, max(χ2) = 19.20). One can also compare the ranges of the SRMR val-

ues: (min(SRMR)= 0.058, mean(SRMR)= 0.061, max(SRMR)= 0.064), associated with the CFA model, and (min(SRMR)=395

0.056, mean(SRMR)= 0.058, max(SRMR)= 0.062), associated with the SEM model.

Moreover, both models demonstrated a stable performance across all data sets, and they lead the same conclusions about

the direct effects of all the forcings except the GHG forcing. The CFA model suggested that the overall direct global-scaled

effect of the GHG forcing is well pronounced in the simulated summer (JJA) mean temperature in Asia during 850 –1849

AD. In addition, the CFA model suggested that the nderlying forcing is of anthropogenic character. The SEM model, in400

contrast, described the GHG forcing as a natural forcing and its effect is moderately seen in the simulated summer (JJA) mean

temperature in Asia during 850 –1849 AD. Both interpretations seem to be defensible from the climatological point of view.

However, the conclusion, provided by the SEM model, is in concert with the conclusion provided by the CFA(kGHG = 2,1)

model, which did not detected a strong systematic signal in the temperature data generated by the xGHG climate model. In our

opinion, this speaks in favour of the SEM model.405

Therefore, our suggestion is to choose the SEM model as a more statistically reliable description of the unknown underlying

structure of the Asia data, compared to the CFA model.
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S1.4 South America (summer, December-February (DJF), mean temperature)

The data sets analysed are presented in Table S1.4.1, from which it follows that seven data sets were analysed. Results for the

three statistical models of interest are provided in Tables S1.4.2 - S1.4.3.410

Table S1.4.1. Overview of replicates of each xf, used to construct seven regional South America data sets. Each data set contains different

x̄ comb and τpseudo, where x̄ comb is constructed by averaging over three replicates randomly selected from the six that remained after x comb repl.:s,

i= 1,3,5, have been eliminated and after one of x comb repl.i:s, i= 2,4, 6, 7, 8, 9, 10, is chosen to represent τ , i.e. τpseudo.

Mean sequences
Data set xSol xOrb xVolc xLand (anthr), xGHG x comb τpseudo = x comb repl.i

1 2,3,4 1,3 3,5 all associated repl’s (4,6,10) 2

2 2,3,4 1,3 3,5 all associated repl’s (7,8,10) 4

3 2,3,4 1,3 3,5 all associated repl’s (7,8,9) 6

4 2,3,4 1,3 3,5 all associated repl’s (6,9,10) 7

5 2,3,4 1,3 3,5 all associated repl’s (6,7,9) 8

6 2,3,4 1,3 3,5 all associated repl’s (2,7,8) 9

7 2,3,4 1,3 3,5 all associated repl’s (2,4,6) 10

S1.4.1 Preliminary analyses of final single-forcing ensembles by means of the CFA(kf,1) model

As a preliminary step, each of the single-forcing ensemble in Table S1.4.1 was analysed by means of the CFA(kf,1) model. The

results indicated that the effect of the orbital and volcanic forcings on the simulated summer (DJF) mean temperature in South

America during 850 –1849 AD may be strong (α̂Orb=0.086 with p value= 1.410e–11, α̂Volc = 0.108 with p value= 5.001e–18).

In contrast, no systematic effect of the solar forcing was detected in the temperature sequences, generated by the xSol-climate415

model (α̂Sol = 0.009, p value= 0.824). The same conclusion was drawn for the land-use and GHG forcings, whose estimated

effects were given by α̂Land (anthr) = 2.830e–06 with p value= 1.00 and α̂GHG = 0.024 with p value= 0.25, respectively.

In the case of the solar and land-use forcings, the conclusion of a non-detectable effect was also supported by the fact that the

a priori obtained estimates of σ2∗
δ̃Sol

and σ2∗
δ̃Land (anthr)

turned out to be larger than the sample variance of the corresponding observed

mean-sequences. Therefore, in each statistical model analysed, σ2∗
δ̃f

, f ∈ {Sol, Land (anthr)}, was set to the sample variance of420

the corresponding xf mean sequence. Statistically, it implies that xf does not contain the forced component ξSf .

S1.4.2 The result of fitting the ME-CFA(6, 5) model to the South America data

Given the preliminary estimates of αf:s, it is expected that the estimation of the ME-CFA(6, 5) model, treating Ssim, Lsim,

Gsim and all associated correlation coefficients as free parameters, does not work. As we can see in Table S1.4.2, this is the

case. To begin with, the solution could be observed only for one data set (data set no. 7), while for the remaining seven data425

sets the estimation procedure failed to converge to a solution. Further, for data set no. 7, the estimates of the three correlation

coefficients, associated with the simulated temperature responses to the solar, land use and GHG forcings, turned out to be
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inadmissble (each of them is larger than 1 in absolute value). Thus, the ME-CFA(6, 5) model has to be rejected, regardless of

its fit to the data.

Table S1.4.2. The result of estimating the ME-CFA(6, 5) model fitted to the South America data. The estimates marked in bold font are

inadmissble.

• The result for data set no. 7

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value
Ssim 0.011 0.74 Lsim 0.017 0.41 φSG -2.67 0.74
Strue 0.018 0.77 Ltrue -0.042 0.61 φOV -0.19 0.23
Osim 0.081 6.8e–14 Gsim -0.026 0.12 φOL 0.42 0.55
Otrue 0.068 0.27 Gtrue -0.017 0.73 φOG 0.01 0.97
Vsim 0.108 2.9e–20 φSO 0.50 0.77 φV L 0.09 0.86
Vtrue 0.085 0.09 φSV 1.91 0.73 φV G 0.19 0.61

φSL 1.99 0.74 φLG -0.12 0.93

To assess the overall model fit:

Model χ2 = 0.86, df = 1, p value = 0.35, GFI = 0.99, AGFI = 0.94, SRMR = 0.019.

For the remaining six data sets, the estimation algorithm failed to converge to a solution.

S1.4.3 The result of fitting the CFA(7, 6) model to the South America data430

In order to avoid inadmissible solutions and gain as many degrees of freedom as possible, all versions of the basic CFA(7,

6) model were estimated under the restrictions that Ssim, Lsim, Gsim and all correlation coefficients, associated with ξSSol,

ξSLand (anthr), and ξSGHG, are zero. This corresponds to hypothesising that the effects of the solar, land-use and GHG forcings are

not detectable in the simulated summer (DJF) mean temperature in South America during 850 –1849 AD.

According to the numerical results, presented in Table S1.4.3, we may conclude that the overall fit of the presented CFA435

model is reasonably good both statistically and heuristically. For example, for data set no. 1, the p value for the χ2 statistic, 0.73,

is larger than 0.05. The heuristic indices GFI and AGFI, 0.96 and 0.94, respectively, are both larger than the recommended

cutoff values of 0.9 and 0.8, respectively. Finally, the SRMR value of 0.073 is smaller than the associated cutoff value of

0.08. A certain impairment of the model fit was observed for data set no. 6, which was indicated by quite a high SRMR

value (SRMR= 0.087> 0.08). The analysis of the residual matrix suggested that the impairment of the fit could be due to a440

significant correlation between δ̃GHG and ηinternal pseudo. However, since this correlation was far away from being significant for

the remaining six data sets, it was decided not to estimate it for all data sets.

The estimates of Osim and Vsim suggest that the (direct) effects of the orbital and volcanic forcings are well detected in

the simulated summer (DJF) mean temperature in South America during 850 –1849 AD. For example, for data set no. 1, Ôsim

is 0.070 with the associated p value of 9.6e–17, and V̂sim is 0.108 with the associated p value of 7.9e–28. Comparing the445

estimates of Osim and Vsim, we once again can conclude that the effect of the volcanic forcing is estimated as the largest one.
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Table S1.4.3. The result of estimating the modified version of the CFA(7, 6) model fitted to the South America data.

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Osim 0.070 9.6e–17 σδ̃Land (anthr) δ̃comb
0.0013 0.08 σδ̃Sol δ̃comb

0.0019 0.043

Vsim 0.108 7.9e–28 σδ̃Land (anthr) ηinternal pseudo
0.0010 0.32 σδ̃Sol ηinternal pseudo

0.0019 0.11

σ2
ηinternal pseudo 0.015 3.3e–09 σδ̃Orb δ̃comb

-0.0011 0.34

σδ̃Sol δ̃Volc
0.024 0.001 σδ̃Orb ηinternal pseudo

-0.0036 0.031

To assess the overall model fit:

Model χ2 = 14, df = 18, p value = 0.73, GFI = 0.96, AGFI = 0.94, SRMR = 0.073.

• Summary of the results for all 7 data sets
Min Mean Max Min Mean Max Min Mean Max

Ôsim 0.070 0.071 0.073 σ̂δ̃Orb δ̃comb
-0.0036 -0.0016 0.00 Model χ2 10.0 15.0 19.5

V̂sim 0.105 0.107 0.108 σ̂δ̃Orb ηinternal pseudo
-0.0028 -0.0018 -0.0011 pvalue 0.36 0.66 0.85

σ̂2
ηinternal pseudo 0.013 0.016 0.019 σ̂δ̃Sol δ̃Volc

0.0021 0.0022 0.0022 GFI 0.95 0.96 0.97

σ̂δ̃Sol δ̃comb
0.0018 0.0020 0.0021 σ̂δ̃Land (anthr) δ̃comb

8.0e–05 0.0011 0.0017 AGFI 0.92 0.94 0.95

σ̂δ̃Sol ηinternal pseudo
0.0016 0.0020 0.0028 σ̂δ̃Land (anthr) ηinternal pseudo

-1.0e–04 0.0013 0.0042 SRMR 0.068 0.073 0.087

The solution for each data set is admissible.

Let us also point out the fact that in order to achieve an acceptable model fit of the CFA model to the data it was necessary to

free up several specific factor covariances, five of which are related to xSol and xLand (anthr). Since these variables do not contain

forced components, this gave rise to a question as to whether the covariances between the corresponding observable variables

can be modelled by means of regressions. To this end, the underlying structure of the data was analysed by means of the SEM450

model. The result is described below.

