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Abstract. In parts I and II of this paper series, rigorous tests for equality of stochastic processes were proposed.
These tests provide objective criteria for deciding whether two processes differ, but they provide no information
about the nature of those differences. This paper develops a systematic and optimal approach to diagnosing dif-
ferences between multivariate stochastic processes. Like the tests, the diagnostics are framed in terms of vector
autoregressive (VAR) models, which can be viewed as a dynamical system forced by random noise. The tests
depend on two statistics, one that measures dissimilarity in dynamical operators and another that measures dis-
similarity in noise covariances. Under suitable assumptions, these statistics are independent and can be tested
separately for significance. If a term is significant, then the linear combination of variables that maximizes that
term is obtained. The resulting indices contain all relevant information about differences between data sets.
These techniques are applied to diagnose how the variability of annual-mean North Atlantic sea surface temper-
ature differs between climate models and observations. For most models, differences in both noise processes and
dynamics are important. Over 40 % of the differences in noise statistics can be explained by one or two discrim-
inant components, though these components can be model dependent. Maximizing dissimilarity in dynamical
operators identifies situations in which some climate models predict large-scale anomalies with the wrong sign.

1 Introduction

Comparing time series is a common task in climate stud-
ies, yet there are few rigorous criteria for deciding whether
two time series come from the same stationary process. Such
comparisons are vital in climate studies, particularly for de-
ciding whether climate models produce realistic simulations.
Part I of this study (DelSole and Tippett, 2020) derived a test
for the hypothesis that two univariate time series come from
the same stationary autoregressive process. Part II general-
ized this test to multivariate time series (DelSole and Tippett,
2021a). However, the decision that two processes differ pro-
vides no information about the nature of those differences.
The purpose of this paper is to develop optimal diagnostics of
differences between multivariate stochastic processes. Such
diagnostics may help to identify errors in climate models and
suggest ways to correct them.

The starting point of our approach is the objective crite-
rion derived in Part II for deciding whether two multivariate
time series come from the same process. This criterion as-
sumes that each multivariate time series comes from a vector
autoregressive (VAR) model. Part II derived the likelihood
ratio test for equality of VAR parameters. The associated test
statistic, called a deviance statistic, depends on all parame-
ters in the VAR models, as it should, but in specific applica-
tions it may be dominated by particular aspects of the VAR
models, such as differences in noise processes or differences
in dynamics. In this paper, we first show that the deviance
can be partitioned into two terms such that one term mea-
sures differences in noise processes and the other term mea-
sures differences in dynamics. Under suitable assumptions,
these terms are independent. Then, the individual terms are
further decomposed using discriminant analysis techniques.
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Discriminant analysis finds linear combinations of variables
that maximize some quantity.

When applied to diagnose dissimilarity in noise processes,
discriminant analysis yields a procedure that is similar to
principal component analysis and other related techniques
for diagnosing variability (Schneider and Griffies, 1999; Del-
Sole et al., 2011; Wills et al., 2018). When applied to diag-
nose dissimilarity in dynamics, discriminant analysis yields
a procedure that is equivalent to generalized singular value
decomposition. Although both procedures have appeared in
previous studies, no rigorous significance test accompanied
these applications. In this work, these procedures emerge nat-
urally from a rigorous statistical framework, and, as a result,
they each have a well-defined significance test. A signifi-
cance test is possible because each dissimilarity measure is
based on prewhitened variables rather than on the original,
serially correlated variables.

These new analysis techniques are applied to diagnose
how variability of annual-mean North Atlantic sea surface
temperature (SST) differs between observations and model
simulations. It is found that differences in noise processes
and differences in dynamics both play a significant role in ex-
plaining the overall differences. The components that dom-
inate these differences are illustrated for a few cases. This
paper closes with a summary and discussion.

2 Likelihood ratio test for differences in vector
autoregressive models

This section briefly reviews the procedure derived in Part II
for deciding whether two time series come from the same
stochastic process. This procedure considers only station-
ary, Gaussian processes. Such processes are described com-
pletely by a mean vector and time-lagged covariance ma-
trices. Standard tests for differences in these quantities (see
chapter 10 of Anderson, 1984) assume independent data and
therefore are not suitable for comparing serially correlated
multivariate time series. Our approach is to fit a VAR model
to data and then test equality of model parameters. Accord-
ingly, consider a J -dimensional random vector zt , where t is
a time index. A VAR model for zt is

zt = A1zt−1+ . . .+Apzt−p +µ+ εt , (1)

where A1, . . .,Ap are constant J×J matrices, µ is a constant
vector that controls the mean of zt , and εt is a Gaussian white
noise process with covariance 0. We refer to εt as the noise
and A1, . . .,Ap as the AR parameters. The term model pa-
rameters refers to the set {µ,0,A1, . . .,Ap}, which involves
a total of J + J (J + 1)/2+ J 2p independent parameters.

