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Abstract. The performance of a new statistical framework, developed for the evaluation of simulated temper-
ature responses to climate forcings against temperature reconstructions derived from climate proxy data for the
last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature
is replaced with output data from a selected simulation with a climate model. Being an extension of the sta-
tistical model used in many detection and attribution (D&A) studies, the framework under study involves two
main types of statistical models, each of which is based on the concept of latent (unobservable) variables: con-
firmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present
pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addi-
tion, their performance for each defined region was compared to the performance of the corresponding statistical
model used in D&A studies. The results of this experiment indicated that the SEM specification is the most
appropriate one for describing the underlying latent structure of the simulated temperature data in question. The
conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of
several simulation data sets within each studied region. Since the experiment is performed only for zero noise
level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation
to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data
for past temperature variations.

1 Introduction

The evaluation of climate models used to make projections
of future climate changes is a crucial issue within climate re-
search (Flato et al., 2013). Depending on the scientific ques-
tion and the characteristics of the climate model under study,
evaluation approaches may employ various statistical meth-
ods possessing different degrees of complexity. For exam-
ple, model performance can be assessed visually comparing
maps or data plots describing both the climate model out-

puts and the observations (see, for example, Braconnot et al.,
2012) or calculating various metrics summarising how close
the simulated values of the climate variable of interest are to
the corresponding observed ones, for example, (i) a simple
root mean square as given in Goosse et al. (2015), Sect. 3.5,
(ii) the kappa statistic in Texier et al. (1997), and (iii) the
Hagaman distance used by Brewer et al. (2007a, b).

Other studies may instead focus on comparing the prob-
ability distributions of climate model output to the corre-
sponding empirical distributions of observed data using so-
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called divergence functions (Thorarinsdottir et al., 2013). It
is also possible to validate climate models by modelling joint
distributions for more than one climatic variable, as was done
by Philbin and Jun (2015), where the near-surface tempera-
ture and precipitation output from decadal runs of eight at-
mospheric ocean general circulation models (AOGCMs) has
been validated against observational proxy data. The term
“proxy data” refers to substitute data for direct instrumen-
tal measurements of physical climate variables, such as tem-
perature or precipitation, that have been obtained from var-
ious natural climate “archives” such as tree rings, corals,
ice cores, and cave speleothems and which can be statis-
tically calibrated to represent the desired climate variables
(e.g. Jones et al., 2009).

It should be emphasised that evaluation of climate model
simulations is a complex process requiring the performance
of a large number of tests with respect to various climatologi-
cal aspects. As pointed out by, for example, Flato et al. (2013)
and Goosse et al. (2015), no individual evaluation technique
is considered superior, leading to a final, definitive product.
The model should be continuously retested as new data or ex-
perimental results become available. A model is sometimes
said to be validated if it has passed a reasonable number of
tests. In such a case, the credibility of model projections per-
formed with such a climate model could be very high.

Recently, a new framework for evaluation of climate
model simulations against observational data was developed
by Lashgari et al. (2022) (henceforth referred to as LAS22).
The framework contains statistical models with latent vari-
ables, namely confirmatory factor analysis (CFA) models
and structural equation modelling (SEM) models. Focusing
on a near-surface temperature as a climatic variable of inter-
est, all statistical models within LAS22 are developed for use
with data from a single region of any size. Data are supposed
to cover (approximately) the last millennium, which implies
that observational data contain not only instrumental obser-
vations, but also reconstructions derived from climate proxy
data.

Another climate-relevant property of the LAS22 frame-
work is that it distinguishes between external climate fac-
tors that can be either of natural or anthropogenic origin and
the internal climate processes that are internal to the climate
system itself (Kutzbach, 1976). Examples of external natu-
ral factors are changes in solar radiation, changes in the or-
bital parameters of the Earth, and volcanic eruptions. Exter-
nal climate factors of anthropogenic origin include, for ex-
ample, the ongoing release of carbon dioxide to the atmo-
sphere, primarily by burning fossil fuels, the emissions of
aerosols through various industrial and burning processes,
and changes in land use (Jungclaus et al., 2017). Among
the internal climate processes, we can name ocean and at-
mosphere circulation and their variations and mutual interac-
tions.

LAS22 also uses the concept of radiative forcing,
defined as the net change in the Earth’s radiative bal-

ance at the tropopause (incoming energy flux minus
outgoing energy flux expressed in watts per square
metre (W m−2). Sometimes scientists use the term
climate forcing instead of radiative forcing (Liepert,
2010). In what follows, we simply write just forcing.

Concerning its statistical properties, the LAS22 frame-
work can be viewed as a natural extension of the statisti-
cal model used in so-called detection and attribution (D&A)
studies (see, for example, Bindoff et al., 2013). This sta-
tistical model, often associated with “optimal fingerprint-
ing” techniques (see, for example, Allen and Stott, 2003),
is known among statisticians as a measurement error (ME)
model (or, equivalently, an errors-in-variables model). Its ap-
plication within D&A studies allows researchers to address
the two main questions, namely the question of detection of
observed climate change and the question of its attribution
to real-world forcings. Importantly, the question of attribu-
tion cannot be addressed without simultaneously addressing
the question of consistency between simulated and observed
climate change.

Using the fact that a general ME model is a special case of
CFA and SEM models, LAS22 has extended the ME model
specification to more complicated CFA and SEM models. As
a result, it became possible to overcome some limitations of
the ME model, for example, the inability to take into account
the effects of possible interactions between forcings (see, for
example, Marvel et al., 2015; Schurer et al., 2014), or the in-
ability to account for non-climatic noise in the observational
data, or the estimation instability arising under the so-called
“weak-signal” regime (DelSole et al., 2019).

In addition, LAS22 allows for a flexible specification of la-
tent structure of observable variables, depending on aspects
such as (i) the number of forcings used to drive the cli-
mate model under consideration, (ii) our knowledge and/or
assumptions about their possible effects on the temperature
within the region and period of interest, (iii) assumptions
concerning co-relations among model variables representing
both latent and observable temperatures, and (iv) the avail-
ability of simulated data.

At the same time, the LAS22 framework also makes it pos-
sible to address the questions posed in D&A studies. More-
over, LAS22 allows the attribution issue to be addressed sep-
arately from the question of consistency.

The latter feature is due to another framework, whose
ideas were used by LAS22 during the course of extension
of the ME model specification. Developed by Sundberg et
al. (2012), the design of the second framework (henceforth
referred to as SUN12) allows for the comparison of climate
model simulations and proxy data for the relatively recent
past of about 1 millennium. As the main result, SUN12 for-
mulated two test statistics: a correlation and a distance-based
test statistic (for their applications see Hind et al., 2012; Hind
and Moberg, 2013; Moberg et al., 2015; PAGES2k-PMIP3
group, 2015; Fetisova, 2015).
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In the present work, we, part of the LAS22 research team,
aim to perform a practical evaluation of the statistical models
of LAS22 in a numerical experiment. In addition, we also
aim to compare their performance to the performance of the
ME model used in D&A studies when it is applied to the
same data.

A vital feature of our numerical experiment is that spe-
cially selected climate model simulations replace real-world
temperature observations. Experiments using climate model
simulations instead of real-world data are often referred to
in the (paleo)climatological literature as pseudo-proxy ex-
periments (PPEs). An example of PPEs is the kind of ex-
periments that aim to evaluate the performance of statistical
methods used to reconstruct past climate variations from cli-
mate proxy data (for its description see Smerdon, 2012).

Importantly, climate model simulations that played the
role of observational data were forced by the same recon-
structed forcings as those that are subject to evaluation. This
condition justifies the consistency (both in terms of the mag-
nitude and large-scale shape) between the unobservable sim-
ulated temperature responses to the forcings of interest, em-
bedded in the simulations, and their counterparts, embedded
in pseudo-observations.

Thus, the rejection of the statistical model in question
should be interpreted as an unambiguous indication of the
associated underlying latent structure being misspecified and
inconsistent with the data. Contrarily, a statistical model that
is not rejected and demonstrates the best fit among all mod-
els with an admissible and climatologically defensible solu-
tion can be chosen as a final model, providing an adequate
description of the underlying latent structure.

It is important to add that our pseudo-observations play the
role of the true unobservable temperature, uncontaminated
by any non-climatic noise. Although it is of great interest to
evaluate the sensitivity of the statistical models under consid-
eration to increasing noise levels, no such sensitivity analysis
was performed within the confines of the present experiment.

After having investigated which statistical models that
demonstrate an acceptable performance with zero proxy
noise, it will be easier to design the future sensitivity anal-
ysis.

Concerning statistical packages, in the present work we
employed the R package sem (see Fox et al., 2014, http:
//CRAN.R-project.org/package=sem, last access: 11 Novem-
ber 2022) using R version 3.0.2 (R Core Team, 2013) for esti-
mation of all statistical models under study. For derivation of
symbolic expressions of the reproduced variance–covariance
matrices associated with our statistical models under differ-
ent hypotheses, we used MATLAB (R2017a).

Finally, let us describe the structure of this paper. Section 2
provides a description of the data, the results of its initial
analysis, and the way of constructing data sets to which we fit
our statistical models. The statistical models from the LAS22
framework are presented in Sect. 3, while the numerical re-
sults of their analyses are given partly in Sect. 4 and partly

in the first section of the Supplement to this article. In total,
the Supplement contains three sections. Its second section
is devoted to providing a theoretical overview of the central
definitions and concepts of SEM, which includes CFA as its
special case. In the third section of the Supplement, one finds
examples of using the R package sem and MATLAB. The
main findings of our numerical study are presented and dis-
cussed in this article, Sect. 5.

2 Description of simulated data and its initial
analysis

Data analysed in the present study consist of simulated near-
surface temperatures generated with the Community Earth
System Model (CESM) version 1.1 for the period 850–2005
(the CESM-LME (Last Millennium Ensemble)). A detailed
description of the model and the ensemble simulation exper-
iment can be found in Otto-Bliesner et al. (2016) and refer-
ences therein.

For our analysis, we select seasonal-mean temperature
data for the seven regions and the seasons defined by the
PAGES 2k Consortium (2013), labelled Europe, the Arc-
tic, North America, Asia, South America, Australasia, and
Antarctica. As seen in Fig. 1 in their paper, the continen-
tal regions are not exactly the same as the continents them-
selves. Moreover, both land and sea surface temperatures are
included in three of the regions (Arctic, North America, Aus-
tralasia), while land-only temperatures are used in the other
four. Note also that the choice of seasons differs among the
regions, depending on what was considered by the PAGES
2k Consortium (2013) as being the optimal calibration target
for the climate proxy data they used. Annual-mean tempera-
tures were used for the Arctic, North America, and Antarc-
tica, while some warm-season temperatures are used for Eu-
rope (JJA), Asia (JJA), South America (DJF), and Australa-
sia (September–February). The set of simulation temperature
data sequences that we use here is a subset of the dataset pub-
lished by Moberg and Hind (2019).