S1.4.4 The result of fitting the SEM model to the South America data

The path diagram of the resulting SEM model is shown in Fig. S1.4.1. This SEM model demonstrated the best fit to the data

and the most stable performance among different versions of the basic SEM model. As one can see in Fig. S1.4.1, the SEM

model, just as the CFA model above, hypothesises that the direct effects of the solar, land-use and GHG forcings are not455

detectable. That is, xSol, xLand (anthr) and xGHG contain only the internal temperature variability, generated by the corresponding

single-forcing climate model, i.e. xSol = δ̃Sol, xLand (anthr) = δ̃Land (anthr) and xGHG = δ̃GHG.

One can also see in Fig. S1.4.1, the SEM model contains two new observable variables, not presented even in the basic SEM

model described in LAS22num. The variables are x+
Sol and x+

Land (anthr), each of which was constructed in an analogous way and

for the same purpose as x+
Land (anthr) and x+

Orb in the SEM model fitted to the Europe data (see Sect. S1.1 here).460

Each of the new variables receives causal inputs from xcomb and τpseudo, denoted CL+, TL+, CS+, and TS+.
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Figure S1.4.1. Path diagram of the SEM model fitted to the South America data.

Hence, the SEM model relates δ̃Sol and δ̃Land (anthr), represented by x+
Sol and x+

Land (anthr), respectively, not only to δ̃comb and

ηinternal pseudo (as it was done under the CFA model by means of the specific-factor covariances), but also to the forced compo-

nents ξSVolc and ξSOrb, embedded in xcomb and τpseudo (and in xVolc and xOrb, respectively).

In the real-world climate system, these co-relations could be explained by interactions, i.e. feedback mechanisms, between465

the internal processes and the climate system, in particular the volcanic and orbital forcing. Note that the estimates of these

four parameters turned out to be statistically insignificant. For example, for data set no. 1, it was observed: ĈL+=0.085 with

p value 0.19, T̂L+ =−0.002 with p value 0.97, ĈS+ = 0.104 with p value 0.12, and T̂S+ = 0.018 with p value= 0.74 (see

Table S1.4.4).

Nevertheless, despite their statistical insignificance, it was crucial to free up these paths for achieving a better overall model470

fit, compared to the overall fit of the CFA model. The improvement is especially seen in the smaller residuals, expressed by

the SRMR values. Compare the range of the SRMR values for the CFA model, (min(SRMR)= 0.068, mean(SRMR)= 0.073,

max(SRMR)= 0.087), to the corresponding range observed under the SEM model, (min(SRMR)= 0.055, mean(SRMR)=

0.059, max(SRMR)= 0.071). Taking into consideration the fact that both statistical models have the same degrees of freedom,
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i.e. they estimate the same no. of parameters, we may say that the decrease in the SRMR values under the SEM model is475

substantial, which speaks in favor of the SEM model.

Table S1.4.4. The result of fitting the SEM model depicted in Fig. S1.4.1 (region: South America).

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value

Osim 0.074 7.8e–17 CS+ 0.104 0.12

Vsim 0.113 1.6e–26 TS+ 0.018 0.74

σ2
ηinternal pseudo 0.015 2.9e–09 σδ̃Orb δ̃comb

-0.0007 0.55

CL+ 0.085 0.19 σδ̃Orb ηinternal pseudo
-0.0034 0.044

TL+ -0.002 0.97 φOV -0.21 0.12

To assess the overall model fit:

Model χ2 = 12.5, df = 18, p value = 0.82, GFI = 0.97, AGFI = 0.95, SRMR = 0.057.

• Summary of the results for all 7 data sets
Min Mean Max Min Mean Max Min Mean Max

Ôsim 0.072 0.074 0.076 ĈS+ 0.062 0.093 0.119 Model χ2 11.3 13.8 18.1

V̂sim 0.111 0.112 0.113 T̂S+ 0.002 0.029 0.068 p value 0.45 0.73 0.88

σ̂2
ηinternal pseudo 0.014 0.017 0.019 σ̂δ̃Orb δ̃comb

-0.0023 -0.0014 0.0007 GFI 0.95 0.96 0.97

ĈL+ -0.038 0.056 0.151 σ̂δ̃Orb ηinternal pseudo
-0.0034 -0.0012 0.0007 AGFI 0.93 0.95 0.96

T̂L+ -0.066 0.023 0.148 φ̂OV -0.227 -0.205 -0.189 SRMR 0.055 0.059 0.071

The solution for each data set is admissible

Other parameters, whose estimation contributed substantially to the improvement of the overall model fit, are the covari-

ance between δ̃Orb and δ̃comb denoted σδ̃Orb δ̃comb
, the covariance between δ̃Orb and ηinternal pseudo, denoted σδ̃Orb ηinternal pseudo

, and the

correlation between ξSVolc and ξSOrb, denoted φOV . Just as the estimates of the above-discussed paths, the estimates of these

parameters turned out to be insignificant or slighly significant across all data sets. For example, for data set no. 1, it was480

observed: σ̂δ̃Orb δ̃comb
=−0.0007 with p value= 0.55, σ̂δ̃Orb ηinternal pseudo

=−0.0034 with p value=0.044, and φ̂OV =−0.21 with p

value= 0.12. An important note on the latter estimate is that its insignificance is in concert with our basic assumption that the

temperature responses to the external natural forcings are mutually uncorrelated.

Just as the CFA model, the SEM model detects a well pronounced effects of the orbital and volcanic forcings in the simulated

summer (DJF) mean temperature in South America during 850 –1849 AD. Moreover, just as the CFA model, the SEM model485

also estimates the effect of the volcanic forcing as the strongest one. For example, for data set no. 1, the estimates obtained

under the SEM model are: Ôsim = 0.074 with the associated p value of 7.8e–17, and V̂sim = 0.113 with the associated p value

of 1.6e–26.
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S1.4.5 Summary and conclusions (region: South America)

The first statistical model, the ME-CFA(6, 5) model, is rejected due to inadmissble solutions.490

Both CFA and SEM models have admissible solutions and an acceptable overall fit to the data. Importantly, both models

lead to the same conclusions about the direct effects of forcings, namely that the effects of the volcanic and orbital forcings

are well detected in the simulated summer (DJF) mean temperature in South America during 850 –1849 AD, while the effects

of the solar, land-use and GHG forcings are not detected. This interpretation seems to be climatologically defensible for the

region and period under study. Moreover, it is supported by the preliminary analyses of the single-forcing ensembles by means495

of the CFA(kf,1) model, which increases our confidence in the conclusions drawn.

An advantage of the SEM model is that the SEM model fits the data better than the CFA model, especially in terms of

the residuals, summarised by the SRMR values. Keeping in mind that both statistical models have the same number of de-

grees of freedom (df=18), the better overall fit of the SEM model motivates us to prefer the SEM model as a more adequate

approximation of the underlying structure of the South America data.500
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S1.5 Australasia (warm-season, September-February, mean temperature)

The data sets analysed are presented in Table S1.5.1, from which it follows that nine data sets were analysed. Results for the

three statistical models of interest are provided in Tables S1.5.2 - S1.5.4.

Table S1.5.1. Overview of replicates of each xf, used to construct 9 regional Australasia data sets. Each data set contains different x̄ comb and

τpseudo, where x̄ comb is constructed by averaging over five replicates randomly selected from the eight that remained after x comb repl.4 has been

eliminated and after one of x comb repl.i:s, i= 1,2,3,5,6,7,8,9,10, is chosen to represent τ , i.e. τpseudo.

Mean sequences

Data set xSol xOrb xVolc, xLand (anthr) xGHG x comb x comb repl.i = τpseudo

1 2,3,4 all associated replicates 1,2,5 2,3 2,3 (2,3,7,8,10) 1

2 2,3,4 all associated replicates 1,2,5 2,3 2,3 (3,5,6,9,10) 2

3 2,3,4 all associated replicates 1,2,5 2,3 2,3 (1,2,6,7,8) 3

4 2,3,4 all associated replicates 1,2,5 2,3 2,3 (1,3,7,8,10) 5

5 2,3,4 all associated replicates 1,2,5 2,3 2,3 (1,2,7,9,10) 6

6 2,3,4 all associated replicates 1,2,5 2,3 2,3 (1,5,6,9,10) 7

7 2,3,4 all associated replicates 1,2,5 2,3 2,3 (2,3,5,7,9) 8

8 2,3,4 all associated replicates 1,2,5 2,3 2,3 (2,3,4,6,8) 9

9 2,3,4 all associated replicates 1,2,5 2,3 2,3 (1,2,5,7,8) 10

S1.5.1 Preliminary analyses of final single-forcing ensembles by means of the CFA(kf,1) model

The preliminary analysis of each single-forcing ensemble by means of the CFA(kf,1) model led to the following results:505

– the effect of the solar forcing is moderately pronounced in the simulated Sep-Feb temperatures in Australasia during the

period 850 –1849 AD (α̂Sol = 0.017 with p value= 0.020);

– the effect of the orbital forcing is weakly pronounced (α̂Orb = 0.015 with p value= 0.047);

– the effect of the volcanic forcing is once again estimated as the strongest and the most significant among the effects of

the purely natural forcings (α̂Volc = 0.079 with p value= 3.2e–31);510

– the effect of the anthropogenic land use forcing could not be detected at all in the Sep-Feb temperature generated

by the xLand (anthr) climate model (α̂Land (anthr) = 0.00015 with p value= 0.99); This conclusion is in agreement with the

reconstruction of the land-use forcing, shown in Fig. S4.5 in Fetisova et al. (2017);

– the effect of the GHG forcing was estimated as significant (α̂GHG = 0.033 with p value= 1.4e–04), although within the

CFA(kf,1) model it is not clear whether this effect is of anthropogenic, natural, or mixed character).515

30



S1.5.2 The result of fitting the ME-CFA(6, 5) model to the Australasia data

As follows from Table S1.5.2, the estimation of the ME-CFA(6, 5) model resulted in inadmissible solutions for seven of nine

data sets. For the remaining two data sets, no estimates could be obtained because the estimation procedure failed to converge

to a solution. The estimates of the correlation coefficients, relating ξSLand (anthr) to other temperature responses, laid outside their

admissible range between -1 and 1. Bearing in mind that the effect of the land-use forcing was described by the CFA(kf,1)520

model as nondetectable and the effect of the orbital forcing is estimated as weak rather than strong, this result of estimating the

ME-CFA(6, 5) model is quite expected.