Typically, AR parameters characterize dynamics. For in-
stance, some stochastic models are derived by linearizing the
equations of motion about a time mean flow and parameter-
izing the eddy–eddy nonlinear interactions by a stochastic
forcing and linear damping (Farrell and Ioannou, 1995; Del-

Sole, 2004). Similar stochastic models can be derived by lin-
ear inverse methods (Penland, 1989; Winkler et al., 2001).
Majda et al. (2006) showed that such stochastic models can
be derived under suitable assumptions of a timescale separa-
tion (see the review by Gottwald et al., 2017). Realizations
from these stochastic models, sampled at discrete time in-
tervals, are indistinguishable from realizations of VAR mod-
els. In each of these models, the AR parameters characterize
physical processes such as advection, dissipation, and wave
propagation. Accordingly, we say that AR parameters char-
acterize the dynamics of the system and that differences in
AR parameters indicate differences in dynamics.

The model parameters can be estimated by the method
of least squares, and the distributions of the estimates are
asymptotically normal (Lütkepohl, 2005, Sect. 3.2.2). Ac-
cordingly, it proves convenient to express the VAR model
as a regression model. Suppose Eq. (1) is used to generate
N+p realizations z1, . . .,zN+p. Then, these realizations can
be modeled by

Y∗ = X∗B+ 1µT +E,

where 1 is an N -dimensional vector of ones, superscript T
denotes the transpose operation, the rows of E are indepen-
dent realizations of εt , and

Y∗ =



zTp+1

zTp+2

...

zTN+p


∈RN×J ,

X∗ =



zTp zTp−1 . . . zT1

zTp+1 zTp . . . zT2

...
...

. . .
...

zTN+p−1 zTN+p−2 . . . zTN


∈RN×Jp,

B=



AT1

AT2

...

ATp


∈RJp×J .

Inferences based on the above regression model are iden-
tical to inferences based on the model Y= XB+E, where in
the latter model µ is omitted and X and Y contain centered
variables in which the mean of each column is subtracted
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from that column. To simplify the analysis, we hereafter con-
sider regression models of the form Y= XB+E compris-
ing centered variables. To account for centering, 1 degree of
freedom per dimension should be removed at the appropriate
steps below, but for brevity they will not be discussed further.
With this understanding, we hereafter express our two VAR
models in the form

Y1 = X1B1+E1, (2)
Y2 = X2B2+E2, (3)

where

Y1 ∈RN1×J , X1 ∈RN1×M , B1 ∈RM×J ,

Y2 ∈RN2×J , X2 ∈RN2×M , B2 ∈RM×J .

M = Jp, and E1 and E2 are independent and distributed as

rows of E1
iid
∼ NJ (0,01) ,

rows of E2
iid
∼ NJ (0,02) .

The null hypothesis is

H0 : B1 = B2 and 01 = 02.

Let B0 and 00 denote the common regression parameters
and noise covariance matrix under H0, respectively. The to-
tal number of parameters estimated under H0 is 2J + J (J +
1)/2+MJ , derived by summing 2J for µ1 and µ2, MJ for
B0, and J (J + 1)/2 for 00. On the other hand, the case of
unconstrained VAR processes is denoted as

H2 : no restriction on B1,B2,01,02.

The total number of parameters estimated under H2 is 2J +
J (J + 1)+ 2MJ .

As discussed in Part II of this paper series, the bias-
corrected likelihood ratio for testing H0 versus H2 is

30:2 =

(
|0̂1|

ν1 |0̂2|
ν2

|0̂H0 |
ν1+ν2

)1/2

,

where | · | denotes the determinant and

ν1 =N1−M − 1, (4)
ν2 =N2−M − 1, (5)

B̂1 =
(

XT1 X1

)−1
XT1 Y1, (6)

B̂2 =
(

XT2 X2

)−1
XT2 Y2, (7)

B̂0 =
(

XT1 X1+XT2 X2

)−1(
XT1 Y1+XT2 Y2

)
, (8)

0̂1 = bbY1−X1B̂1cc/ν1, (9)

0̂2 = bbY2−X2B̂2cc/ν2, (10)

0̂H0 =
bbY1−X1B̂0cc+ bbY2−X2B̂0cc

ν1+ ν2
, (11)

and we have used the following operator for any matrix Z:

bbZcc = ZTZ.