The CESM-LME experiment used 2◦ resolution in the
atmosphere and land components and 1◦ resolution in the
ocean and sea ice components. To extract seasonal temper-
ature data from this simulation experiment such that they
correspond to the seven regions defined in the PAGES 2k
Consortium (2013) study, we followed exactly the same pro-
cedure as in the model vs. data comparison study undertaken
by the PAGES2k-PMIP3 group (2015). After extraction, our
raw temperature data sequences have a resolution of one tem-
perature value per year. The time period analysed here is the
1000-year-long period 850–1849 CE. The industrial period
after 1850 CE has been omitted in order to avoid a compli-
cation due to the fact that the CESM simulations for this last
period include ozone-aerosol forcing, which is not available
for the time before 1850.
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Below, we list all simulated temperature sequences avail-
able within each region and the period of interest. We also de-
scribe the key characteristics of the associated reconstructed
forcings (a detailed description and time-series plots of forc-
ing data can be found in Fetisova et al., 2017):

1. {xSol t } is forced only with a reconstruction of the tran-
sient evolution of total solar irradiance. This is a mea-
sure of the averaged amount of radiated energy from
the Sun that reaches the top of the atmosphere of the
planet Earth during a year. See Fig. S4.1 in Fetisova et
al. (2017). Within each region, there are four sequences
forming the xSol ensemble.

2. {xOrb t } is forced only with changes in the boundary con-
ditions due to the transient evolution of the Earth’s or-
bital parameters, i.e. the seasonal and latitudinal distri-
bution of the orbital modulation of insolation. Accord-
ing to Fig. S4.3 in Fetisova et al. (2017), the temporal
evolution of the orbital forcing varies with region and
season. Within each region, there are three replicates of
xOrb forming the xOrb ensemble.

3. {xVolc t } is forced only with a reconstruction of the tran-
sient evolution of volcanic aerosol loadings in the strato-
sphere, as a function of latitude, altitude, and month.
According to Fig. S4.4 in Fetisova et al. (2017), the
temporal evolution of the volcanic forcing varies with
region. Within each region, there are five replicates of
xVolc forming the xVolc ensemble.

4. {xLand (anthr) t } is forced only with a reconstruction of
the transient evolution of anthropogenic land use, i.e.
changes particularly in fractional areas of crops and pas-
ture within each grid cell on land. The type of natural
vegetation has been prescribed in each grid cell and held
constant at pre-industrial levels. According to Fig. S4.5
in Fetisova et al. (2017), the reconstruction of the (an-
thropogenic) land forcing varies with region. Within
each region, there are three replicates of xLand (anthr)
forming the xLand (anthr) ensemble. The CESM-LME cli-
mate model did actually include a dynamic land model
(CLM4), which impacts the simulated climate through
seasonal and interannual changes in the vegetation phe-
nology1 (Lawrence et al., 2012). Here, we interpret this
as a possible contribution to internal random variability
but not as a climate forcing. In the context of our frame-
work, this assumption motivates the modelling of the
simulated temperature response to the land forcing as
a one-component temperature response containing only
the simulated temperature response to reconstructed an-
thropogenic changes in land use.

1According to Kimball (2014), vegetation phenology is the tim-
ing of seasonal developmental stages in plant life cycles including
bud burst, canopy growth, flowering, and senescence, which are
closely coupled to seasonally varying weather patterns.

5. {xGHG t } is forced only with a reconstruction of the tran-
sient evolution of well-mixed greenhouse gases, GHGs,
namely CO2, N2O, and CH4. Prescribed reconstructed
greenhouse gas concentrations, adopted from Schmidt
et al. (2011), are derived from high-resolution Antarctic
ice cores (see Fig. S4.2 in Fetisova et al., 2017). This
makes it reasonable to assume that this reconstruction
can contain information about both natural and anthro-
pogenic influences. Hence, in contrast to the simulated
temperature response to the land forcing, the simulated
temperature response to the GHG forcing is modelled
in our statistical framework as a two-component tem-
perature response containing the simulated temperature
response to anthropogenic changes and the simulated
temperature response to natural changes in the GHG
forcing. Within each region, there are three replicates
of xGHG forming the xGHG ensemble.

6. {xcomb t } is forced by all above-mentioned single forc-
ings together. Within each region, the xcomb ensemble
consists of 10 replicates.

Regarding the GHG forcing in the climate model simulations
studied here, some important aspects should be highlighted:

– The GHG forcing was implemented so that variations
in greenhouse gas concentrations in the climate model’s
atmosphere are the same everywhere. This, however,
does not imply that the simulated temperature response
to the forcing is expected to be the same for all above-
described regions and seasons.

– The climate model did not include an interactive carbon
cycle model. This means that variations in the amount of
greenhouse gases in the model’s atmosphere could not
arise dynamically in response to changes in the model’s
climate but only to variations determined by the re-
constructed GHG forcing data. Consequently, if a SEM
model suggests the existence of any causal path to the
variable denoting the simulated temperature response to
the GHG forcing, then such a path may be interpreted
as an indication that interaction between climate and
greenhouse gas concentrations has happened in the real
climate system and that this interaction is reflected in
the reconstructed GHG forcing history used to drive the
climate model.

– Natural variations in greenhouse gas concentrations in
the atmosphere occur on all timescales and are expected

to have occurred during our entire study period. It
is evident that anthropogenic activity has led to in-
creased greenhouse gas concentrations in about the last
100 years of our study period, mainly due to combustion
of fossil fuels. However, an anthropogenic influence on
greenhouse gas concentrations may have started already
several thousand years ago, although this possible influ-
ence has been debated. It can anyway not be excluded

Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, 2022 https://doi.org/10.5194/ascmo-8-249-2022



K. Lashgari et al.: Evaluation of simulated responses to climate forcings 253

that human activity may have led to changes in GHG
forcing throughout our entire study period (see discus-
sion in Ciais et al., 2013, and references therein).

Prior to analysing the climate model simulations above
by means of our statistical models, it is necessary to check
whether each of the sequences satisfies the assumptions of
these statistical models. To this end, an initial data analysis
is performed, whose results are described in the next subsec-
tion.

2.1 Initial data analysis: checking assumptions

Let {xf repl.i t }, where f ∈ { Sol, Orb, Volc, Land (anthr),
GHG, comb }, i = 1,2, . . .,kf, and t = 850 CE, 851 CE, . . .,
1849 CE, represent the ith member (or, in the statistical par-
lance, replicate) within the xf ensemble.

According to LAS22, the mean-centred xf repl.i t is decom-
posed into forced and unforced components as follows:

xf repl. it = ξ
S
f t + δ̃f repl. it , (1)

where ξS
f t is the simulated temperature response to the recon-

structed forcing f, i.e. the forced component, and δ̃f repl.i t
is the simulated internal random temperature variability, in-
cluding any random variability due to the presence of the
forcing f, i.e. the unforced component. The forced and un-
forced components are assumed to be mutually independent.

In contrast to the random δ̃f repl.i t , the temperature re-
sponse ξS

f t is treated as repeatable, or more precisely, as re-
peatable outcomes of random variables, assumed to be nor-
mally and independently distributed with zero mean and vari-
ance σ 2

ξS
f

. The repeatedness is motivated by the fact that all

replicates within one and the same ensemble were forced by
the same reconstructed forcing f, which generates the same
ξS
f t across all replicates within each ensemble.

Thus, the assumptions to check are the assumptions of nor-
mality and of mutually independent observations. Since the
forced component of simulated temperatures is treated as a
repeatable outcome, both assumptions concern the δ̃f repl.i se-
quences. Since none of them is directly observable, the series
to analyse are

{xf repl.i t − xf . t }, (2)

where xf . t denotes the average of kf replicates at a time point
t .

The independence assumption is checked by studying the
autocorrelation structure of sequences, defined in Eq. (2),
for each f and i. To reduce autocorrelation, which is typi-
cal for temperature data with annual resolution, a temporal
aggregation of each time series was performed by taking m-
year nonoverlapping averages for several values on m. Fig-
ures S1.1–S1.42 in Fetisova et al. (2017) show the resulting
sample autocorrelation functions for four time average units,
m= 1, 5, 10, and 20 years.

According to these figures, m= 5 could be motivated
within some regions, for example, Asia and North America
because at least 91 % of the autocorrelation coefficients are
insignificant as they are within the 90 % confidence bounds.
Nevertheless, it was decided to choose m= 10 for all seven
regions because the temperature responses to the forcings are
more likely to exhibit a stronger autocorrelation for m= 5
than for m= 10. This can have a negative impact on the sta-
tistical properties of the parameter estimates of the statistical
models analysed here. The time unit of 20 years was not ap-
plied because it reduces the sample size to 50 observations,
which is too small for estimating the statistical models of
interest (for discussions about appropriate sample sizes see
Westland, 2015, and references therein).

To conclude, all xf repl.i sequences analysed further are
decadally resolved, implying that each of them contains
100 observations of 10-year mean temperatures. Time-series
graphs that illustrate the resulting xf repl.i sequences are
shown in Figs. S2.1–S2.7 in Fetisova et al. (2017).

Further, we investigated whether the decadally resolved
residual sequences, defined in Eq. (2), follow a normal dis-
tribution. Examination of the estimated density functions
graphically (see Figs. S3.1–S3.7 in Fetisova et al., 2017)
did not reveal any obvious departures from the normal distri-
bution. This conclusion was also supported by the Shapiro–
Wilk test (Shapiro and Wilk, 1965), whose results, however,
are not shown.

An important premise of the statistical models, suggested
by LAS22, is that the variance of each δ̃frepl. i is known a pri-
ori. To this end, LAS22 employs the following independent
estimator, applied to time-aggregated time series:

σ 2
δ̃f
=

∑n
t=1
∑kf
i=1(xf repl.i t − xf . t )2

n(kf− 1)
, kf ≥ 2, (3)

requiring that (i) the variances of the δ̃f repl.i are equal across
all replicates within an ensemble, i.e. σ 2

δ̃f repl.i
= σ 2

δ̃f
; (ii) the

δ̃f repl.i t sequences within an ensemble are mutually uncor-
related across all kf replicates; and (iii) the amplitude of the
forcing effect is the same for each ensemble member.

If these assumptions are met, it will be possible not only
to apply estimator (3), but also to build mean sequences by
averaging over ensemble members. The usage of mean se-
quences is especially appreciated when the effect of a given
forcing is expected to be weak.