Table S1.5.2. The result of estimating the ME-CFA(6, 5) model fitted to the Australasia data. The estimates marked in bold font are inad-

missble

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value
Ssim 0.019 5.6e–04 φSO 0.28 0.62
Strue 0.034 0.26 φSV 0.14 0.53
Osim 0.014 0.06 φSL 2.09 0.48
Otrue 0.002 0.94 φSG -0.36 0.31
Vsim 0.079 5.4e–31 φOV 0.20 0.53
Vtrue 0.074 1.3e–05 φOL 2.58 0.49
Lsim 0.010 0.49 φOG 0.04 0.94
Ltrue 0.012 0.59 φV L 0.31 0.64
Gsim -0.033 3.3e–06 φV G 0.32 0.86
Gtrue -0.012 0.65 φLG -0.30 0.73

To assess the overall model fit:

Model χ2 = 0.092, df = 1, p value = 0.76, GFI = 1, AGFI = 0.99, SRMR = 0.005.

A similar result has been observed for all 9 data sets except Data sets no. 3 and 7, for which the estimation procedure failed to converge to a

solution.

S1.5.3 The result of fitting the CFA(7, 6) model to the Australasia data

Among several versions of the CFA(7, 6) model considered, the most stable performance was demonstrated by the CFA

model, presented in Table S1.5.3. Nevertheless, it should be added that the CFA model was sensitive to starting values for the525

covariances between the specific factors. Without freeing up these covariances, the model could be estimated for all data sets

without varying the starting values, but this made the overall model fit very poor.

As one can see in Table S1.5.3, the CFA model fits the data well both statistically (the smallest p value associated with the

χ2 statistic, 0.59, is much larger than 0.05) and heuristically (e.g., the largest SRMR value across all 9 data sets is 0.070, which

is smaller than the recommended cutoff value of 0.08). The solution for each data set turned out to be admissible.530
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The interpretation of the CFA model was also found to be defensible from the climatological point of view. The (direct)

effects of the solar and volcanic forcings were well detected in the simulated Sep-Feb temperatures in Australasia during the

period 850 –1849 AD (e.g., for data set no. 1, Ŝsim = 0.022 with p value= 7.5e–07, V̂sim = 0.081 with p value= 1.2e–33).

The (direct) effect of the orbital forcing was estimated as the most modest among the effects of the purely natural forcings

(e.g., for Data set no. 1, Ôsim = 0.015 with p value= 0.032).535

The (direct) overall effect of the GHG forcing turned out to be significant (e.g., for data set no. 1, Ĝsim = 0.035 with p value=

4.2e–11). Taking into consideration that ξSGHG turned out to be only weakly correlated with one of the simulated temperature

responses to the natural forcings, namely the volcanic forcing (φ̂V G =−0.16 with p value=0.21), this strong overall effect

indicates that the anthropogenic component in ξSGHG dominates the natural one. The significant effect of anthropogenic changes

in GHG forcing can be justified by an effect in the last about one century of data in the analysed period.

Table S1.5.3. The result of estimating the modified version of the CFA(7, 6) model fitted to the Australasia data.

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Ssim 0.022 7.5e–07 σ2
ηinternal pseudo 0.0051 3.8e–10 σδ̃GHG δ̃comb

-0.001 0.012

Osim 0.015 0.032 σδ̃Land (anthr) δ̃comb
0.001 4.4e–03 σδ̃GHG η̃internal pseudo

-3.2e–04 0.57

Vsim 0.081 1.2e–33 σδ̃Land (anthr) η̃internal pseudo
0.001 0.06 σδ̃Orb δ̃comb

0.001 0.023

Gsim 0.035 4.2e–11 σδ̃Land (anthr) δ̃Sol
3.7e–04 0.041 σδ̃Orb η̃internal pseudo

3.3e–04 0.33

φV G -0.16 0.21 σδ̃Land (anthr) δ̃Orb
3.6e–04 0.043

To assess the overall model fit:

Model χ2 = 12.25, df = 14, p value = 0.59, GFI = 0.97, AGFI = 0.94, SRMR = 0.070.

• Summary of the results based on all 9 data sets

Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.019 0.021 0.023 σ̂δ̃Land (anthr) δ̃comb
5.9e–04 6.9e–04 8.3e–04 Model χ2 4.5 7.3 12.2

Ôsim 0.015 0.016 0.017 σ̂δ̃Land (anthr) η̃internal pseudo
1.2e–04 6.8e–04 9.7e–04 p value 0.59 0.90 0.99

V̂sim 0.080 0.081 0.082 σ̂δ̃Land (anthr) δ̃Orb
3.5e–04 3.6e–04 3.6e–04 GFI 0.97 0.98 0.99

Ĝsim 0.034 0.036 0.037 σ̂δ̃Land (anthr) δ̃Sol
3.6e–04 3.9e–04 4.2e–05 AGFI 0.94 0.96 0.98

φ̂V G -0.25 -0.19 -0.14 σ̂2
ηinternal pseudo 0.0035 0.0041 0.0051 SRMR 0.050 0.059 0.070

σ̂δ̃GHG δ̃comb
-0.0012 -0.001 -0.001 σ̂δ̃Orb δ̃comb

2.9e–04 4.1e–04 5.7e–04

σ̂δ̃GHG η̃internal pseudo
3.0e–04 4.1e–04 5.7e–04 σ̂δ̃Orb η̃internal pseudo

-1.4e–04 4.1e–04 8.8e–04

The solution for each data set is admissible.

540
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S1.5.4 The result of fitting the SEM model to the Australasia data

The path diagram of the resulting SEM model is shown in Fig. S1.5.1. This SEM model demonstrated the best fit to the data

and the most stable performance among different versions of the basic SEM model considered. According to Table S1.5.4, the

SEM model fits the data well both statistically (the smallest p value associated with the χ2 statistic, 0.58, is much larger than

0.05) and heuristically (e.g., the largest SRMR value across all 9 data sets is 0.076, which is smaller than the recommended545

cutoff value of 0.08). The solution for each data set turned out to be admissible.
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Figure S1.5.1. Path diagram of the SEM model fitted to the Australasia data.

As one can see in Fig. S1.5.1, the SEM model, just as the CFA model above, does not contain the forced component

ξSLand (anthr), which corresponds to hypothesising that the direct effect of the land-use forcing is not detectable. However, in con-

trast to the CFA model, the SEM model contains a new observable variable x+
Land (anthr), which represents a copy of xLand (anthr).
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The variable was constructed in an analogous way and for the same reason as x+
Land (anthr) in the SEM model fitted to the Eu-550

rope data (see Sect. S1.1 here). In the absence of ξSLand (anthr), both x+
Land (anthr) and xLand (anthr), treated now as a latent variable,

represent only the internal temperature variability, denoted δ̃Land (anthr).

As follows from Fig. S1.5.1, x+
Land (anthr) is ”influenced” by ξSSol and xOrb (see the paths SL+ and OL+, respectively). In the

real-world climate system, such causal co-relations between the forced and internal temperature variability could be explained

by various interactions (feedback mechanisms) between the internal processes and the climate system.555

Table S1.5.4. The result of estimating the SEM model depicted in Fig. S1.5.1 (region: Australasia).

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Ssim 0.022 1.4e–07 VG+ -0.06 0.18 σδ̃GHG η̃internal pseudo
-0.0003 0.59

Osim 0.015 0.041 SL+ 0.017 0.015 σδ̃Orb δ̃comb
0.001 0.015

Vsim 0.081 9.8e–34 OL+ 0.243 0.054 σδ̃Orb η̃internal pseudo
0.0004 0.28

Var(ξSGHG (anthr)) 0.001 0.002 σδ̃GHG δ̃comb
-0.001 0.014 σ2

ηinternal pseudo 0.0051 3.8e–10

√
V̂ar(ξSGHG) = ĜsimSEM =

√
(V̂G+)2 · (V̂sim

2
+σ2∗

δ̃Volc
) + V̂ar(ξSGHG (anthr)) = 0.033 (p value = 0.001)

To assess the overall model fit:

Model χ2 = 14.21, df = 16, p value = 0.58, GFI = 0.96, AGFI = 0.93, SRMR = 0.076.

• Summary of the results based on all 9 data sets

Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.020 0.022 0.023 V̂G+ -0.081 -0.067 -0.058 Model χ2 6.3 9.7 14.2

Ôsim 0.014 0.015 0.016 ŜL+ 0.016 0.017 0.017 p value 0.58 0.86 0.98

V̂sim 0.080 0.081 0.081 ÔL+ 0.241 0.243 0.245 GFI 0.96 0.97 0.98

V̂ar(ξSGHG (anthr)) 0.001 0.001 0.001 σ̂δ̃Orb δ̃comb
3.2e–04 4.4e–04 6.0e–04 AGFI 0.93 0.95 0.97

σ̂δ̃GHG δ̃comb
-0.0012 -0.001 -0.001 σ̂δ̃Orb ηinternal pseudo

3.6e–04 3.9e–04 4.2e–05 SRMR 0.059 0.065 0.076

σ̂δ̃GHG η̃internal pseudo
-0015 -0.001 -0.0003 σ̂2

ηinternal pseudo 0.0035 0.0041 0.0051

Ĝsim 0.032 0.034 0.035

The solution for each data set is admissible.

Another model variable, which receives causal inputs, is ξSGHG. According to Fig. S1.5.1, ξSGHG receives causal inputs from

xVolc (see the path VG+) and ξSGHG (anthr). In the real-world climate system, the co-relation, given by the path VG+, could be

explained by interactions between the concentrations of greenhouse gases in the atmosphere and the climate system. Therefore,

we may say that just as the CFA model above, the SEM model suggests that ξSGHG contains both anthropogenic and natural

components. Moreover, just as the CFA model, the SEM model suggests that the anthropogenic component dominates the560
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natural one. This is reflected by the fact that the estimate of VarξSGHG (anthr) turned out to be significant (across all data sets),

while the estimate of VG+ was insignificant. Finally, the SEM model also estimates the overall effect of the GHGs forcing,

given by the parameter GsimSEM, as significant across all data sets (e.g. for data set no. 1, ĜsimSEM=0.033 with p value=0.001).