In our applications, 0̂1 and 0̂2 are positive definite, and this
will be assumed hereafter.

MLEs and unbiased estimates are asymptotically equiva-
lent. Hence, asymptotic theory (Hogg et al., 2019) gives the
distribution of the deviance statistic under H0 as

D0:2 =−2log30:2 ∼ χ
2
MJ+J (J+1)/2 when H0 is true. (12)

If no difference in VAR models is detected, then the data are
assumed to come from the same stochastic process.

Note that covariance matrices 01 and 02 characterize the
residuals of the VAR models. If A1 = . . .= Ap = 0, then the
process is white noise, and the above test reduces to the stan-
dard likelihood ratio test for differences in covariance ma-
trices (e.g., see Anderson, 1984). If the process is VAR(p),
then Yi −XiBi transforms the correlated process Yt into an
uncorrelated white noise process. Such a transformation is
called a prewhitening transformation (Box et al., 2008). In
practice, Bi is not known, and hence the sample estimate B̂i
is substituted, yielding an approximately white noise process.
Accordingly, 0̂i is the covariance matrix of the prewhitened
variables Yi −XiB̂i and characterizes the noise statistics.

3 Partitioning the deviance statistic

If H0 is rejected, then a difference in VAR models is said to
be detected. However, this result does not tell us the nature
of those differences. A natural question is whether the differ-
ence can be attributed to a difference in noise statistics or a
difference in AR parameters. To answer these questions, we
consider a hypothesis that is intermediate between H0 and
H2, namely,

H1 : 01 = 02 and no restriction on B1,B2.

As a shorthand, H1 will be called equality of noise. Under
H1, the maximum likelihood estimates of B1 and B2 are
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Eqs. (6) and (7), and the (bias-corrected) maximum likeli-
hood estimate of the covariance matrix 0 is

0̂H1 =
ν10̂1+ ν20̂2

ν1+ ν2
. (13)

It follows that the deviance statistic for testing H0 versus H1
is

D0:1 = (ν1+ ν2) log |0̂H0 | − (ν1+ ν2) log |0̂H1 |, (14)

and the deviance statistic for testing H1 versus H2 is

D1:2 = (ν1+ ν2) log |0̂H1 | − ν1 log |0̂1| − ν2 log |0̂2|. (15)

It is readily verified that the sum of these deviances gives the
original deviance:

D0:2 =D0:1+D1:2. (16)

In the next section, we will see that D1:2 measures differ-
ences in noise covariances, and D0:1 measures differences in
AR parameters. Under this interpretation, Eq. (16) decom-
poses total deviance into a part due to differences in noise
statistics and a part due to differences in AR parameters.

Testing significance requires knowing the sampling dis-
tributions of D0:1 and D1:2. Under H1, standard regression
theory indicates that ν10̂1 and ν20̂2 each have independent
Wishart distributions (Fujikoshi et al., 2010, Theorem 7.2.1).
Importantly, these distributions are independent of the model
parameters. Since D1:2 depends only on 0̂1 and 0̂2, it too
has a distribution that is independent of the model parame-
ters (under H1). For large sample sizes, this distribution ap-
proaches a chi-squared distribution with J (J + 1)/2 degrees
of freedom (see Hogg et al., 2019, Theorem 6.5.1), which we
denote as

D1:2 ∼ χ
2
J (J+1)/2 when H1 is true. (17)

In contrast, the distribution of D0:1 is more complicated. In
the special case in which H1 is true, the hypothesis of equal
AR parameters can be tested as a standard problem in gen-
eral linear hypothesis, which yields a statistic that depends
only on 0̂H0 and 0̂H1 . Again, the sampling distribution is in-
dependent of the model parameters. SinceD0:1 depends only
on 0̂H0 and 0̂H1 , we may infer that the distribution of D0:1
is also independent of the model parameters. In this case,
asymptotic theory indicates that, for large sample sizes, the
distribution is

D0:1 ∼ χ
2
MJ when H0 is true, and

H1 is the alternative hypothesis. (18)

As expected, for consistency, the sum of the degrees of free-
dom in Eqs. (17) and (18) equals that in Eq. (12).