If, on the other hand, these assumptions are violated, es-
timator (3) may result in a biased estimate, and the building
of mean sequences becomes unmotivated. As a possible way
to check whether these assumptions are violated or not and,
in addition, to obtain an alternative estimate of σ 2

δ̃f
, LAS22

proposes to fit the following kf indicator one-factor model,
abbr. CFA(kf,1) model, to each ensemble:

https://doi.org/10.5194/ascmo-8-249-2022 Adv. Stat. Clim. Meteorol. Oceanogr., 8, 249–271, 2022
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xf repl.1 t = αf · ξ̃
S
f t + δ̃f repl.1 t

xf repl.2 t = αf · ξ̃
S
f t + δ̃f repl.2 t

...
...

...

xf repl.kf t = αf · ξ̃
S
f t + δ̃f repl.kf t ,

(4)

where ξ̃S
f t = ξ

S
f t/
√
σ 2
ξS
f

, which implies that the variance of

ξ̃S
f t is 1, αf =

√
σ 2
ξS
f

, and all δ̃f repl.i are assumed to be mutu-

ally uncorrelated and have an equal variance σ 2
δ̃f

.
As explained by LAS22, if the model fits the data ade-

quately both statistically or heuristically, and the resulting
estimate of αf is admissible and climatologically defensible,
we may say that there is no reason to reject the associated as-
sumptions. In that case, the whole ensemble can be accepted
for building the mean sequence, and the resulting estimate of
σ 2
δ̃f

is expected to be approximately the same as the estimate
provided by estimator (3). Consequently, any of the two vari-
ance estimates can be used in the further analysis of the CFA
and SEM models presented in the previous sections.

However, both estimates of σ 2
δ̃f

become unreliable if the
CFA(kf,1) model is rejected. In that case, the entire ensem-
ble needs to be eliminated from further analyses of our CFA
and SEM models in order to prevent distorted results of their
fitting to data. However, the elimination of the entire ensem-
ble would mean that further analyses of our CFA and SEM
models presented are not possible at all. In this situation, a
possible resort is to eliminate some replicates from the “prob-
lematic” ensemble such that the CFA(kf,1) model is not re-
jected when it is refitted to the reduced ensemble. Impor-
tantly, such an elimination of replicates from an ensemble
does not imply that the replicates eliminated are erroneous
compared to the remaining ones. In practice, the differences
between the replicates within an ensemble can be identified
by means of the modification indices (for details, see Sect. S2
in the Supplement).

For our data, the application of model (4) indicated that
some ensembles demonstrated at the significance level of 5 %
an inconsistency with the assumptions associated with the
CFA(kf,1) model in Eq. (4) and with estimator (3). To be
able to proceed with our numerical experiment, some repli-
cates from those problematic ensembles were eliminated. Ta-
ble 1 provides an overview of the replicates eliminated.

2.2 Constructing data sets

Recall from the Introduction that, in our experiment, obser-
vational data are replaced by an appropriate climate model
simulation. More precisely, such a climate model simulation
is supposed to replace the true unobservable temperature, de-
fined initially in SUN12. Combining the notations of LAS22
with the notations of SUN12, the mean-centred true temper-

ature at time point t is modelled as follows:

τt = ξ
T
ALL t + η internal t , (5)

where ξT
ALL t is the true latent overall temperature response

to all forcings, i.e. the forced component; and ηinternal t is the
internal random temperature variability of the real-world cli-
mate system, including any variability due to possible inter-
actions between the forcings and internal processes.

Also, the forced and internal variability are regarded as
mutually independent processes.

Among the climate model simulations presented earlier,
the most suitable candidates for the role of pseudo τ are
replicates of xcomb. Renaming xcomb repl. it in Eq. (1) as
τpseudo repl. it and δ̃comb repl. it as η internal pseudo repl. it leads to

τpseudo repl. it = ξ
S
comb t + η internal pseudo repl. it . (6)

Choosing one replicate at a time enables us to construct
the corresponding number of data sets. Fitting the statistical
models to each of them makes it possible to investigate the
stability of the performance of each statistical model of in-
terest.

This is especially important when respecifications of the
models by deleting and/or adding some hypothesised rela-
tions are performed. Although respecifications are supposed
to be motivated from the climatological viewpoint, they are
in essence results of a purely data-driven process. Therefore,
it is crucial to apply some form of cross-validation with re-
spect to the set of models considered in a sequence of model
evaluations. The availability of additional data sets provides
such an opportunity.

However, letting xcomb repl.i , i = 1,2, . . .,kcomb, be τpseudo,
while all the remaining replicates are used for constructing
the mean sequence xcomb amounts to creating data sets con-
taining exactly identical information. This is expected to lead
to (highly) correlated parameter estimates, which in turn may
lead to misleading conclusions about the stability of the esti-
mation procedure.

To avoid this situation, the xcomb repl.i :s are arranged ran-
domly into different data sets such that only some of them
are used for constructing xcomb. Table 2 provides an example
of our way of reasoning for the data from the region of North
America. Data sets for the remaining six regions are given
in the Supplement (Sect. S1) along with the associated final
statistical models.

3 Statistical models

In order to avoid excessive notations, from now on we will
use neither the bar notation for mean sequences, nor the tilde
for standardised latent variables. One can easily recognise
models with standardised latent variables through the corre-
lation matrices for their latent variables, while models with
unstandardised latent variables are associated with variance–
covariance matrices.
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Table 1. Overview of the replicates eliminated from the ensembles that do not satisfy the assumptions of estimator (3) and also of the
CFA(kf,1) model.

Region

Ensemble EUR NAM ARC ASIA SAM AUS ANT

Repl.i

xSol 2, 4 1, 4 – – 1 1 –
xOrb 3 1 – – 2 – 3
xVolc 5 2 4, 5 – 1, 2, 4 3, 4 –
xLand(anthr) – 2 – 3 – – –
xGHG – – – 1 – 1 3
xcomb 1, 6, 8 5, 8 1, 3, 6, 8 – 1,3 4 1, 5, 7

Table 2. Overview of the replicates of each xf, used to construct eight regional North America data sets (annual-mean temperature). Each
data set contains different xcomb and τpseudo, where xcomb is constructed by averaging over four replicates randomly selected from the seven
that remained after xcomb repl.5 and xcomb repl.8 had been eliminated (see Table 1) and after one of xcomb repl.i :s, i = 1,2,3,4,6,7,9,10, is
chosen to represent τ , i.e. τpseudo.

Data set xSol,xOrb xVolc xLand(anthr) xGHG xcomb τpseudo = xcomb repl.i

1 2, 3 1, 3, 4, 5 1, 3 all replicates (2,3,7,9) 1
2 2, 3 1, 3, 4, 5 1, 3 all replicates (3,4,6,10) 2
3 2, 3 1, 3, 4, 5 1, 3 all replicates (1,2,4,9) 3
4 2, 3 1, 3, 4, 5 1, 3 all replicates (1,3,6,9) 4
5 2, 3 1, 3, 4, 5 1, 3 all replicates (1,3,7,10) 6
6 2, 3 1, 3, 4, 5 1, 3 all replicates (1,4,6,10) 7
7 2, 3 1, 3, 4, 5 1, 3 all replicates (2,3,4,7) 9
8 2, 3 1, 3, 4, 5 1, 3 all replicates (1,2,6,9) 10

Another important aspect to point out is that CFA and
SEM models presented in this section are adjusted for the
use within a pseudo-proxy experiment. The adjustment is
needed because the framework of LAS22 models common
latent structures for simulated and observational data in terms
of true latent temperature responses to real-world forcings.
However, within a pseudo-proxy experiment, where observa-
tional data are replaced by climate model simulations, these
true latent temperature responses are replaced by their simu-
lated counterparts. The consequences of this replacement are
as follows:

– The hypothesis of consistency between simulated and
observed climate change is correct.

– The structure of the unforced components in the result-
ing statistical models is simpler compared to that asso-
ciated with the original statistical models of LAS22.

It should also be realised that the correctness of the hy-
pothesis of consistency is also applied to the ME model used
in D&A studies, although the statistical framework of “op-
timal fingerprinting” models common latent structures for
simulated and observational data in terms of simulated tem-
perature responses to reconstructed forcings.

Model 1: the ME-CFA(6, 5) model

The ME-CFA(6, 5) model is given in Table 3. As indicated
by its name, this is a CFA model derived from a measurement
error (ME) regression model or, more precisely, from the ME
model used in D&A studies. Its original form, with the nota-
tions adjusted to fit the present pseudo-proxy experiment, is
given as follows:

τpseudo t =
∑
f

βf · (xf t − δ̃f t )+ ηinternal pseudo t , (7)

where f ∈ {Sol, Orb, Volc, Land (anthr), GHG}, and t = 1, 2,
. . .,100.

Within the ME-CFA(6, 5) model, all specific factors δ̃f are
assumed to be both mutually independent and independent
of the standardised common factors ξS

f . The same assump-
tions apply to the original ME model, but in contrast to the
ME-CFA(6, 5) model, the former treats the latent tempera-
ture responses as unstandardised, each of which has its own
variance σ 2

δ̃f
. Under both representations, all ξS

f factors are
allowed to be correlated.

To arrive at the ME-CFA(6, 5) model, the ME model was
first rewritten in a matrix form as shown in Table 4.

Here, the ME model appears as a factor model with un-
standardised latent factors. Their subsequent standardisation
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Table 3. Parameters of Model 1, abbr. ME-CFA(6, 5) model, with six indicators and five standardised latent common factors with 1 degree
of freedom.

Indicator Common factors Specific factor

ξS
Sol ξS

Orb ξS
Volc ξS

Land (anthr) ξS
GHG variances

xSol Ssim 0 0 0 0 σ 2∗
δ̃Sol
/kSol

xOrb 0 Osim 0 0 0 σ 2∗
δ̃Orb

/kOrb

xVolc 0 0 Vsim 0 0 σ 2∗
δ̃Volc

/kVolc

xLand(anthr) 0 0 0 Lsim 0 σ 2∗
δ̃Land(anthr)

/kLand(anthr)

xGHG 0 0 0 0 Gsim σ 2∗
δ̃GHG

/kGHG

τpseudo Strue Otrue Vtrue Ltrue Gtrue σ 2∗
ηinternal pseudo

Correlations among common factors
1 φSO φSV φSL φSG

1 φOV φOL φOG
1 φVL φVG

1 φLG
1

∗ The parameter assumed to be known a priori.