The direct effects of the solar and volcanic forcings are also estimated as highly significant (e.g., for data set no. 1, Ŝsim =

0.022 with p value= 1.4e–07, V̂sim = 0.081 with p value= 9.8e–34). In contrast, the effect of the orbital forcing was found to565

be weakly pronounced in the simulated Sep-Feb temperatures in Australasia during the period 850 –1849 AD (e.g., for data set

no. 1, Ŝsim = 0.015 with p value= 0.041).

S1.5.5 Summary and conclusions (region: Australasia)

The first statistical model, the ME-CFA(6, 5) model, demonstrated a poor performance, which was reflected by inadmissble

solutions or the nonconvergence of the estimation procedure.570

In contrast, both CFA and SEM models demonstrated an acceptable performance and a very good (almost similar) overall

fit to the data. The solutions provided by both statistical models were admissible. Importantly, both models led to similar

conclusions about the direct effects of the forcings considered. The estimated direct effects seems to be climatologically

defensible for the region and period of interest. Given the similar results provided by both models results and the fact that

the SEM model requires additional calculations afterwards, our suggestion is to choose the CFA model as a final model in575

accordance with the principle of parsimony.
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S1.6 Antarctica (annual mean temperature)

The data analysed are presented in Table S1.6.1, from which it follows that six data sets were analysed. Results for the CFA

and SEM models are provided in Tables S1.6.2 and S1.6.3, respectively.

Table S1.6.1. Overview of the replicates of each xf , used to construct six regional Antarctica data sets. Each data set contains different x̄ comb

and τpseudo, where x̄ comb is constructed by averaging over three replicates randomly selected from the five that remained after x comb repl.i:s,

i= 1,5,6,7, have been eliminated and after one of x comb repl.i:s, i= 2, 3, 4, 8, 9, 10, is chosen to represent τ , i.e. τpseudo.

Mean sequences

Data set xSol, xVolc,xLand (anthr), xOrb xGHG x comb x comb repl.i = τpseudo

1 all associated repl’s 1,2 3,8,10 2

2 all associated repl’s 1,2 4,9,10 3

3 all associated repl’s 1,2 2,3,9 4

4 all associated repl’s 1,2 2,3,4 8

5 all associated repl’s 1,2 2,4,10 9

6 all associated repl’s 1,2 2,4,8 10

S1.6.1 Preliminary analyses of the single-forcing ensembles by means of the CFA(kf,1) model580

As a beginning, let us point out that the independently estimated specific factor variance σ2∗
δ̃GHG

turned out to be larger than

the sample variance of the mean xGHG-sequence. The interpretation of this result is that the effect of the GHG forcing is

not detected in the simulated annual mean Antarctica temperature generated by the xGHG-climate model. This conclusion was

supported by the CFA(kGHG = 2,0) model, fitted to the xGHG ensemble and demonstrated a good fit to the data both statistically

or heuristically. Another forcings whose effects were assessed as negligible by the CFA(kf,0) model were the orbital and land585

use forcings, respectively.

Hence, we may say that the preliminary analysis of the single-forcing ensembles indicated that xGHG, xOrb and xLand (anthr)

may contain only the internal random temperature variability, represented by the specific factors δ̃GHG, δ̃Orb and δ̃Land (anthr),

respectively.

In contrast, it was found that the effects of the solar and volcanic forcings may be well pronounced in the annual mean590

Antarctica temperature generated by the corresponding single-forcing climate models. The associated estimates of αf, f ∈
{Sol, Volc}, provided by CFA(kf,1) model, turned out to be: α̂Sol = 0.058 with p value= 3.0e–08, α̂Volc =-0.091 with p

value= 5.1e–19.
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S1.6.2 The result of fitting the ME-CFA(6, 5) model to the Antarctica data

The result fo estimating the ME-CFA(6, 5) model is that the estimation procedure failed to converge to a solution for each data595

set. Given the preliminary knowledge that the effect of the three forcings may be negligible, it was expected to observe some

consequences of the empirical underidentifiability.

S1.6.3 The result of fitting the CFA(6, 5) model to the Antarctica data

In order to avoid inadmissible solutions and to increase the number of degrees of freedom, the CFA(7, 6) model was estimated

under the restrictions that Lsim, Gsim, Osim, and all correlation coefficients, associated with ξSGHG, ξSOrb and ξSLand (anthr), are600

zero. In the case of the Antarctica data, the increase in the degrees of freedom was especially desired. This is because it turned

out that too many observed variables, including those hypothesised to contain only the internal temperature variability, exhibit

very strong correlations with each other. In order to explain such a complex variance-covariance structure, it was necessary to

free up a large number of parameters. As one can see in Table S1.6.2, the resulting CFA model estimates 18 parameters, which

is the largest number of parameters observed for a CFA model so far. As a consequence, the resulting model has the lowest605

number of degrees of freedom among all CFA models presented.

A positive consequence of freeing up so many parameters is that an acceptable model fit both in terms of the χ2 statistics

and the heuristic goodness-of-fit indices could be achieved. The CFA model also demonstrated a stable performance across all

data sets. Nevertheless, as pointed out above, freeing up so many parameters led to a substantial loss of degrees of freedom.

Probably, this could be avoided if the correlatedness between the specific factors was statistically modelled by means of610

regressions instead of covariances. Let us investigate this possibility by applying the SEM model specification.

S1.6.4 The result of fitting the SEM model to the Antarctica data

The movement from the CFA specification to the SEM specification was based on the suggestions provided by the modification

indices. According to them, significant improvements of the overall model fit could be achived if xLand (anthr), xOrb and xGHG get

various causal inputs from other model variables.615

To be able to do it without changing the interpretation of these three variables from the climate modelling perspective, three

new variables were constructed. The variables are: x+
Land (anthr), x

+
Orb and x+

GHG. They were constructed in the same way as

x+
Land (anthr) in the SEM model applied to the Europe data (see the details in Sect. S1.1 here). According to Fig. S1.6.1, two of

the three variables, namely x+
Land (anthr) and x+

Orb, receive causal inputs from xcomb, τpseudo and xSol. The third one, x+
GHG, gets a

causal input from x+
Land (anthr), which actually means that x+

GHG gets indirect inputs from xcomb, τpseudo and xSol via x+
Land (anthr).620

Thus, the SEM model suggests that the internal climate variability, generated by the xLand (anthr), xOrb, and xGHG climate models,

is related to the temperature variability forced by the reconstructions of the solar and volcanic forcings, as well as to the internal

temperature variability generated by the xSol, and multi-forcing climate models.

In the real-world climate system, the presence of such co-relations between true temperature responeses could be explained

by feedback mechanisms between the internal processes and the climate system. Although no dynamical relationships between625
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Table S1.6.2. The result of estimating the modified version of CFA(7, 6) model fitted to the Antarctica data.

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Ssim 0.060 2.4e–17 σδ̃Orb δ̃Land (anthr)
0.002 0.045 σδ̃Land (anthr) δ̃comb

0.0013 0.13

Vsim 0.091 3.9e–32 σδ̃Volc δ̃Land (anthr)
0.002 0.044 σδ̃Land (anthr) ηinternal pseudo

0.005 3.2e–04

σ2
ηinternal pseudo 0.015 8.8e–09 σδ̃GHG δ̃Land (anthr)

0.002 6.4e–03 σδ̃GHG δ̃comb
0.002 0.17

σδ̃Sol δ̃Orb
0.003 5.7e–03 σδ̃Sol δ̃GHG

0.002 0.070 σδ̃GHG ηinternal pseudo
0.003 0.033

σδ̃Sol δ̃Volc
0.004 3.0e–05 σδ̃Orb δ̃GHG

0.002 0.13

σδ̃Orb δ̃Volc
0.002 0.10 σδ̃Orb δ̃comb

0.005 1.3e–04

σδ̃Sol δ̃Land (anthr)
0.003 6.1e–04 σδ̃Orb ηinternal pseudo

0.004 0.013

To assess the overall model fit:

Model χ2 = 7.64, df = 10, p value = 0.66, GFI = 0.98, AGFI = 0.94, SRMR = 0.075.

• Summary of the results based on all 6 data sets
Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.060 0.062 0.064 σ̂δ̃GHG δ̃Land (anthr)
0.0023 0.0023 0.0023 Model χ2 5.7 8.1 10.1

V̂sim 0.094 0.096 0.100 σ̂δ̃Sol δ̃GHG
0.0015 0.0016 0.0018 p value 0.43 0.62 0.84

σ̂2
ηinternal pseudo 0.0153 0.0206 0.0239 σ̂δ̃Orb δ̃GHG

0.0016 0.0017 0.0017 GFI 0.97 0.98 0.98

σ̂δ̃Sol δ̃Orb
0.0025 0.0026 0.0028 σ̂δ̃Orb δ̃comb

0.0037 0.0048 0.0056 AGFI 0.92 0.94 0.96

σ̂δ̃Sol δ̃Volc
0.0037 0.0040 0.0042 σ̂δ̃Orb ηinternal pseudo

0.0006 0.0045 0.0062 SRMR 0.069 0.076 0.086

σ̂δ̃Orb δ̃Volc
0.0018 0.0020 0.0023 σ̂δ̃Land (anthr) δ̃comb

0.0031 0.0039 0.0044

σ̂δ̃Sol δ̃Land (anthr)
0.0024 0.0025 0.0025 σ̂δ̃Land (anthr) ηinternal pseudo

0.0025 0.0037 0.0050

σ̂δ̃Orb δ̃Land (anthr)
0.0017 0.0018 0.0018 σ̂δ̃GHG δ̃comb

0.0010 0.0020 0.0027

σ̂δ̃Volc δ̃Land (anthr)
0.0018 0.0019 0.0200 σ̂δ̃GHG ηinternal pseudo

0.0000 0.0018 0.0032

The solution for each data set is admissible.

the forcing reconstructions and the internal processes were implemented in the climate modelling experiment under consider-

ation, observing such co-relations in the simulated climate system, in our opinion, characterises the climate model (with the

forcing reconstructions implemented and its theoretical physical basis) as a realistic representation of the real-world climate

system.