However, if H1 is not true (i.e., the noise covariances dif-
fer), then the distribution of D0:1 depends on how the noise

covariances differ. A similar situation arises with the t-test.
Recall that the t-test assesses equality of means assuming
equal variances. However, if the variances are unequal, the t-
test is inappropriate because the distribution of the t-statistic
depends on the ratio of variances. This is the central issue
in the Behrens–Fisher problem, for which there are multi-
ple tests with various probabilistic interpretations (Scheffé,
1970; Kim and Cohen, 1998). Our procedure would reduce
to the t-test if the hypothesis µ1 = µ2 were tested in the case
of J = 1 and vanishing AR parameters. Since the intercept µ
is merely a special case of a regression matrix B, one can an-
ticipate that testing equality of regression parameters would
also lead to a sampling distribution that depends on the differ-
ence in noise covariances. Therefore, testing equality of AR
parameters without assuming equality of noise covariances
would lead to complications analogous to those associated
with the Behrens–Fisher problem. To avoid these complica-
tions, we test equality of AR parameters under the assump-
tion of equal noise covariances. This restriction is of the same
kind as that invoked routinely in the t-test.

Given the above restriction, the hypotheses in our problem
are summarized in Table 1 and nested as H0 ⊆H1 ⊆H2. A
natural procedure is to first test equality of noise covariances
and then, if that hypothesis is accepted, test equality of re-
gression parameters under the restriction of equal noise co-
variances. This stepwise testing procedure is a special case
of a general procedure discussed by Hogg (1961). Specifi-
cally, Hogg (1961) showed that if the maximum likelihood
estimates of a set of nested hypotheses are completely suf-
ficient statistics, then the resulting test statistics are stochas-
tically independent, and the most restrictive hypothesis can
be tested by testing a sequence of intermediate hypotheses.
Hogg’s procedure leads to the following stepwise procedure.
First, D1:2 is tested for significance based on Eq. (17). If it
is significantly large, then we decide that the noise covari-
ances differ and stop testing. If D1:2 is not significant, then
D0:1 is tested for significance based on Eq. (18). If it is sig-
nificant, then we decide that the noise covariances are equal,
but the AR parameters differ. If D0:1 is not significant, then
we conclude that no significant difference in VAR models is
detected. This procedure involves two steps performed at the
α100% level. Because the tests are stochastically indepen-
dent, the family-wise error rate (FWER) for testing H0 is

FWER= 1− (1−α)2.

Thus, if each step is performed at the α = 5% level, then the
corresponding FWER is 9.75%.

4 Diagnosing differences in noise processes

If D1:2 is significantly large, then the noise covariances are
said to differ. However, this conclusion does not tell us the
nature of those differences. The question arises as to how to
describe the difference between two covariance matrices in
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Table 1. Table summarizing the hypotheses considered in the hierarchical test procedure.

Model 0 B Number of parameters

H2 Unrestricted Unrestricted Unrestricted 2J + J (J + 1)+ 2MJ
H1 Equality of noise 01 = 02 Unrestricted 2J + J (J + 1)/2+ 2MJ
H0 Equality of process 01 = 02 B1 = B2 2J + J (J + 1)/2+MJ

an efficient manner. Flury (1986) suggested using the linear
combination of variables with extreme ratios. This approach
is a generalization of principal component analysis (PCA),
but instead of maximizing variance itself, a ratio of variances
is optimized. We call this approach covariance discriminant
analysis (CDA). A review of CDA is given in DelSole and
Tippett (2022). CDA is a generalization of the discriminant
analysis used in classification studies. We refer to both meth-
ods as discriminant analysis.

Discriminant analysis begins by considering the linear
combination of prewhitened variables,

r (k)
=

(
Yk −XkB̂k

)
qY for k = 1,2, (19)

where qY is a vector containing the coefficients of the linear
combination. The resulting vector r (k) is a time series called
a variate. The corresponding sample variances are

1
νk

(
r (k)

)T
r (k)
= qTY 0̂kqY ,

and the corresponding deviance statistic D1:2 for the scalar
variables r (1) and r (2) is

d1:2 = (ν1+ ν2) log
(
qTY 0̂H1qY

)
− ν1 log

(
qTY 0̂1qY

)
− ν2 log

(
qTY 0̂2qY

)
, (20)

where Eq. (13) is used to define

qTY 0̂H1qY = (ν1q
T
Y 0̂1qY + ν2q

T
Y 0̂2qY )/(ν1+ ν2). (21)

Substituting Eq. (21) into Eq. (20) and using elementary
properties of the log function yields

d1:2(θ )= ν1 log
(
ν1+ ν2θ

ν1+ ν2

)
+ ν2 log

(
ν1/θ + ν2

ν1+ ν2

)
,

where θ is the ratio of noise variances given by the Rayleigh
quotient

θ =
qTY 0̂2qY

qTY 0̂1qY
. (22)

The stationary values of d1:2 are found by using the chain
rule:

∂d1:2

∂qY
=
∂d1:2

∂θ

∂θ

∂qY
.