Table 4. The ME model from Eq. (7) with the associated variance–covariance matrix for the latent variables, written in a matrix form.

xSol t = 1 · ξS
Sol t + 0 · ξS

Orb t + 0 · ξS
Volc t + 0 · ξS

Land(anthr) t + 0 · ξS
GHG t + δ̃Sol t

xOrb t = 0 · ξS
Sol t + 1 · ξS

Orb t + 0 · ξS
Volc t + 0 · ξS

Land(anthr) t + 0 · ξS
GHG t + δ̃Orb t

xVolc t = 0 · ξS
Sol t + 0 · ξS

Orb t + 1 · ξS
Volc t + 0 · ξS

Land(anthr) t + 0 · ξS
GHG t + δ̃Volc t

xLand(anthr) t = 0 · ξS
Sol t + 0 · ξS

Orb t + 0 · ξS
Volc t + 1 · ξS

Land(anthr) t + 0 · ξS
GHG t + δ̃Land(anthr) t

xGHG t = 0 · ξS
Sol t + 0 · ξS

Orb t + 0 · ξS
Volc t + 0 · ξS

Land(anthr) t + 1 · ξS
GHG t + δ̃GHG t

τpseudo t = βSol t · ξ
S
Sol t + βOrb · ξ

S
Orb t + βVolc t · ξ

S
Volc t + βLand(anthr) t · ξ

S
Land(anthr) t + βGHG t · ξ

S
GHG t + ηinternal pseudo t

Variance–covariance matrix of latent variables
σ 2
ξS

Sol
σ
ξS

Solξ
S
Orb

σ
ξS

Solξ
S
Volc

σ
ξS

Solξ
S
Land(anthr)

σ
ξS

Solξ
S
GHG

σ 2
ξS

Orb
σ
ξS

Orbξ
S
Volc

σ
ξS

Orbξ
S
Land (anthr)

σ
ξS

Orbξ
S
GHG

σ 2
ξS

Volc
σ
ξS

Volcξ
S
Land(anthr)

σ
ξS

Volcξ
S
GHG

σ 2
ξS

Land (anthr)
σ
ξS

Land (anthr)ξ
S
GHG

σ 2
ξS

GHG

gives the ME-CFA(6, 5) model, whose factor loadings are re-
lated to the parameters of the ME model as follows: Ssim =
σξS

Sol
, Strue = βSol · σξS

Sol
, Osim = σξS

Orb
, Otrue = βOrb · σξS

Orb
,

etc. These links between the models’ parameters show the
following:

– The hypothesis H0: βf = 0 tested at the detection stage
in D&A studies concerns true loadings under the ME-
CFA(6, 5) model; for example, H0: βSol = 0 corre-
sponds to H0: Strue = 0.

– The hypothesis of consistency H0: βf = 1 tested at the
attribution stage in D&A studies concerns the ratios be-
tween true and sim loadings under the ME-CFA(6, 5)
model; for example, H0: βSol = 1 corresponds to H0:
Strue / Ssim = 1.

Thus, as was found in LAS22, the questions posed in D&A
studies can also be addressed using CFA models in place of
the ME model specification. The present numerical experi-
ment gives us an opportunity not only to evaluate the perfor-
mance of the ME model used in D&A studies when it is ap-
plied to the same data as the CFA and SEM models of inter-
est, but also to demonstrate in practice the way of analysing
the ME model when it is rewritten as a CFA model. Such a
practical example may also facilitate the understanding of the
transition from the ME model specification to more complex
CFA and SEM models, constituting the core of LAS22.

It should also be noted that the ideas of CFA make it possi-
ble to test the hypothesis of consistency without performing
multiple simultaneous tests concerning the above-defined ra-
tios. One simply fits the ME-CFA(6, 5) model to data under
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the restrictions Strue=Ssim, Otrue=Osim, etc. However, this
implies that one cannot use the same estimator as that used in
D&A studies, namely the total least squares (TLS) estimator.

To evaluate the performance of the ME model used in
D&A studies, we fit the ME-CFA(6, 5) model as if it were
a ME model associated with the TLS estimator. That is, the
parameter estimates will be obtained under the assumption
that the whole error variance–covariance matrix is known a
priori, as shown in Table 3. Under this assumption, the model
is over-identified with 1 degree of freedom, which permits
model validity to be checked. To calculate the degrees of
freedom, one subtracts the total number of free parameters
(20) from the number of unique equations in the variance–
covariance matrix of the observed indicators (21).

For checking purposes, we nevertheless use the principles
of CFA to their full extent (see Sect. S2.4 in the Supplement),
instead of using the methods developed specifically for ME
models (see, for example, Fuller, 1987)

As a final comment, let us emphasise that since the hy-
pothesis of consistency is correct, all βf coefficients in the
ME model are equal to 1, and the sim coefficients in the
ME-CFA(6, 5) model are equal to their corresponding true
coefficients; for example, Ssim=Strue. So, if the underlying
structure of data is consistent with the structure defined by
the ME-CFA(6, 5) model, then its fit to data is expected to
be adequate, and the estimates are expected to be admissible,
provided, of course, all temperature responses are detected;
that is, the hypothesis H0: βf = 0 is rejected for each f. If
not, the underlying latent structure needs to be respecified
accordingly, which, however, means that we have to move to
the CFA model suggested within the LAS22 framework (see
the next section).

Model 2: the confirmatory factor analysis (CFA) model

Model 2 is formulated by extending the ME-CFA(6, 5) model
both in terms of the number of indicators and in terms
of common latent factors. The parameters of the resulting
model, abbr. the CFA(7, 6) model, are presented in Table 5.

As one can see, adding xcomb as an additional indicator
makes it possible to introduce the interaction term, which
denotes the deviation from the additivity of the forcing ef-
fects. In this statistical model, ξinteract is interpreted as an
overall temperature response to all possible interactions be-
tween the forcings under consideration. As a result, ξinteract in
this model is both of natural and anthropogenic character. To
test the hypothesis that the effect of interactions on the tem-
perature is negligible, one estimates this factor model under
the restrictions that Isim and all associated correlations, i.e.
φSI, . . .,φGI, are zero.

Further, as follows from the correlation matrix for the
common factors, the CFA(7, 6) model hypothesises the
mutual uncorrelatedness between ξS

Sol, ξS
Orb, ξS

Volc, and
ξS

Land(anthr). This hypothesis was motivated by the substantive
knowledge about the underlying forcings that are acting on

different timescales and with different character of their tem-
poral evolutions. This makes it reasonable to expect different
shapes, i.e. temporal patterns, of the temperature responses
caused by them.

On the other hand, it is difficult to hypothesise zero corre-
lations between ξS

interact and ξS
Sol, ξ

S
Orb, ξS

Volc, and ξS
Land(anthr).

Thus, the correlation coefficients φSI, φOI, φVI, and φLI are
treated as unknown parameters to be estimated, provided
Isim is not set to zero.

Another difference between the ME-CFA(6, 5) model
and the CFA(7, 6) model is that the ME-CFA(6, 5) model
treats σ 2

ηinternal pseudo
as an a priori known parameter, while the

CFA(7, 6) model treats this parameter as unknown. In real-
world analyses, where observational data are not replaced
by τpseudo, the latter approach allows us to take into account
not only the internal temperature variability, but also a non-
climatic noise embedded in proxy data, which is a part of
observational data. Typically, the variability of such non-
climatic noise is assumed to be large (Hegerl et al., 2007;
Jones et al., 2009).

Another aspect, worthy of discussion, is the ability of
the CFA model presented to discriminate between the nat-
ural and anthropogenic components of ξS

GHG. Since com-
mon factors within the CFA model specification can be re-
lated to each other only through correlations, the only way
to get some indication of the importance of ξS

GHG (anthr) and
ξS

GHG (natur) is to study the significance of the estimates of the
correlations relating ξS

GHG to other temperature responses.
For example, a strong estimate of φLG, presupposed to relate
ξS

GHG (anthr) to ξS
Land (anthr) due to their common source that is

human activity, makes it justified to describe the effect of
the anthropogenic changes in the GHG forcing as well pro-
nounced. Further, any significant estimate of φSG, φOG, or
φVG, presupposed to relate ξS

Sol, ξ
S
Orb, and ξS

Volc, respectively,
to ξS

GHG (natur) gives an indication that the natural component
of ξS

GHG is detected as well. Concerning the correlations re-
lating the interaction term to ξS

GHG, it is unfortunately diffi-
cult to provide an interpretation of their significance due to
the mixed nature of the interaction term under the CFA model
specification.

Finally, it can be seen in Table 5 that the CFA model takes
into account the correctness of the hypothesis of consistency
motivated by the properties of the pseudo-proxy experiment.
This is reflected by the fact that each ξS

f has the same factor
loading on τpseudo and xcomb and on the corresponding xf.
Thus, the total number of the free parameters that are to be
estimated is 16. Since there are 28 unique equations in the
variance–covariance matrix of the observed indicators, it im-
plies that the model has 12 degrees of freedom.

Just as in the case of the ME-CFA(6, 5) model, the cor-
rectness of the hypothesis of consistency means that an inad-
equate model fit to the data and/or inadmissible estimates are
due to a misspecified latent structure. Respecifications of the
structure, requiring the introduction of causal inputs, entails
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Table 5. Parameters of Model 2, abbr. CFA(7, 6), containing seven indicators and six standardised latent factors with 12 degrees of freedom.

Indicator Common factors Specific factor

ξS
Sol ξS

Orb ξS
Volc ξS

Land (anthr) ξS
GHG ξS

interact variances

1. xSol Ssim 0 0 0 0 0 σ 2∗
δ̃Sol
/kSol

2. xOrb 0 Osim 0 0 0 0 σ 2∗
δ̃Orb

/kOrb

3. xVolc 0 0 Vsim 0 0 0 σ 2∗
δ̃Volc

/kVolc

4. xLand(anthr) 0 0 0 Lsim 0 0 σ 2∗
δ̃Land(anthr)

/kLand(anthr)

5. xGHG 0 0 0 0 Gsim 0 σ 2∗
δ̃GHG

/kGHG

6. xcomb Ssim Osim Vsim Lsim Gsim Isim σ 2 ∗
δ̃comb

/kcomb

7. τpseudo Ssim Osim Vsim Lsim Gsim Isim σ 2
ηinternal pseudo

Correlations among common factors
1 0 0 0 φSG φSI

1 0 0 φOG φOI
1 0 φVG φVI

1 φLG φLI
1 φGI

1

∗ The parameter assumed to be known a priori.

in turn the movement to the SEM specifications, suggested
within the LAS22 framework (see the next section). If some
modified version of the CFA model presented results in a cli-
matologically defensible solution and fits adequately to the
data, then it is a motivation to accept this CFA model as a
reasonable approximation of the underlying latent structure.