According to the numerical results given in Table S1.6.3, the estimates of some causal inputs are insignificant or weakly630

significant (e.g., for data set no. 1, T̂O+=0.029 with p value of 0.70, ŜO+ = 0.228 with p value of 0.06, and ĈL+ = 0.032

with p value of 0.67). The estimates of the remaining causal inputs are significant (e.g., for data set no. 1, ĈO+ = 0.208 with p

value= 0.023, T̂L+ = 0.139 with p value= 0.026, ŜL+=0.273 with p value= 5.9e–03, and L̂G+ = 0.299 with p value= 6.5e–

03). However, the SEM model (as well as all other models presented so far) still reflects the basic assumption of our framework
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Figure S1.6.1. Path diagram of the SEM model fitted to the Antarctica data.

that the internal processes do not have a systematic effect (of any significance) on the climate. This is follows from the fact that635

neither x+
Land (anthr), x

+
Orb or x+

GHG affect xcomb or τpseudo.

In contrast, the SEM model detects a significant effect of the solar respectively volcanic forcing in the simulated annual mean

temperature in Antarctica during 850 –1849 AD (e.g. for data set no. 1, Ŝsim = 0.062 with p value= 2.1e–17, V̂sim = 0.100

with p value= 3.8e–32). Once again, the estimated effect of the volcanic forcing turned out to be the strongest.
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Table S1.6.3. The result of estimating the SEM model depicted in Fig. S1.6.1 (region: Antarctica).

• The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value

Ssim 0.062 2.1e–17 TO+ 0.029 0.70

Vsim 0.100 3.8e–32 SO+ 0.228 0.06

σ2
ηinternal pseudo 0.015 9.4e–09 CL+ 0.032 0.67

σδ̃Sol δ̃Volc
0.0044 3.2e–05 TL+ 0.139 0.026

CO+ 0.208 0.023 SL+ 0.273 5.9e–03

LG+ 0.299 6.5e–03

To assess the overall model fit:

Model χ2 = 13.14, df = 17, p value = 0.73, GFI = 0.96, AGFI = 0.94, SRMR = 0.071.

• Summary of the results based on all 6 data sets

Min Mean Max Min Mean Max Min Mean Max

Ssim 0.062 0.064 0.065 TO+ -0.147 0.037 0.136 Model χ2 9.5 12.7 16.6

Vsim 0.095 0.097 0.100 SO+ 0.207 0.232 0.267 p value 0.48 0.74 0.92

σ2
ηinternal pseudo 0.015 0.021 0.024 CL+ 0.032 0.150 0.227 GFI 0.95 0.96 0.97

σδ̃Sol δ̃Volc
0.0039 0.0041 0.0043 TL+ -0.034 0.039 0.139 AGFI 0.92 0.94 0.96

CO+ 0.070 0.190 0.340 SL+ 0.229 0.251 0.273 SRMR 0.061 0.070 0.078

LG+ 0.299 0.299 0.299

The solution for each data set is admissible.

Concerning the overall fit of the SEM model, the numerical results in Table S1.6.3 indicate that the SEM model fits the640

data well both statistically and heuristically. The p values, associated with the χ2 statistic, are high across all data sets, and the

heuristic measures (GFI, AGFI and SRMR) satisfy the associated cutoff criteria.

S1.6.5 Summary and conclusions (region: Antarctica)

The first statistical model, the ME-CFA(6, 5) model, could not be estimated because the estimation procedure did not converge

to a solution.645

Both CFA and SEM models have admissible solutions and an acceptable overall fit to the data. Moreover, each statistical

model demonstrated a stable performance across the data sets. Importantly, both models led to the same conclusions about the

direct effects of forcings, namely that the effects of the volcanic and solar forcings are well detected in the simulated annual

mean temperature in Antarctica during 850 –1849 AD, while the effects of the land-use, orbital and GHG forcings are not

detected. This interpretation seems to be climatologically defensible for the region and period under study. Moreover, this650

interpretation is supported by the preliminary analyses of the single-forcing ensembles by means of the CFA(kf,1) model,
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which increases our confidence in the conclusions drawn. Thus, we may say that both CFA and SEM models could be chosen

as a tentative model of the underlying structure of the data.

However, the SEM model has a great advantage, namely that the SEM model estimates seven parameters less than the CFA

model. This is the largest difference between the degrees of freedom observed for the CFA and SEM models fitted to one and655

the same regional data. Note that this is despite the fact that the variance-covariance structure of the Antarctica data turned

out to be more complex than those associated with other regions (which was reflected by a larger number of very significant

observed covariances). All these together speak in favor of the SEM model. Therefore, our suggestion is to choose the SEM

model, depicted in Fig. S1.6.1, as a statistically adequate and climatologically defensible approximation of the underlying

relationships for the simulated annual mean temperature data from Antarctica, covering the period of the 850 –1849 AD.660
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S2 Definition and basic concepts of Structural Equation Model (SEM)

S2.1 A general definition of SEM

The general full SEM model is represented by three equations (Jöreskog and Sörbom, 1988):

Latent variable model: η =Bη+ Γξ+ ζ (S1)

665
Measurement model fory : y = Λyη+ ε (S2)

Measurement model for x : x= Λxξ+ δ (S3)

where
η an m× 1 vector of latent endogenous variables;

ξ an n× 1 vector of latent exogenous variables;
670

ζ an m× 1 vector of latent (random) errors in equations;

B an m×m matrix of coefficients, representing direct effects of η variables on other η variables. B always has zeros in

the diagonal, which ensures that a variable is not an immediate cause of itself;

Γ an m×n matrix of coefficients, representing direct effects of ξ variables on η variables;

y a p× 1 vector of observed indicators of η;

x a q× 1 vector of observed indicators of ξ;

ε a p× 1 vector of measurement errors for y;

δ a q× 1 vector of measurement errors for x;

Λy a p×m matrix of coefficients relating y to η;

Λx a q×n matrix of coefficients relating x to ξ.

Within the present work, the normality of data is assumed. Further, it is also assumed that

• E(η) = 0, E(ξ) = 0, E(ζ) = 0, E(ε) = 0, and E(δ) = 0,

• ζ is uncorrelated with ξ (otherwise, inconsistent coefficient estimators are likely),675

• ε is uncorrelated with η, ξ, and δ

• δ is uncorrelated with ξ, η, and ε.

• I −B is nonsingular,

• ζi t, i= 1,2, . . . ,m, is homoscedastic and nonautocorrelated, meaning that the associated covariance matrix of ζ, Ψ, is the

same for all time points t, and that all observations on ζi are mutually uncorrelated. The variance-covariance matrix of ξ is a680

n×n symmetrical matrix denoted Φ. That is, exogenous latent variables can be correlated, implying that Φ is not necessarily

diagonal.
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According to Bollen (1989, Ch.1), the fundamental hypothesis of structural equation modelling is that the population co-

variance matrix of the observed variables, Σ, can be written as a function of model parameters, i.e.

Σ = Σ(θ), (S4)685

where θ denotes a vector of model parameters and Σ(θ) is the model’s reproduced (or implied) variance-covariance matrix

written as a function of θ, namely

Σ(θ) =

Σyy(θ)

Σxy(θ) Σxx(θ)

 , (S5)

where

Σyy(θ) = ΛyA (ΓΦΓ′+ Ψ)A′Λ′y + Θε690

Σxy(θ) = ΛxΦΓ′A′Λ′y

Σxx(θ) = ΛxΦΛ′x + Θδ ,

where A= (I −B)−1.

To calculate the variance-covariance matrix of η, we rewrite Eq. (S1) in the reduced form

η = (I −B)−1 (Γξ+ ζ) . (S6)695

Taking the variance of both sides of Eq. (S6), we obtain

Ση(θ) = (I −B)−1 (ΓΦΓ′+ Ψ
)[

(I −B)−1]′ . (S7)

An important point to realise about the full SEM is that it subsumes many models as special cases, namely the Measurement

Error (ME) model, used in many Detection and Attribution studies, and the Confirmatory Factor Analysis (CFA) model, which

we suggested in our analysis.700

S2.2 An alternative representation of SEM

The representation of a general structural equation model above is known as a standard representation. Being sufficient for

capturing the relation between variables within some analyses, the standard representation might be insufficient within other

analyses due to its restrictions. For example, it is not allowed that observed variables influence latent variables, in particular

the endogenous ones, which in the context of the present work would prevent climatologically defensible causal links from705

observable temperatures (simulated and/or observed) to the latent temperature responses due to the land-use and GHG forcings.

To overcome those restrictions, one can use the following two-equation model (Bollen, 1989, Ch.9):

η+ =B+η+ + ζ+ (S8)

y+ = Λ+
y η

+, (S9)

where η+,B+, ζ+, and y+ are related to the variables from the standard representation in the following way:710
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η+ =


y

x

η

ξ

 , ζ+ =


ε

δ

ζ

ξ

 , y+ =

y
x

 , B+ =


0 0 Λy 0

0 0 0 Λx

0 0 B Γ

0 0 0 0

 , Λ+
y =

[
Ip+q 0

]
, (S10)

where Ip+q is an order-(p+ q) identity matrix picking out the observed variables from η+. The Λ+
y is consequently (p+ q)×

(p+ q+m+n). Further,

• η+ and ζ+ are (p+ q+m+n)× 1,

• y+ is (p+ q)× 1, and715

• B+ is (p+ q+m+n)× (p+ q+m+n).