Model 3: the structural equation modelling (SEM) model

The SEM model analysed in this experiment is presented
graphically in Fig. 1. This SEM model is a modified version
of the basic SEM model suggested by LAS22. The modifica-
tion is performed in order to take into account the properties
of the xLand (anthr) climate model simulations, forced only by
the anthropogenic land-use forcing.

Just like the CFA(7, 6) model in Table 5, the SEM model
takes into account that the hypothesis of consistency within
a pseudo-proxy experiment is correct and that the variances
of the δ̃f factors are known a priori, while the variance of
ηinternal pseudo is an unknown model parameter.

In contrast to the CFA(7, 6) model, the SEM model reflects
the substantive knowledge of atmosphere–climate interac-
tions, which may arise when natural changes in the levels
of GHG in the atmosphere are caused by other climatic pro-
cesses of natural origin. In the SEM model, this is reflected
through the causal inputs received by ξS

GHG or more precisely
by its natural component. The inputs come from ξS

Sol, ξ
S
Orb,

ξS
Volc, and ξS

interact, which leads to the following equation for
ξS

GHG t:

ξS
GHG t = ξ

S
GHG (natur) t + ξ

S
GHG (anthr) t = SG · ξS

Sol t +OG · ξS
Orb t

+VG · ξS
Volc t + IG · ξS

interact t ++ξ
S
GHG (anthr) t . (8)

Concerning the interaction term in Eq. (8), it should be
noted that ξS

interact t under the SEM specification is interpreted
as the overall effect of all possible interactions between phys-
ically independent processes acting simultaneously in the cli-
mate system. That is, ξS

interact t in the SEM model presented
represents the overall effect of the interactions between the
natural forcings and anthropogenic changes in land-use and
GHG forcings. Consequently, ξS

interact t does not have a pure
natural character as we would like.

Unfortunately, with the available climate model simula-
tions in hand, it is not possible to model the natural compo-
nent of ξS

interact t separately from the anthropogenic one. For
this, one needs two types of climate model simulations, one
forced by the combination of the natural forcings and one by
the combination of anthropogenic forcings.

The interpretation issue of ξS
interact t highly motivates us to

fit first the SEM model under the hypothesis of additivity,
which corresponds to setting Isim and all correlations associ-
ated with the interaction term to zero.

The absence of climate model simulations forced only by
the anthropogenic changes in the GHG forcings also makes
it impossible to model the anthropogenic component of ξS

GHG
as an individual latent factor. Instead, ξS

GHG (anthr) is sepa-
rated from ξS

GHG (natur) only by modelling it as a disturbance
term contributing to the variability of ξS

GHG randomly. In case
both natural and anthropogenic components are detected, this
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Figure 1. Path diagram for the SEM model with five standardised exogenous latent factors, ξS
Sol, ξ

S
Orb, ξS

Volc, ξS
Land (anthr), and ξS

interact, and

one endogenous latent factor, ξS
GHG. The model has 14 degrees of freedom.

modelling approach does not allow us to assess the direct
contribution of anthropogenic changes in the GHG forcing
to the temperature variability. Nevertheless, separating these
components allows us to see their contributions more clearly
compared to the approach of the CFA model, where these
two components cannot be separated in any way. In case no
causal paths to ξS

GHG are detected, then ξS
GHG is to be replaced

by ξS
GHG (anthr), which makes it possible to model it as a sep-

arate latent factor just as ξS
Land (anthr) is modelled.

Like the CFA(7, 6) model, the SEM model in Fig. 1 can
be modified in various ways. For example, the causal inputs
from ξS

Sol, ξ
S
Orb, ξS

Volc, and ξS
interact to ξS

GHG can be replaced
(or complemented) by the causal inputs from xcomb and/or
τpseudo (and/or from xGHG). These inputs can be taken as an
indication that the temperature sequences analysed may con-
tain a certain effect of subsequent changes in the GHG forc-
ing, caused by the changed climate itself, and that might be
reflected in the reconstruction of the GHG forcing, used to
drive the climate model under study. Note that this effect may
be insignificant, but freeing up these paths can be important
for achieving a good overall model fit to the data and/or the
stability of the estimation process.

Analogously, we may allow ξS
GHG to receive inputs from

xSol, xOrb, and/or xVolc. Note that the CFA specification does

not allow observed indicators to influence latent factors. The
identifiability status of each modified SEM model should be
determined on a case-by-case basis.

According to LAS22, ξS
GHG under the SEM model is an

endogenous variable, receiving causal inputs. Therefore, its
variance is not a model parameter, which can be estimated
when the model is fitted to the data. However, it can be calcu-
lated afterwards. This is important because knowledge about
this variance is crucial when gauging the direct overall effect
of the GHG forcing on the temperature relative to the other
forcings. Indeed, by taking the square root of V̂ar(ξS

GHG), we
obtain the estimate of the standardised coefficient for ξS

GHG

that is to be compared to Ŝsim, Ôsim, V̂sim, L̂sim, and Îsim
(when they are available).

Statistical significance of this estimate, which we denote
ĜsimSEM , can be judged from the statistical significance, i.e.
two-sided p value, of V̂ar(ξS

GHG). For example, rejecting H0:
Var(ξS

GHG)= 0 at the α significance level corresponds to re-

jecting H0: GsimSEM =

√
Var(ξS

GHG)= 0 at the same signif-
icance level. Given admissible estimates of all parameters,
and provided that ξS

GHG receives causal inputs, one can cal-
culate Var(ξS

GHG) as follows:
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1. Derive the theoretical expression for Var(ξS
GHG) as a

function of the model parameters in accordance with
Eq. (S13), given in Sect. S2.2 in the Supplement.

2. Replace unknown free parameters in Var(ξS
GHG) by their

estimates to obtain V̂ar(ξS
GHG).

3. Apply the delta method, described in Sect. S2.5 in the
Supplement, to obtain an estimate of the variance of the
asymptotic distribution of V̂ar(ξS

GHG).

4. Calculate the two-sided p value for V̂ar(ξS
GHG) using the

fact that under the null hypothesis H0: Var(ξS
GHG)= 0,

the test statistic V̂ar(ξS
GHG)/

√
V̂ar(V̂ar(ξS

GHG)) is approx-
imately normally distributed with zero mean and a vari-
ance of 1. One can also calculate an approximate con-
fidence interval using Eq. (S25), given in the Supple-
ment, which, however, was not done here due to space
constraints.

4 Numerical results

To avoid an excessively long result section, we present a de-
tailed discussion and interpretation of the results only for one
of the regions, namely for North America (see Sect. 4.1).
This choice of region is arbitrary. A similar detailed presenta-
tion and interpretation of results for the remaining six regions
is provided in the Supplement. A brief overview of the results
for all seven regions is presented in Sect. 4.2.

4.1 Numerical results: the North America data
(annual-mean temperature)

The structure of this section is the following. First, we
present the results of the preliminary analysis of each (final)
single-forcing ensemble, given in Table 2, by means of the
CFA(kf,1) model, defined in Eq. (4). At this stage, we also
discuss some results of estimating the variance of the inter-
nal temperature variability, denoted σ 2

δ̃f
, by means of estima-

tor (3). Further, we present in turn the results of fitting the
three statistical models of interest, followed by a summary
and conclusions.

4.1.1 Preliminary analysis of the single-forcing
ensembles by means of the CFA(kf,1) model

As a preliminary step, we apply the CFA(kf,1) model to the
single-forcing ensembles in order to get a preliminary idea
about the magnitude of the forcing effects. The estimates
of αf, provided by the CFA(kf,1) model, can be useful for
judging the appropriateness of the estimates provided by the
large CFA and SEM models of interest. Importantly, the en-
sembles have already been screened (and reduced when it
was needed), meaning that the CFA(kf,1) model fits each
ensemble adequately, which in turn increases the reliability
of the parameter estimates obtained.

The analysis of the xLand (anthr) ensemble indicated that the
effect of the reconstructed land-use forcing is not detected
(at the 5 % significance level) in the simulated annual-mean
temperature in North America during the period of 850–
1849 CE (̂αLand (anthr) = 0.039, p value = 0.13)2. This con-
clusion seems to be in concert with the temporal evolution
of the land-use forcing, which shows quite modest variations
over North America during the analysis period (see Fig. S4.5
in Fetisova et al., 2017).

Similar analyses of the xSol, xVolc, and xGHG ensembles
suggested that the effect of the corresponding forcings is
well pronounced in the simulated annual-mean temperature
in North America during the period of 850–1849 CE: α̂Sol =

0.049 (p value = 6.2e–03), α̂Volc = 0.132 (p value = 2.0e–
29), and α̂GHG = 0.051 (p value = 1.0e–04).

For each of the above-mentioned ensembles, an a priori
estimate of σ 2

δ̃f
was also derived by means of estimator (3).

All estimates derived were found to be (approximately) equal
to the corresponding estimates provided by the CFA(kf,1)
model.

An opposite result was observed for the xOrb ensemble.
The estimate of σ 2

δ̃Orb
/2, where σ 2

δ̃Orb
was provided by esti-

mator (3), turned out to be larger than the sample variance
of the mean sequence xOrb. A natural interpretation of this
result is that the effect of the orbital forcing on the simulated
annual-mean temperature in North America during the pe-
riod of 850–1849 CE is non-detectable. The conclusion was
supported by (i) the fact that only the CFA(kf,0) model could
be fitted to the xOrb ensemble, while the estimation proce-
dure of the CFA(kf,1) model failed to converge to a solu-
tion, and by (ii) the temporal evolution of the orbital forcing,
which shows virtually no change over North America on an
annual average basis during the analysis period (see Fig. S4.3
in Fetisova et al., 2017). To make the estimation of our large
statistical models meaningful, σ 2

δ̃Orb
/2 was set to the sample

variance of the mean sequence xOrb, which requires setting
the parameter Osim to zero.

4.1.2 Results of estimating Model 1, i.e. the ME-CFA(6,
5) model

Due to treating correlations among the latent factors as free
parameters, the ME-CFA(6, 5) model (and the ME model as
well) becomes theoretically under-identified, if at least one
of the factor loadings is restricted a priori to zero, while the
associated correlations are still treated as free parameters.
In practice, the data, for which some factor loadings are ex-
pected to be arbitrarily near zero, are associated with the so-
called weak-signal regime (DelSole et al., 2019). This regime
entails so-called “empirical under-identifiability”, charac-
terised by inadmissible solutions, or very wide confidence

2A note on p values is that all p values refer to a two-sided test
of the null hypothesis that the parameter in question is zero.
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intervals, or the failure of the estimation procedure to con-
verge to a solution.

Therefore, knowing that fitting the ME-CFA(6, 5) model
to the North America data is likely to result in negligible es-
timates of Osim and Lsim, it is reasonable to expect different
consequences of the under-identifiability. As we see in Ta-
ble 6, this is the case. For two of the eight data sets analysed,
the estimation procedure failed to converge to a solution. The
solution for the remaining data sets is inadmissible, which
follows from the fact that the estimates of the correlation co-
efficients, associated with ξS

Orb and ξS
Land(anthr), exceed their

admissible range; that is, they are larger than 1 in absolute
values.

Based on this result, the ME-CFA(6, 5) model cannot be
selected as an adequate approximation of the underlying la-
tent relationships, even if the model fits the data perfectly,
both statistically and heuristically (e.g. for data set no. 1,
the p value associated with the χ2 statistic is 0.91, which
is larger than 0.05, and the observed values of the heuris-
tic indices are within their acceptance areas: GFI= 1> 0.90,
AGFI= 1> 0.80, and SRMR= 0.003< 0.08).

To avoid the weak-signal regime, we could delete xOrb and
xLand (anthr) from the data set and modify the ME-CFA(6, 5)
model accordingly. However, this approach does not guaran-
tee that the correlation matrix of the remaining latent fac-
tors is non-singular and describes the latent relationships
adequately. Moreover, in real-world analysis, such elimina-
tions would prevent us from evaluating the eliminated cli-
mate model simulations against observational data. There-
fore, LAS22 suggests moving to the CFA model specifica-
tion, and, if necessary, further to the SEM specification to
allow parameters to be set to zero in the course of the analy-
sis.

4.1.3 Results of estimating Model 2, i.e. the CFA(7, 6)
model

In order to avoid empirical under-identifiability, each mod-
ified version of the basic CFA(7, 6) model was formulated
under the restrictions that Osim, Lsim, and all associated cor-
relation coefficients are zero. Another positive consequence
of these restrictions is the increased number of degrees of
freedom.

The estimates of the modified version, which demon-
strated the most stable performance across all data sets,
are presented in Table 7. According to the table, the CFA
model fits the data well both statistically and heuristically.
For data set no. 1, to which the CFA model was ini-
tially fitted, the p value for the χ2 statistic is 0.67, which
is much larger than 0.05, and the observed heuristic in-
dices are within their acceptance areas: GFI= 0.96> 0.9,
AGFI= 0.93> 0.8, and SRMR= 0.065< 0.08. The aver-
age overall model fit is also good, especially in terms of the
SRMR values (min(SRMR)= 0.063, mean(SRMR)= 0.065,
and max(SRMR)= 0.069).

According to the parameter estimates, the CFA model sug-
gests that the (direct) effects of the solar and volcanic forc-
ings are well pronounced in the simulated annual-mean tem-
perature in North America during 850–1849 CE. For exam-
ple, for data set no. 1, it was observed that Ŝsim= 0.036 with
p value= 2.6e–03, and V̂sim= 0.128 with p value= 1.3e–
32. This is in agreement with the corresponding preliminary
conclusions provided by the CFA(kf, 1) model. Comparing
Ŝsim to V̂sim, we may also say that the detected effect of the
volcanic forcing is much stronger than the detected effect of
the solar forcing.

The overall (direct) effect of the GHG forcing is also esti-
mated by the CFA model as significant (for data set no. 1,
Ĝsim= 0.050 with p value = 1.6e–07). Further, the CFA
model detects a weak relation of ξS

GHG to ξS
Sol and to ξS

Volc.
For data set no. 1, the estimates of the corresponding cor-
relation coefficients are φ̂VG = 0.18 (p value = 0.32) and
φ̂SG = 0.13 (p value = 0.73). Together with the significant
estimate of Gsim, this result suggests that the overall ef-
fect of the GHG forcing is mostly of anthropogenic charac-
ter. Climatologically, the significant effect of anthropogenic
changes in the reconstructed GHG forcing can be justified
by an effect mainly in the last about 1 century of data in the
analysed period. Hence, the CFA model presented not only
has an acceptable fit and admissible solutions, but also seems
to be climatologically interpretable. However, prior to draw-
ing final conclusions, let us discuss the result of fitting the
SEM model.

4.1.4 Results of estimating Model 3, i.e. the SEM model

When estimating the above-presented CFA model, the mod-
ification indices indicated that the overall model fit could be
further improved if xLand (anthr) received a causal input from
xVolc. Keeping in mind that xLand (anthr) does not contain the
forced component ξS

Land (anthr) due to the restriction Lsim= 0,
this input would co-relate both forced and internal tempera-
ture variability, generated by the xVolc climate model, to the
internal temperature variability, generated by the xLand (anthr)
climate model.

Although no dynamical relationships between the recon-
structions of the forcings and the internal processes were im-
plemented in the climate modelling experiment under con-
sideration, the causal input from xVolc to xLand (anthr), never-
theless, would statistically express more complicated clima-
tological processes, which may occur in the real-world cli-
mate system and which may be reflected both in the forcing
reconstructions and in the physical basis for the internal pro-
cesses that are implemented in the climate model.

Examples of possible real-world internal processes, inter-
acting with the climate system and which are relevant for the
climate model used here, are seasonal variations in the vege-
tation phenology and in the snow cover. Using the statistical
parlance of LAS22, we can also say that these processes are
causally dependent on the climate system. Note that, statis-
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Table 6. The result of estimating Model 1, i.e. the ME-CFA(6, 5) model, defined in Table 3. The estimates in bold font are inadmissible.

The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value

Ssim 0.050 3.8e–04 φSO −2.20 0.87
Strue 0.176 0.69 φSV 0.24 0.28
Osim 0.009 0.88 φSL 0.69 0.43
Otrue 0.054 0.89 φSG 0.39 0.28
Vsim 0.132 7.6e–30 φOV 1.17 0.88
Vtrue 0.078 0.57 φOL −2.63 0.88
Lsim 0.028 0.29 φOG 2.35 0.88
Ltrue −0.098 0.69 φVL 0.72 0.30
Gsim 0.051 2.2e–05 φVG 0.27 0.17
Gtrue 0.086 0.59 φLG 2.12 0.24

To assess the overall model fit
Model χ2

= 0.013, df= 1, p value = 0.91
GFI = 1, AGFI = 1.00, SRMR = 0.003

Similar results have been observed for all data sets, except for data set
nos. 3 and 6, for which the estimation procedure failed to converge to
a solution.

Table 7. The result of estimating Model 2, i.e. the CFA(7, 6) model, defined in Table 5.

The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Ssim 0.036 2.6e–03 φVG 0.18 0.32 σ
δ̃Land (anthr) δ̃comb

0.0046 3.9e–03

Vsim 0.128 1.3e–32 φSG 0.13 0.73 σ
δ̃Land (anthr) η̃internal pseudo

0.003 0.20

Gsim 0.050 1.6e–07 σ 2
ηinternal pseudo

0.016 3.6e–09 σ
δ̃Land (anthr) δ̃Volc

0.0025 0.080

σ
δ̃Land (anthr) δ̃GHG

0.0029 6.8e–04

To assess the overall model fit
Model χ2

= 15.0, df= 18, p value = 0.667, GFI = 0.96, AGFI = 0.93, SRMR = 0.065

Summary of the results for all eight data sets

Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.035 0.040 0.045 σ̂
δ̃Land (anthr) δ̃comb

0.0030 0.0038 0.0046 Model χ2 14.8 18.0 22.3

V̂sim 0.128 0.129 0.130 σ̂
δ̃Land (anthr) η̃internal pseudo

0.0020 0.0038 0.0063 p value 0.22 0.47 0.67

Ĝsim 0.049 0.051 0.053 σ̂
δ̃Land (anthr) δ̃Volc

0.0024 0.0024 0.0026 GFI 0.94 0.95 0.96

φ̂VG 0.17 0.19 0.22 σ̂
δ̃Land (anthr) δ̃GHG

0.0028 0.0029 0.0030 AGFI 0.91 0.92 0.94

φ̂SG 0.14 0.20 0.26 σ̂ 2
ηinternal pseudo 0.016 0.019 0.023 SRMR 0.063 0.065 0.069

The solution for each data set is admissible.

tically, the co-relation between xVolc and xLand (anthr) could
also be analysed by means of the input from xLand (anthr) to
xVolc, but this input is climatologically unmotivated because
real-world internal processes can hardly be a cause of the
variations in any real-world external natural forcing.

A disadvantage of letting xLand (anthr) receive a causal in-
put from xVolc is that it would change the interpretation of
xLand (anthr) from the climate modelling perspective. More

precisely, this input would mean that the xLand (anthr) cli-
mate model, which gave rise to the temperature response
xLand (anthr), was driven by the volcanic forcing. As known,
this is not the case. Therefore, our goal is to reformulate
the SEM model of LAS22 in such a way that the resulting
SEM model, on the one hand, unambiguously indicates that
xLand (anthr) was generated by the xLand (anthr) climate model
and, on the other hand, links xLand (anthr) to other model vari-
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Figure 2. Path diagram of the modified version of the SEM model from Fig. 1 (region: North America).

ables generated by other climate models analysed. This goal
can be achieved by creating a new variable, representing a
copy of xLand (anthr), and letting xVolc influence this new vari-
able instead of xLand (anthr). The resulting SEM model is de-
picted in Fig. 2, while the numerical results are given in Ta-
ble 8.

As one can see in Fig. 2, the new variable, denoted
x+Land (anthr), has no disturbance variance and is related to
xLand (anthr) through a regression coefficient equal to 1. Note
that in the presence of x+Land (anthr) in the model, the variable
xLand (anthr) is viewed as latent.

One can also see in Fig. 2 that the influence of xVolc, in-
cluding ξS

Volc, propagates through x+Land (anthr) to ξS
GHG and

then further through the input (LG+) to xcomb and τpseudo.
In addition to the inputs (VL+) and (LG+), ξS

GHG receives a
causal input from xOrb, or equivalently δ̃Orb, denoted (OG+).
Climatologically, these three inputs together can be taken as
a representation of a system of global-scaled interactions be-
tween the concentrations of greenhouse gases in the atmo-
sphere and the climate system, which could occur in the real
climate system and which may therefore be reflected in the
reconstruction of the GHG forcings, used to drive the climate
model under consideration.

Yet another causal input, received by ξS
GHG, comes from

the disturbance term ξS
GHG (anthr). Therefore, we may say

that the SEM mode, just as the CFA model above, sug-
gests that the simulated temperature response to the actual

reconstruction of the GHG forcing ξS
GHG contains both nat-

ural and anthropogenic components. However, in contrast
to the CFA model, the SEM model suggests that the natu-
ral component is better pronounced in the simulated annual-
mean temperature in the North America during 850–1849 CE
than the anthropogenic one. Indeed, the estimated variance
of ξS

GHG (anthr) is modestly significant across all data sets,
while the path (LG+) of a natural character is highly sig-
nificant, complemented, in addition, by two other “natural”
paths (VL+) and, whose estimates are insignificant at the 5 %
level but still important for achieving a good model fit.