The final matrix for this alternative representation is the covariance matrix for ζ+ denoted Ψ+. Its relation to the standard

parameters is

Ψ+ =


Θε

0 Θδ

0 0 Ψ

0 0 0 Φ

 . (S11)720

Using the reduced form of η+, given by

η+ =
(
I −B+)−1

ζ+, (S12)

the reproduced covariance matrix of η+ is derived:

Ση+(θ) =
(
I −B+)−1

Ψ+ ((I −B+)−1)′ . (S13)

Inserting (S12) into (S9) gives the reproduced covariance matrix of the observed variables only:725

Σy+(θ) =
(
Λ+
y

(
I −B+)−1

)
Ψ+

(
Λ+
y

(
I −B+)−1

)′
(S14)

The matrices B+ from (S10) and Ψ+ from (S11) make explicit the implicit constraints of the standard representation.

However, by changing the fixed zero elements in these matrices we can relax many of those constraints. An important point to

keep in mind, when relaxing the assumptions of the standard representation, is that the resulting model should be identified.

S2.3 Estimation of parameters of a SEM model730

Let us start by describing a classification of parameters, suggested by Jöreskog (1969):

– A free parameter is a parameter to be estimated. Since free parameters are not associated with anything specific about

them, they are not a part of the hypotheses associated with a factor model.

– A fixed parameter is a parameter whose value is prespecified by hypothesis and this value remains unchanged during the

iterative estimation process.735
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– A constrained-equal parameter is a parameter that is estimated but its value is constrained to be equal to another param-

eter (or parameters). Because only one value needs to be determined for each group of constrained-equal parameters,

only one parameter from this group is counted when counting the number of distinct estimated parameters. In contrast

to free parameters, constrained-equal parameters are a part of the hypotheses associated with a factor model, although

both types of the parameters are estimated.740

Free and constrained-equal parameters are estimated such that the discrepancy between the sample variance-covariance matrix

of the indicators, S, and the estimated model’s reproduced variance-covariance matrix, Σ(θ̂), is as small as possible. In

particular, under the assumption of normality of the data, the estimates are obtained by minimising the following discrepancy

function with respect to the free parameters, i.e. the parameters to be estimated, conditional on the explicitly constrained

parameters (Jöreskog, 1969; Bollen, 1989; Mulaik, 2010):745

F (θ) = log|Σ(θ)|+ tr(SΣ(θ)−1)− log|S| − q′, (S15)

where q′ = p+q is the total number of indicators. In fact, minimising (S15) is equivalent to maximising the maximum likelihood

(ML) function (Jöreskog, 1969), meaning that the resulting estimates θ̂ are ML estimates.

According to the general theory, the ML estimates are consistent, jointly asymptotically normally distributed with the asymp-

totic variance expressed as being the inverse of the Fisher information. In confirmatory factor analysis, the Fisher information750

in a matrix form is defined as follows :

n− 1

2
·E
[
∂2F (θ)

∂θ∂θ′

]
. (S16)

The inverse of (S16), evaluated at the values for the parameters that minimise the F function, gives an estimate of the variance

of the asymptotic distribution of the model estimates.

One can use the estimated variances to test each estimated parameter θi by means of the z statistic θ̂i
/√

V̂ar(θ̂i), which has755

approximately a standard normal distribution. The results of tests that θi = 0 are provided in form of two-sided p values by

all statistical packages designed to do SEM, regardless of whether a model is just-identified or overidentified. In addition, one

also can construct the approximate 100(1− p)% Wald confidence interval for each parameter θi to test H0 : θi = θ0
i :

θ̂i± zp/2 ·
√

V̂ar(θ̂f), (S17)

where zp/2 is the 100(1− p/2) percentile of the standard normal distribution.760

S2.4 Assessing the overall SEM model fit to the data and its acceptability

The overall model fit can be assessed statistically by the χ2 test, and heuristically using a number of goodness-of-fit indices.

Closely related to the F function above, the χ2 test statistic is the log-likelihood ratio test statistic, given by:

χ2 =−2 · (logL(H0)− logL(HA)) = (n− 1) ·F (θ̂), (S18)
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where logL(H0) =− 1
2
·(n−1) ·

{
log|Σ(θ)|+ tr(SΣ(θ)−1)

}
is the logarithm of the likelihood function under the null hypothesis765

H0 : Σ = Σ(θ), while logL(HA) =− 1
2
· (n− 1) ·

{
log|S|+ q′

}
is the logarithm of the likelihood function under the alternative

hypothesis HA of unrestricted Σ, i.e. Σ = S.

In large samples, the χ2 test statistic is approximately distributed as chi-square with

df = q′(q′+ 1)/2−m′,

degrees of freedom, where q′(q′+1)/2 is the number of the unique (nonduplicated) equations in the variance-covariance matrix770

of the indicators, and m′ is the number of distinct free parameters, i.e. parameters to be estimated. All statistical packages

developed for estimating structural equation models, for example LISREL, AMOS, theR package sem, provide the observed

value of the model χ2 with the associated p value. The conventional guidelines for interpreting p values are roughly as follows

(Cox and Donnelly, 2011):

– if p≈ 0.1 there is a suggestion of evidence against H0;775

– if p≈ 0.05 there is modest evidence against H0;

– if p≈ 0.01 there is strong evidence against H0.

As for goodness-of-fit indices, we use here the following ones: a goodness-of-fit index (GFI), GFI adjusted for degrees of freedom

(AGFI), and standardised root- mean-square residual (SRMR). Just as with the χ2 test statistic, the observed values of these

three heuristic measures are reported by most statistical sofware programs aiming at estimating structural equation models.780

The GFI is obtained using the following formula (Sharma, 1996):

GFI = 1− tr(Σ̂
−1
S− I)2

tr(Σ̂
−1
S)2

, (S19)

and represents the amount of variances and covariances in S that are predicted by the SEM model. In this sense it is analogous

in interpretation toR2 in multiple regression. The AGFI is essentially GFI that has been adjusted for degrees of freedom. AGFI

is given as (Sharma, 1996)785

AGFI = 1− q′(q′+ 1)

2df
(1−GFI) , (S20)

where df are the degrees of freedom, and q′ = p+q is the number of indicators. Regarding the cutoff values of these two indices,

the following rules of thumb are recommended. The GFI for good-fitting models should be greater than 0.90, while for the

AGFI the suggested cutoff value is 0.8 (Sharma, 1996). In contrast to the GFI and AGFI, the SRMR is rather a ”badness-of-fit

index” than a ”goodness-of-fit index”. It also ranges between 0 and 1, but 0 indicates perfect fit, while larger values indicate790

lack of fit. The SRMR is defined as follows (Hu and Bentler, 1999):

SRMR =

√√√√√√√
q′∑
i=1

i∑
j=1

[
(sij − σ̂ij)

/
(siisjj)

]2
q′(q′+ 1)/2

, (S21)
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where sij := observed (co-)variances, σ̂ij := reproduced (co-)variances, sii and sjj := observed standard deviations. Accord-

ing to Hu and Bentler (1999), a cutoff value close to 0.08 for SRMR indicates a good fit. It is worth pointing out that it is

recommended to use the goodness-of-fit indices for assessing the fit of a number of competing models fitted to the same data795

set, rather than the fit of a single model. Researchers also should pay attention to other aspects of model fit such as examining

parameter estimates to ensure that they have the anticipated signs and magnitudes. Before considering some type of model

modification, other reasons why a model may not fit, such as small sample size, nonnormality, or missing data, need to be ruled

out first (Boomsma, 2000).

Note that the SRMR provides a summary measure of the normalised residuals, defined as a difference between the sample800

variance-covariance matrix S and the estimated reproduced variance-covariance matrix Σ(θ̂). Normalisation is accomplished

by dividing the residuals by their respective asymptotic standard errors. If a SEM model is rejected, the question then be-

comes: How can the SEM model be modified to fit the data? Examining the normalised residuals can provide hints or clues

to what changes can be made. Large residuals indicate that the hypothesised SEM model is not able to adequately explain the

(co-)variances of the indicators. Normalised residuals that exceed 1.96 or 2.58 in absolute value are considered statistically805

significant at the significance level of 5% and 1%, respectively. Ideally, no more than 5% of normalised residuals should be

greater than 1.96. Similary, no more than 1% should be greater than 2.58.

Another useful tool in the process of model modification is the modification indices. Developed by Sörbom (1989), these

indices attempt to estimate which missing paths, if added to the current SEM model, would result in the greatest reduction of

the discrepancy between model and data. The way to use these indices is to free the fixed parameter associated with the largest810

reduction and reanalyse the resulting model.

It should be realised that a good overall model fit alone is not sufficient to accept a SEM model as an appropriate approxi-

mation of underlying relationships. To be able to do it, one needs to check whether the solution is admissible and defensible

from the climatological point of view. For SEM models standardising only latent (exogenous) variables to have unit variances,

inadmissible solutions are indicated by estimated correlations between latent variables that lie outside their admissible range815

between -1 and 1. If estimated correlations have admissible values a next step is to look at a completely standardised solution.

The completely standardised solution is the solution obtained when the variances of both latent variables and indicators are

one.

If completely standardised estimates of factor loadings exceed 1 in absolut value then the solution obtained is inadmissible.

Completely standardised solutions are provided by all statistical software designed to performed SEM analysis, in particular820

by the R package sem employed in the present analysis. Note that the sem package requires latent factor variances of 1 to be

represented explicitly.