The overall (direct) effect of the natural and anthro-
pogenic components of ξS

GHG is represented by the param-
eter GsimSEM , whose estimates are calculated afterwards.
Based on Table 8, we may conclude that the overall effect
of the global-scaled variations in the GHG forcing during
850–1849 CE is well detected in the simulated annual-mean
temperature in North America during 850–1849 CE (for data
set no. 1, ĜsimSEM = 0.052, with the associated p value of
0.0032). This result coincides with the result of the prelim-
inary analysis of the ξS

GHG climate model by means of the
CFA(kf,1) model.

The SEM model suggests that the effect of the solar and
volcanic forcings is also well pronounced in the simulated
annual-mean temperature in North America during 850–
1849 CE (for data set no. 1, Ŝsim= 0.052 with p value of
4.9e–08 and V̂sim= 0.131 with p value of 2.3e–35).
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Table 8. The results of estimating the SEM model depicted in Fig. 2 (the region of North America).

The result for data set no. 1

Parameter Estimate p value Parameter Estimate p value Parameter Estimate p value

Ssim 0.052 4.9e–08 LG+ 0.272 2.1e–04 σ
δ̃Sol δ̃Volc

0.0024 0.042
Vsim 0.131 2.3e–35 VL+ 0.125 0.068 σ 2

ηinternal pseudo
0.022 4.6e–10

Var(ξS
GHG (anthr)) 0.0018 0.025 OG+ 0.121 0.13

ĜsimSEM =
√

V̂ar(ξS
GHG)=

√
V̂ar(ξS

GHG (anthr))+ (L̂G+)2 ·

(
σ 2∗
δ̃Land (anthr)

+ (V̂L+)2 · (V̂sim2
+ σ 2∗

δ̃Volc
)
)
+ (ÔG+)2 · σ 2∗

δ̃Orb

= 0.052 (p value= 0.0032)
To assess the overall model fit

Model χ2
= 9.5, df= 20, p value = 0.98, GFI= 0.97, AGFI= 0.96, SRMR= 0.052

Summary of the results based on all eight data sets

Min Mean Max Min Mean Max Min Mean Max

Ŝsim 0.052 0.057 0.062 V̂L+ 0.125 0.125 0.125 Model χ2 9.5 13.3 19.5
V̂sim 0.131 0.133 0.134 σ̂

δ̃Sol δ̃Volc
2.1e–03 2.6e–03 3.0e–03 p value 0.49 0.84 0.98

V̂ar(ξS
GHG (anthr)) 1.8e–03 2.0e–03 2.3e–03 ĜsimSEM 0.051 0.053 0.056 GFI 0.95 0.96 0.97

L̂G+ 0.222 0.253 0.272 σ̂ 2
ηint. pseudo

0.016 0.019 0.023 AGFI 0.93 0.95 0.96

ÔG+ 0.106 0.118 0.135 SRMR 0.051 0.060 0.069
The solution for each data set is admissible.

Finally, let us emphasise that the latent structure of
the SEM model suggests that the forcings associated with
causally independent climatological processes (here, the so-
lar, volcanic, and anthropogenic GHG forcings) are acting
additively.

4.1.5 Summary of the analysis of the North America
data

The ME-CFA(6, 5) model is rejected due to its under-
identifiability, which caused either inadmissible solutions or
inability of the estimation procedure to converge to a solu-
tion.

In contrast, both CFA and SEM models fit the data well
and have admissible solutions. Moreover, they lead to similar
conclusions about the direct effects of the forcings of inter-
est. The sole difference is that the CFA model suggests that
the significant overall effect of the GHG forcing is mostly
due to (global-scaled) anthropogenic changes in GHG con-
centrations, while the SEM model highlights the dominant
role of (global-scaled) natural changes. For the period of in-
terest, both conclusions seem to be defensible and realistic
from the climatological point of view.

Also, both CFA and SEM models demonstrated a stable
performance and a very low sensitivity to starting values for
the parameter estimates. However, the SEM model estimates
two fewer parameters than the CFA model. So, in terms of the
number of the parameters, the SEM model is simpler than the
CFA model, though its underlying structure is more sophisti-
cated from a climatological point of view.

A lower number of parameters entails a higher number of
degrees of freedom. More precisely, the SEM model has 2
more degrees of freedom, which increases the power of the
χ2 test statistic, whose values, in addition, turned out to be
lower for the SEM model. For example, for data set no. 1,
the model χ2 test statistic was 15 and 9.5 for the CFA and
SEM models, respectively. One can also see that the SRMR
values are lower for the SEM model than for the CFA model
(e.g. for data set no. 1, SRMR is 0.065 for the CFA model,
while for the SEM model, SRMR equals 0.052). Taking into
account the difference in the degrees of freedom, we may say
that the SEM model fits the data substantially better than the
CFA model.

All these points together speak in favour of the SEM
model. Therefore, our suggestion is to choose the SEM
model as an adequate approximation of the underlying la-
tent structure of the simulated annual-mean temperature data
for the region of North America during 850–1849 CE.

4.2 Overview of the results for the remaining regions

The brief summaries of the results for the remaining regions
are presented in Tables 9–14.

4.3 Discussion

According to the summaries provided, the SEM model has
been chosen as a final model for all regions/seasons consid-
ered, except for Australasia. This result, first of all, indicates
a complex causal structure of the simulated temperature data
analysed, which required freeing up various causal links not
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Table 9. Summary of the result for Europe, summer (JJA) mean temperature, 850–1849 CE.

– The ME-CFA(6, 5) model is rejected due to inadmissible solutions.
– Both CFA and SEM models have admissible solutions and a good overall fit to the data on average. However, the SEM model fits
substantially better than the CFA model, though the models have the same degrees of freedom. The parameter estimates suggested the following:

Model(df) Forcings with signif. direct effects listed in order of magnitude The character of the direct overall effect of the GHG forcing
CFA Volcanic
(df= 19) GHG (strong) only anthropogenic

Solar
SEM Volcanic
(df= 19) GHG (modest) mostly anthropogenic

Solar
– The above conclusions about the direct forcing effects are supported by the preliminary analyses of the single-forcing ensembles
by means of the CFA(kf, 1) model.
– Our suggestion. Choose the SEM model as a final model because of its better fit.

Table 10. Summary of the result for the Arctic, annual-mean temperature, 850–1849 CE.

– The ME-CFA(6, 5) model is rejected due to inadmissible solution.
– No version of the CFA(7, 6) model could be accepted due to their poor fit to the data.
– The SEM model has an admissible solution and fits the data well. Its interpretation is as follows:

Model(df) Forcings with signif. direct effects listed in order of magnitude The character of the direct overall effect of the GHG forcing
SEM Volcanic
(df= 19) Solar

Orbital
– The above conclusions about the direct forcing effects are supported by the preliminary analyses of the single-forcing ensembles by means
of the CFA(kf, 1) model. The latter, however, also suggested a significant overall direct effect of the GHG forcing. It cannot be excluded that
this difference is due to the simplicity of the CFA(kf, 1) model, thereby making its single-regression parameter represent several parameters
of the larger SEM model.
– Our suggestion. Choose the SEM model as a final model because of its acceptable performance.

permitted in the two other statistical models. For the region
of Australasia, it was decided to choose the CFA model as a
final model in accordance with the principle of parsimony.

All final models seem to have a climatologically defensi-
ble interpretation. Summarising the results per forcing, we
may say the following:

– The direct effect of the volcanic forcing is well pro-
nounced in all seven regions/seasons. In all cases, the
volcanic forcing is found to have by far the strongest ef-
fect on the simulated temperatures, as compared to the
effect from the other forcings.

– The direct effect of the orbital forcing is well detected in
the simulated temperatures in three regions: the Arctic,
Asia, and South America. A modest effect of the forcing
is detected in the simulated Australasia warm-season
mean temperatures. No effect of the orbital forcing is
found in the simulated temperatures in North America,
Europe, and Antarctica.

– A significant direct effect of the solar forcing is detected
in five of the seven regions/seasons. No effect of the
solar forcing is found in the simulated Asia (JJA) and
South America (DJF) temperatures.

Comment. We refrain from trying to explain this anoma-
lous result for temperatures over these two regions, but

we note that our result differs from results presented in
a climate model simulation study made by Servonnat et
al. (2010). They investigated the influence on temper-
atures of solar variability, carbon dioxide, and orbital
forcing between 1000 and 1850 CE in the IPSLCM4
model. It can be seen in their Fig. 6c that solar vari-
ability has a significant influence (at the 0.05 level ac-
cording to a Student’s t test) on simulated (DJF) tem-
peratures over much of a region that corresponds to the
South America region used in our investigation. How-
ever, their simulations were driven with a solar irradi-
ance forcing that has about 2.5 times higher amplitude,
in terms of watts per square metre (W m−2), compared
to the forcing used in the CESM simulations that we
analyse. Thus, statistical significance of a solar forcing
signal should be more easily reached in their study. We
recognise this as an issue to be addressed in future stud-
ies that could hopefully provide better understanding of
why the simulated effect of solar forcing on tempera-
tures is significant in some regions but not in others.
Indeed, the findings of Servonnat et al. (2010) indicate
regional and seasonal differences in the effect from all
three investigated forcings, where areas of significant
versus insignificant temperature responses differ among
the forcings.
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Table 11. Summary of the result for South America, summer (DJF) mean temperature, 850–1849 CE.

– The ME-CFA(6, 5) model is rejected due to inadmissible solutions.
– Both CFA and SEM models have admissible solutions and fit the data well. However, the SEM model fits substantially better, though
the model has as many degrees of freedom as the CFA model. Both models detect the significant direct effects of the same forcings, namely the following:

Model(df) Forcings with signif. direct effects listed in order of magnitude The character of the direct overall effect of the GHG forcing
CFA and SEM Volcanic
(df= 18) Orbital

– The above conclusions about the direct forcing effects are supported by the preliminary analyses of the single-forcing ensembles by means of
the CFA(kf, 1) model.
– Our suggestion. Choose the SEM model as a final model because of its better fit.

Table 12. Summary of the result for Antarctica, annual-mean temperature, 850–1849 CE.

– The ME-CFA(6, 5) model could not be estimated due to the non-convergence of the estimation procedure for each data set.
– Both the CFA and SEM models have admissible solutions, acceptable overall model fit, and the same interpretation of the direct forcing
effects, namely the following:

Model(df) Forcings with signif. direct effects listed in order of magnitude The character of the direct overall effect of the GHG forcing
CFA (df= 10) Volcanic
and Solar
SEM (df= 17)

– The above conclusions about the direct forcing effects are supported by the preliminary analyses of the single-forcing ensembles by means of
the CFA(kf, 1) model.
– Our suggestion. Choose the SEM model as a final model due to its considerably larger number of degrees of freedom.