To conclude, only if a SEM model has an acceptable overall fit, assessed both statistically and heuristically, and its solu-

tion is admissible and climatologically interpretable then we may accept the SEM model as an approximation of underlying

relationships.825
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S2.5 Assessing the significance of estimated variances of latent endogenous variables

Having estimated the variance of a latent endogenous variable in accordance with Eq. (S7) or Eq. (S13), it is of interest to assess

its significance. To this end, one can use the multivariate delta method (Bollen (1989), p.390, and references therein). To apply

this method, let us first reiterate that θ̂ are ML estimates, meaning that they are asymptotically jointly normally distributed

with a mean of θ and a covariance matrix COV(θ̂) containing the variances of the estimates down its main diagonal and the830

covariances off the diagonal. Further, let f(θ̂) be a function which is differentiable at θ̂ = θ so that it can be expanded in a

first-order Taylor series about θ. Under these conditions the multivariate delta method states that the asymptotic distribution of

f(θ̂) is normal with a mean of f(θ) and the variance given by

Var(f(θ̂1, θ̂2, . . . , θ̂m′)) =

m′∑
i=1

Var(θ̂i) · (f ′i(θ))2 + 2 ·
m′∑
i=1

m′∑
j=i+1

Cov(θ̂i, θ̂j) · f ′i(θ) · f ′j(θ) (S22)835

where f ′i(θ) denotes the first partial derivative of f(θ̂) with respect to θ̂i, evaluated at θ = (θ1,θ2, . . . ,θm′). For large samples,

substituting the sample estimates into (S22) provides an estimate of the variance of the asymptotic distribution of f(θ̂):

V̂ar(f(θ̂1, θ̂2, . . . , θ̂m′)) =

m′∑
i=1

V̂ar(θ̂i) · (f ′i(θ̂))2 + 2 ·
m′∑
i=1

m′∑
j=i+1

Ĉov(θ̂i, θ̂j) · f ′i(θ̂) · f ′j(θ̂). (S23)

Since for large samples

f(θ̂)− f(θ)√
V̂ar(f(θ̂))

approx∼ N(0,1), (S24)840

we can construct an approximate 100(1− p)% confidence interval for f(θ̂) as follows:

f(θ̂)± zp/2 ·
√

V̂ar(f(θ̂)), (S25)

where zp/2 is the 100(1− p/2) percentile of the standard normal distribution.

Note that f(θ̂) can be any function of parameter estimates, not necessarily representing the variance of latent exogenous

variables. Regardless of the function, it is important that if all the parameters involved are essentially zero, then the delta845

method cannot be applied to obtain the approximation for the standard error of the estimate of the endogenous parameter of

interest.
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S3 R- and Matlab-codes

In the present work we employed the R package sem (Fox et al., 2014) using R version 3.0.2 (R Core Team, 2013) for estimation

of all statistical models under study. For derivation of symbolic expressions of the reproduced variance-covariance matrices850

associated with our statistical models under different hypotheses, we used Matlab (R2018b (9.5.0.944444) 64-bit (glnxa64)),

in particular its Symbolic Math Toolbox, which provides functions for solving and manupulating symbolic math equations (see

https://se.mathworks.com/help/symbolic/index.html?s_tid=CRUX_lftnav).

S3.1 An example of using the R package sem

Here we exemplify the usage of the R package sem by providing the code for estimating all three statistical models fitted to855

the Europe data: the ME-CFA(6, 5) model, the CFA(7, 6) model and the SEM model. Regardless of the statistical model fitted,

the estimation procedure in the sem package involves four steps:

1. Specify the model of interest;

2. Save the specify model into an ASCII file;

3. Prepare the data for the analysis, and finally860

4. Perform the estimation.

An additional step may be required when analysing SEM models, namely the calculation of the variances of endogenous

variables (if the SEM model of interest contains such variables). Within the context of this work, it is of interest to calculate

the variance of ξSGHG, provided it receives causal inputs from other model variables.

S3.1.1 Fitting the ME-CFA(6, 5) model presented in Table S1.1.2 to the Europe data865

Step 1. Specify the model (here, in the path format).

# Define the factor loadings

xi_Sol -> x_Sol, Ssim, NA # NA denotes an arbitrary starting value for the parameter Ssim

xi_Sol -> tau_pseudo, Strue, NA

xi_Orb -> x_Orb, Osim, NA870

xi_Orb -> tau_pseudo, Otrue, NA

xi_Volc -> x_Volc, Vsim, NA

xi_Volc -> tau_pseudo, Vtrue, NA

xi_Land -> x_Land, Lsim, NA #For the sake of simplicity, xi_Land in the R scripts presented

# denotes xi_Land_anthr, while x_Land denotes x_Land_anthr875

xi_Land -> tau_pseudo, Ltrue, NA

xi_Ghg -> x_Ghg, Gsim, NA

xi_Ghg -> tau_pseudo, Gtrue, NA

# Define the correlation coefficients

xi_Sol <-> xi_Orb, phiSO, NA880
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xi_Sol <-> xi_Volc, phiSV, NA

xi_Sol <-> xi_Land, phiSL, NA

xi_Sol <-> xi_Ghg, phiSG, NA

xi_Orb <-> xi_Volc, phiOV, NA

xi_Orb <-> xi_Land, phiOL, NA885

xi_Orb <-> xi_Ghg, phiOG, NA

xi_Volc <-> xi_Land, phiVL, NA

xi_Volc <-> xi_Ghg, phiVG, NA

xi_Land <-> xi_Ghg, phiLG, NA

# Fix the variances of the latent factors to 1 by writing NA in the place of a parameter symbol890

xi_Sol <-> xi_Sol, NA, 1

xi_Ghg <-> xi_Ghg, NA, 1

xi_Orb <-> xi_Orb, NA, 1

xi_Land <-> xi_Land, NA, 1

xi_Volc <-> xi_Volc, NA, 1895

# Set the variances of the specific factors to the values obtained a priori

# by means of estimator (2.3) define in LAS22num

x_Sol <-> x_Sol, NA, 0.0084 # corresponds to Var(\tilde{\delta}_Sol),

x_Orb <-> x_Orb, NA, 0.012 # corresponds to Var(\tilde{\delta}_Orb),

x_Volc <-> x_Volc, NA, 0.00574 # and so on900

x_Land <-> x_Land, NA, 0.0086

x_Ghg <-> x_Ghg, NA, 0.0076

tau_pseudo <-> tau_pseudo, NA, 0.02571

Step 2. Save the above code into an ASCII file, e.g. ME_CFA_model_EUR.r

Step 3. Prepare the data for the analysis:905

# Construct a data set of observed variables, where only tau_pseudo is a single sequence,

# while the others are mean-sequences

MYDATA_ME<-cbind(x_Sol, x_Orb, x_Volc, x_Land, x_Ghg, tau_pseudo)

# Name the observed variables in MYDATA_ME in the same way as in Step 1

colnames(MYDATA_ME)<-c("x_Sol","x_Orb", "x_Volc","x_Land","x_Ghg", "tau_pseudo")910

#Compute the variance-covariance matrix of the observed variables

S2<-cov(MYDATA_ME);

Step 4. Estimation

# Load the sem package

library(sem)915

# Define the heuristic indices of interest

opt <- options(fit.indices = c("GFI", "AGFI","SRMR"))

# Read in the ASCII file with the ME-CFA(6, 5) model

model_1_EUR<-specifyModel("ME_CFA_model_EUR.r")
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# Fit the model and save the results to a model fit object920

result_model_1_EUR<- sem(model_1_EUR, S2,N=100,fit.indices=TRUE) # where N is

# a number of observations

# To see the result of the estimation

summary(result_model_1_EUR)

S3.1.2 Fitting the CFA(7, 6) model presented in Table S1.1.3 to the Europe data925

Step 1. Specify the CFA model

# Define the factor loadings

xi_Sol -> x_Sol, Ssim, 0.063665

xi_Sol -> x_comb, Ssim, 0.063665

xi_Sol -> tau_pseudo, Ssim, 0.063665930

xi_Orb -> x_Orb, NA, 0

xi_Orb -> x_comb, NA, 0

xi_Orb -> tau_pseudo, NA, 0

xi_Volc -> x_Volc, Vsim, 0.134

xi_Volc -> x_comb, Vsim, 0.134935

xi_Volc -> tau_pseudo, Vsim, 0.134

xi_Land -> x_Land, NA, 0

xi_Land -> x_comb, NA, 0

xi_Land -> tau_pseudo, NA, 0

xi_Ghg -> x_Ghg, Gsim, 0.0524940

xi_Ghg -> x_comb, Gsim, 0.0524

xi_Ghg -> tau_pseudo, Gsim, 0.0524

# Set the variance of latent factors to 1

xi_Sol <-> xi_Sol, NA, 1

xi_Orb <-> xi_Orb, NA, 1945

xi_Volc <-> xi_Volc, NA, 1

xi_Land <-> xi_Land, NA, 1

xi_Ghg <-> xi_Ghg, NA, 1

# Define the variance of \eta_internal_pseudo

tau_pseudo <-> tau_pseudo, Var_eta_internal, 0.01917950

# Define the unknown specific factor covariances

x_Sol <-> x_Ghg, cov_xSol_xGhg, 0.0025

x_Land <-> x_Orb, cov_xLand_xOrb, 0.00020

x_Land <-> x_Volc, cov_xLand_xVolc, 0.00126

x_Land <-> x_comb, cov_xLand_xComb, 0.00312955

x_Land <-> tau_pseudo, cov_xLand_tauPseudo, 0.00312

## Set the variances of the specific factors to the a apriori obtained values

x_Sol <-> x_Sol, NA, 0.0084

x_Orb <-> x_Orb, NA, 0.012

x_Volc <-> x_Volc, NA, 0.00574960
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x_Land <-> x_Land, NA, 0.0086

x_Ghg <-> x_Ghg, NA, 0.0076

x_comb <-> x_comb, NA, 0.00868

Step 2. Save the above code into an ASCII file, e.g. CFA_model_EUR.r

Step 3. Prepare the data for the analysis:965

# Construct a data set of observed variables, where only tau_pseudo is a single sequence,

# while the others are mean-sequences

MYDATA_CFA<-cbind(x_Sol, x_Orb, x_Volc,x_Land, x_Ghg, x_comb, tau_pseudo)

# Name the observed variables in MYDATA_CFA in the same way as in Step 1

colnames(MYDATA_CFA)<-c("x_Sol","x_Orb", "x_Volc","x_Land","x_Ghg", "x_comb","tau_pseudo")970

#Compute the variance-covariance matrix of the observed variables

S2<-cov(MYDATA_CFA);

Step 4. Estimation

# Load the sem package

library(sem)975

# Define the heuristic indices of interest

opt <- options(fit.indices = c("GFI", "AGFI","SRMR"))

# Read in the ASCII file with the CFA(7, 6) model

model_2_EUR<-specifyModel("CFA_model_EUR.r")

# Fit the model and save the results to a model fit object980

result_model_2_EUR<- sem(model_2_EUR, S2, N=100, fit.indices=TRUE)

# To see the result of the estimation

summary(result_model_2_EUR)