– A significant overall direct effect of the GHG forcing is
detected in four of the seven regions/seasons. Concern-
ing the remaining three regions (Arctic, South America,
and Antarctica), no effect of the GHG forcing is found
in the corresponding simulated temperatures. In the re-
gions where the effect of the GHG forcing was detected,
its character was described by the final models as fol-
lows:

– In the North America region, the SEM model sug-
gests that the temperature response to the recon-
structed GHG forcing is of a mixed character. That
is, it represents the (annual) temperature response
to both natural and anthropogenic changes, though
the effect of natural changes is better seen than the
effect of anthropogenic ones.

– In the Europe region, the SEM model detects a
stronger effect of anthropogenic changes (probably
in the last about 1 century of data), while the effect
of the natural changes was weakly pronounced.

– In the Asia region, the SEM model suggests that the
overall (summer) temperature response to the GHG
forcing is of a mixed character with a dominating
natural component. The anthropogenic component
seems to be very weak.

– In the Australasia region, the CFA model detects a
dominating anthropogenic component in the strong
overall (warm-season) temperature response to the
GHG forcing. The natural component seems to be
very weak. Importantly, even the SEM model led to
the same conclusion.

– A significant direct effect of the land-use forcing is de-
tected in only one of the seven regions/seasons, namely,
in the Asia (JJA) mean temperatures.

– No effect of the interactions between the external forc-
ings, leading to deviations from the additivity of the
forcing effects, was found by the final statistical mod-
els in any of the seven regions/seasons.

Concerning the conclusions about the estimated forcing ef-
fects, it is essential to keep the following in mind:

– All of them are only justified for the particular climate
model, period, regions, and seasons investigated in the
analysis.

– The availability of simulated data was one of the impor-
tant factors determining the complexity of the statisti-
cal models analysed. The absence of the climate model
simulations, driven by various combinations of the five
forcings of interest, led to a substantial simplification
of the climatological relationships modelled in the sta-
tistical models presented. Nevertheless, the conclusions
about the effect of the five forcings under consideration
presented in the summaries are judged to be realistic and
climatologically defensible.

5 Conclusions

The main aim of the present numerical experiment is to eval-
uate and compare the performance of three statistical models
by fitting them to one and the same simulated temperature
data set. The models are as follows:
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Table 13. Summary of the result for Asia, summer (JJA) mean temperature, 850–1849 CE.

– The ME-CFA(6, 5) model is rejected due to inadmissible solutions.
– Both CFA and SEM models have admissible solutions and fit the data well to a similar degree. The parameter estimates suggested the following:

Model(df) Forcings with signif. direct effects listed in order of magnitude The character of the direct overall effect of the GHG forcing
CFA Volcanic
(df= 16) Land use

GHG (strong) mostly anthropogenic
Orbital

SEM Volcanic
(df= 16) Land use

Orbital
GHG (modest) mostly natural

– The preliminary analyses of the single-forcing ensembles by means of the CFA(kf, 1) model supported the estimates provided by the
SEM, in particular the modestly significant estimate of the direct overall effect of the GHG forcing, thereby making the highly
significant estimate, provided by the CFA model, unreliable.
– Our suggestion. Choose the SEM model as a final model because of its higher degree of reliability compared to the CFA model.

Table 14. Summary of the result for Australasia, warm-season (Sept–Feb) mean temperature, 850–1849 CE.

– The ME-CFA(6, 5) model is rejected due to inadmissible solutions.
– Both CFA and SEM models have admissible solutions and fit the data well to a similar degree, though the SEM model has more degrees of
freedom. Both models provide the same conclusions about the direct effects of the forcings, namely the following:

Model(df) Forcings with signif. direct effects listed in order of magnitude The character of the direct overall effect of the GHG forcing
CFA (df= 14) Volcanic
and GHG (strong) mostly anthropogenic
SEM (df= 16) Solar

Orbital (modest)
– The above conclusions about the direct forcing effects are supported by the preliminary analyses of the single-forcing ensembles by means of
the CFA(kf, 1) model.
– Our suggestion. Choose the CFA model as a final model, despite the higher number of degrees of freedom of the SEM model. This is because the CFA
model has led to the same conclusions about the direct forcing effects, including the overall effect of the GHG forcing, as the SEM model but
without requiring additional calculations afterwards.

1. the measurement error (ME) model, used in many D&A
studies and there referred as to the method of “optimal
fingerprinting” (here, rewritten as a factor model);

2. the confirmatory factor analysis (CFA) model;

3. the structural equation modelling (SEM) model.

Each statistical model provides estimates of direct effects
of forcings on the temperature and contains the same latent
variables representing unobservable temperature responses
to forcings respective the internal processes. As a matter of
fact, each model belongs to one and the same class of struc-
tural equation models with latent variables. Despite the simi-
larities, the models have substantial differences. The follow-
ing is a brief description of the main characteristics of the
models relevant to our analysis:

1. The ME model estimates the forcing effects in ac-
cordance with the total least squares estimation ap-
proach under the condition that all latent temperature
responses to the forcings in question are related to each
other through correlation coefficients, regardless of the
climate-relevant properties of the forcings. Within our
study, this ME model is rewritten as a CFA model

(hence the designation ME-CFA model), which facil-
itated the assessment of the overall model fit and the
judgement of whether parameter estimates are admissi-
ble or not.

2. The CFA model, in contrast to the ME model above,
allows for the modelling of mutually uncorrelated latent
temperature responses to forcings but, just as the ME
model above, does not allow for any causal relationships
between them.

3. The SEM model is the most complex model, allow-
ing for both uncorrelated latent temperature responses
to forcings and various causal relationships between all
model variables, including the latent ones.

The data, used in the analysis, consist of simulated temper-
atures obtained with the CESM Earth system model, cover-
ing the period of 850–1849 CE. The regions of interest coin-
cide with the seven PAGES 2k regions: Europe, North Amer-
ica, Arctic, Asia, South America, Australasia, and Antarc-
tica. Each statistical model above takes into account the fact
that the CESM climate model was driven by five specific (re-
constructed) forcings: the orbital, volcanic, and solar forc-
ings, each of which is a purely natural forcing, the anthro-
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pogenic land-use forcing, and the GHG forcing, which may
contain both natural and anthropogenic components.

A key feature of the present numerical experiment is that
observational temperature data, or more precisely, the (real-
world) observational data, are replaced by data from a cli-
mate model simulation forced by all five (reconstructed)
forcings under study. This replacement makes it reasonable
to accept the assumption that the simulated latent tempera-
ture responses to forcings, embedded in the simulated ob-
servable temperatures, are correctly represented regarding
their magnitude and shape of their temporal evolution, com-
pared to the corresponding latent temperature responses em-
bedded in the pseudo-true temperature. Given this knowl-
edge, a poor model fit to the data can be attributed to incor-
rectly specified unknown underlying relationships between
the variables.

A good model fit, on the other hand, was only one of the
three criteria for choosing a final model among the three sta-
tistical models studied. The two other criteria were as fol-
lows:

– The solution provided by the model is statistically ad-
missible and climatologically defensible.

– The model demonstrates a stable performance across all
data sets, including a different realisation of the pseudo-
true temperature available for the region in question.

One of the important findings of our study is that the SEM
model has been chosen as a final model for six of the seven
regions/seasons considered. For the remaining region, the
CFA model was chosen as a final model. Regarding the ME-
CFA model, the experiment showed that this statistical model
has to be rejected for all regions/seasons. This is because the
estimation procedure of the ME-CFA model either failed to
converge to a solution or resulted in inadmissible solutions.

One of the possible explanations of this result can be a
complex causal structure of the data, not reflected in the ME-
CFA model. Another possible explanation is that the estima-
tion procedure of its parameters becomes unstable under the
weak-signal regime observed for each regional data. How-
ever, the fact that this statistical model has been rejected in
our analysis for all specific regional data does not imply that
the model is inappropriate in other studies (either preced-
ing or future ones). For another climate model, another set
of forcings, and other regions and periods, ME-CFA models
might turn out to be sufficient for describing the underlying
latent structure of data.

A key idea of the numerical experiment presented (and of
the framework on the whole) is that the researcher’s thinking
concerning the statistical modelling of climatological rela-
tionships should not be limited to a single statistical model.
As underlined by the observed results, the availability of sev-
eral statistical models is a basis for flexible evaluations of
climate models concerning the representation of tempera-
ture responses to climate forcings. The degree of flexibility

in choosing appropriate statistical models can further be in-
creased by further modifications and improvements of our
statistical models.

As a final comment, we would like to point out that the
performance of the framework suggested was studied only
for zero noise in the pseudo-observational data. However, as
real observational data may contain significant and varying
amounts of non-climatic noise, it is highly desirable to in-
vestigate its performance (in particular, the performance of
the models chosen as final models) for more realistic levels
of added noise, similar to what is found in real climate proxy
data for past temperature variations. These investigations can
also be complemented by the analysis of empirical coverage
rates of approximate confidence intervals for parameter es-
timates that may differ from their nominal levels due to the
approximative nature of the distributions of the parameter es-
timates, especially for endogenous parameters whose asymp-
totic variances are functions of several parameter estimates
and are calculated using the delta method.

Code and data availability. The present work employed the R
package sem (Fox et al., 2014; Fox, 2006) (http://CRAN.R-project.
org/package=sem, https://doi.org/10.1207/s15328007sem1303_7)
using R version 3.0.2 (R Core Team, 2013) (http://www.R-project.
org/, last access: 6 December 2022). The R package sem was
used for the estimation of all statistical models under study. For
derivation of symbolic expressions of the reproduced variance–
covariance matrices associated with our statistical models under dif-
ferent hypotheses, we used MATLAB (R2018b (9.5.0.944444) 64-
bit (glnxa64)), in particular its Symbolic Math Toolbox, which pro-
vides functions for solving and manipulating symbolic math equa-
tions (see https://se.mathworks.com/help/symbolic/index.html?s_
tid=CRUX_lftnav, last access: 11 November 2022). Examples of
R and MATLAB code are given in the Supplement Sect. S3.

The simulation data used in this study are available
from the Bolin Centre Database, Stockholm University
(https://doi.org/10.17043/moberg-2019-cesm-1, Moberg and
Hind, 2019). The data are the same as used in Fetisova
(2017) (http://su.diva-portal.org/smash/record.jsf?pid=diva2:
1150197&dswid=9303, last access: 6 December 2022).
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