S3.1.3 Fitting the SEM model presented in Fig. S1.1.1 to the Europe data

Step 1. Specify the SEM model985

eta_Sol -> x_Sol, Ssim, 0.063665

eta_Sol -> x_comb, Ssim, 0.063665

eta_Sol -> tau_pseudo, Ssim, 0.063665

x_Orb -> x_Orb+, NA, 1

eta_Volc -> x_Volc, Vsim, 0.13364990

eta_Volc -> x_comb, Vsim, 0.13364

eta_Volc -> tau_pseudo, Vsim, 0.13364

x_Land -> x_Land+, NA, 1 #For the sake of simplicity, x_Land+ in the R scripts presented

# denotes x_Land_anthr+

eta_Ghg -> x_Ghg, NA, 1995

eta_Ghg -> x_comb, NA, 1
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eta_Ghg -> tau_pseudo, NA, 1

x_comb -> x_comb+, NA, 1

tau_pseudo -> tau_pseudo+, NA, 1

## Introduce the specified causal inputs1000

x_Sol -> eta_Ghg, SG+, 0.024

x_comb -> x_Land+, CL+, 0.01

tau_pseudo -> x_Land+, TL+, 0.01

x_Land+ -> x_Orb+, LO+, 0.01

# Define the variance of the disturbance term xi_Ghg_anthr1005

xi_Ghg <-> xi_Ghg, Var_xi_Ghg_anthr, 0.0014

# Define the variances of the latent exogenous variables

xi_Sol <-> xi_Sol, NA, 1

xi_Volc <-> xi_Volc, NA, 1

# Define the variance of \eta_internal_pseudo1010

tau_pseudo <-> tau_pseudo, Var_eta_internal, 0.01621

# Define the unknown specific-factor covariance

x_Sol <-> x_Ghg, cov_xSol_xGhg, 0.00125

## Define the variance of each \delta-term and

## set these variances to the a priori obtained values1015

x_Sol <-> x_Sol, NA, 0.0084 # corresponds to Var(\tilde{\delta}_Sol),

x_Orb <-> x_Orb, NA, 0.012 # corresponds to Var(\tilde{\delta}_Orb),

x_Volc <-> x_Volc, NA, 0.00574 # and so on

x_Land <-> x_Land, NA, 0.0086

x_Ghg <-> x_Ghg, NA, 0.00761020

x_comb <-> x_comb, NA, 0.00868

x_Orb+ <-> x_Orb+, NA, 0 # by definition

x_Land+ <-> x_Land+, NA, 0 # by definition

x_comb+ <-> x_comb+, NA, 0 # by definition

tau_pseudo+ <->tau_pseudo+, NA, 0 # by definition1025

Step 2. Save the above code into an ASCII file, e.g. SEM_model_EUR.r

Step 3. Prepare the data for the analysis:

# Construct a data set of observed variables, where only tau_pseudo is a single sequence,

# while the others are mean-sequences

MYDATA_SEM<-cbind(x_Sol, x_Orb, x_Volc,x_Land, x_Ghg, x_comb, tau_pseudo)1030

# Name the observed variables in MYDATA_SEM in the same way as in Step 1

colnames(MYDATA_SEM)<-c("x_Sol","x_Orb+", "x_Volc","x_Land+","x_Ghg","x_comb+", "tau_pseudo+")

#Compute the variance-covariance matrix of the observed variables

S2<-cov(MYDATA_SEM);

Step 4. Estimation1035

# Load the sem package
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library(sem)

# Define the heuristic indices of interest

opt <- options(fit.indices = c("GFI", "AGFI","SRMR"))

# Read in the ASCII file with the SEM model1040

model_3_EUR<-specifyModel("SEM_model_EUR.r")

# Fit the SEM model and save the result to a model fit object

result_model_3_EUR<- sem(model_3_EUR, S2, N=100, fit.indices=TRUE)

# To see the result of the estimation

summary(result_model_3_EUR)1045

## Save the parameter estimate as separate objects. They are needed for

## calculating the variance of the endogenous variable $\xi_{\text{Ghg}}\,$ according to

## the delta method described in Sect. S2.5:

Ssim<-coef(result_model_3_EUR)[[1]]1050

Vsim<-coef(result_model_3_EUR)[[2]] # and so on

## Derive the estimated variance-covariance matrix of the parameter estimates, needed for

## calculating the variance of the endogenous variable $\xi_{\text{Ghg}}\,$ according to

## the delta method described in Sect. S2.5:1055

VCOV<-vcov(result_model_3_EUR)

Var_Ssim<- VCOV[1,1]

Var_Vsim<- VCOV[2,2] # and so on, depending on the order in which the parameters appear

# in the summary, i.e. summary(result_model_3_EUR)

S3.2 An example of using Matlab for calculating the variances of latent endogenous variables1060

Here we provide them file used for the calculation of the variance of the latent endogenous variable ξGHG from the SEM model

in Fig. S1.1.1 fitted to the Europe data. The calculations are based on Eq. (S10), Eq. (S11), and Eq. (S13). The variables in

these equations, i.e.

η+ = {y′, x′, η′, ξ′},

and1065

ζ+ = {ε′, δ′, ζ′, ξ′},

correspond to the variables of the SEM model under consideration in the following way:

y′ = {x+
Land (anthr), x

+
Orb, xGHG, x

+
comb, τ

+
pseudo},

x′ = {xSol, xVolc},1070
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η′ = {xLand (anthr), xOrb, ξ
S
GHG, xcomb, τpseudo},

ξ′ = {ξSSol, ξ
S
Volc},

and1075

ε′ = {0,0, δGHG, 0, 0},

δ′ = {δSol, δVolc},

ζ′ = {δ̃Land (anthr), δ̃Orb, ξ
S
GHG (anthr), δ̃comb, ηinternal pseudo}.1080

%% Define the variables in Matlab as follows

Ssim=sym(’Ssim’);

Vsim=sym(’Vsim’);

CLplus=sym(’CLplus’);1085

TLplus=sym(’TLplus’);

LOplus=sym(’LOplus’);

xi_Ghg_anthr=sym(’xi_Ghg_anthr’);

psi_Ghg=sym(’psi_Ghg’); % In order to simplify notation, the parameter psi_Ghg denotes

% here the variance of the disturbance term xi^S_Ghg_anthr,1090

SGplus=sym(’SGplus’);

delta_Sol=sym(’delta_Sol’);

delta_Orb=sym(’delta_Orb’);

delta_Volc=sym(’delta_Volc’);

delta_Land=sym(’delta_Land’);1095

delta_Ghg=sym(’delta_Ghg’);

delta_comb=sym(’delta_comb’);

eta_internal_pseudo=sym(’eta_internal_pseudo’);

xi_Sol=sym(’xi_Sol’);

xi_Volc=sym(’xi_Volc’);1100

var_delta_Sol=sym(’var_delta_Sol’);

var_delta_Orb=sym(’var_delta_Orb’);

var_delta_Volc=sym(’var_delta_Volc’);

var_delta_Land=sym(’var_delta_Land’);

var_delta_Ghg=sym(’var_delta_Ghg’);1105

var_delta_comb=sym(’var_delta_comb’);

var_eta_internal_pseudo=sym(’var_eta_internal_pseudo’);

cov_deltaSol_deltaGhg=sym(’cov_deltaSol_deltaGhg’);

%% Define the B+, I+ and ζ+ matrices in accordance with Eq. (S10):

B_plus=[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, CLplus, TLplus, 0, 0;1110

LOplus, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0;
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0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Ssim, 0;1115

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Vsim;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, SGplus, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Ssim, Vsim;1120

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Ssim, Vsim;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

I_plus=eye(14);1125

zeta_Plus=[0;

0;

delta_Ghg;

0;1130

0;

delta_Sol;

delta_Volc;

delta_Land;

delta_Orb;1135

xi_Ghg_anthr;

delta_comb;

eta_internal_pseudo;

xi_Sol;

xi_Volc];1140

%% Define the Ψ+ matrix in accordance with Eq. (S11):

Psi_plus=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, var_delta_Ghg, 0, 0, cov_deltaSol_deltaGhg, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;1145

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, cov_deltaSol_deltaGhg, 0, 0, var_delta_Sol, 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0,var_delta_Volc, 0, 0, 0, 0, 0, 0, 0;
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0, 0, 0, 0, 0, 0, 0, var_delta_Land, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, var_delta_Orb, 0, 0, 0, 0, 0;1150

0, 0, 0, 0, 0, 0, 0, 0, 0, psi_Ghg, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,var_delta_comb, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, var_eta_internal_pseudo, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0;

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];1155

%% Define the variance-covariance matrix of η+ in accordance with Eq.(S13):

Var_eta_plus=(inv(I_plus-B_plus))*Psi_plus*transpose(inv(I_plus-B_plus));

%% Extract the expression of the variance of the endogenous variable ξSGHG from the matrix above:

Var_etaGhg=Var_eta_plus(10,10)

%%One obtaines the following equation:1160

Var_etaGhg = SGplus^2*Ssim^2 + var_delta_Sol*SGplus^2 + psi_Ghg

%% Derive the expressions of the first derivates of Var(ξSGHG) with respect to the parameters involved:

f(SGplus)=var_etaGhg; Deriv_wrt_SGplus = diff(f,SGplus)

f(psi_Ghg)=var_etaGhg; Deriv_wrt_psiGhg = diff(f,psi_Ghg)

f(Ssim)=var_etaGhg; Deriv_wrt_Ssim = diff(f,Ssim)1165

%%The resulting derivatives are:

Deriv_wrt_SGplus(SGplus) = 2*SGplus*Ssim^2 + 2*SGplus*var_delta_Sol

Deriv_wrt_psiGhg(psi_Ghg) = 1

Deriv_wrt_Ssim(Ssim) = 2*SGplus^2*Ssim

The resulting symbolic equations are to be used when calculating the variance of the endogenous variable ξSGHG in accordance1170

with the delta method described in Sect. S2.5. In the present analysis, the numerical evaluation of the resulting symbolic

equations has been performed in R using the estimates obtained in Step 4 of the estimation procedure of the SEM model (see

Sect. S3.1.3).
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