The function d1:2(θ ) is U-shaped with a minimum at θ = 1,
but the stationary value at θ = 1 is not of interest since it
is a minimum. For θ > 1 the only stationary values occur
at ∂θ/∂qY = 0, and for θ < 1 the only stationary values oc-
cur at ∂θ/∂qY = 0. Both cases lead to the same condition
∂θ/∂qY = 0, which in turn leads to the generalized eigen-
value problem

0̂2qY = θ 0̂1qY (23)

(see Seber, 2008, result 6.59). This eigenvalue problem has
at most J distinct solutions. Because d1:2(θ ) is a U-shaped
function, large deviances arise from large and small values
of θ . This is sensible because deviance is a measure of the
difference in variance, and two variances may differ because
one is much greater or much less than the other. We order the
eigenvalues by their value of d1:2(θi), which means that the
eigenvalues θ1, . . .,θJ generally are not ordered from largest
to smallest; for instance, the leading component might have
the smallest eigenvalue. Let the corresponding eigenvectors
be qY,1, . . .,qY,J . Then, the maximum possible deviance is
obtained from qY,1, which yields time series Eq. (19) and
has deviance D1:2(θ1).

When examining the leading eigenvalue θ1, it is informa-
tive to compare to a significance threshold under H1. This
threshold can be estimated by Monte Carlo methods. Specif-
ically, one generates samples from Eqs. (2) and (3) using
01 = 02 = I. The sampling distribution is independent of
B1 and B2, and hence they can be set to zero in the Monte
Carlo model. From these samples, one computes the noise
covariance matrices, solves the generalized eigenvalue prob-
lem Eq. (23), and then repeats this procedure numerous times
to build an empirical distribution of θ1. The resulting test is
equivalent to the union-intersection test (Mardia et al., 1979).
We emphasize that this test is done only as a reference for
judging the significance of a single eigenvalue and is not
meant to replace the above test based onD1:2, which depends
on all the eigenvalues.

It can be shown that the variates r (k)
1 , . . .,r

(k)
J correspond-

ing to the eigenvectors are uncorrelated (see Appendix A).
Recall that eigenvectors are unique up to a multiplicative
constant. It is conventional to normalize the eigenvectors of
Eq. (23) so that the denominator in Eq. (22) is one, or equiv-
alently, that the variates r (1)

1 , . . .,r
(1)
J each have unit variance.

Under this normalization, the prewhitened variables may be
decomposed as

Yk −XkB̂k = r
(k)
1 p̃T1 + . . .+ r

(k)
J p̃

T
J , (24)
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where p̃j is a loading vector defined as

p̃j = 0̂1qj .

We call the individual term r
(k)
i p̃

T
i a noise discriminant.

Equation (24) shows that prewhitened variables can be de-
composed into a sum of independent noise discriminants,
where r (k)

i is a time series describing the temporal structure
of the noise discriminant, and p̃i is a loading vector describ-
ing the spatial structure of the noise discriminant. Appendix
A also shows that

D1:2 =
∑
j

d1:2(θj ). (25)

That is, D1:2 is the sum of deviances of the individual noise
discriminants. Thus, the decomposition simultaneously de-
composes the prewhitened variables and the deviance D1:2
into a sum of independent components. If a few noise dis-
criminants dominate the total deviance (either because the
associated θj is much greater than or much less than one),
then those discriminants provide a low-dimensional descrip-
tion of differences in noise variances.

5 Diagnosing differences in dynamics

If D1:2 is sufficiently small, then no difference in noise pro-
cesses is detected and we turn toD0:1. IfD0:1 is significantly
large, then we conclude there is a difference in dynamics, but
the nature of those differences is unknown. Again, we seek
linear combinations that maximize D0:1, consistent with dis-
criminant analysis. Under H0, the prewhitening transforma-
tion depends on B̂0 rather than B̂1 and B̂2, and therefore we
introduce the prewhitened variables under H0,

Ê0 =

(
Y1−X1B̂0

Y2−X2B̂0

)
.

We continue to use q,p,r to denote a projection vector, load-
ing vector, and variate, respectively, but the interpretation dif-
fers from that in Sect. 4 because here we are maximizingD0:1
rather than D1:2. A linear combination of Ê0 is

r (0)
= Ê0qY ,

which has variance

1
ν1+ ν2

(
r (0)

)T
r (0)
= qTY 0̂H0qY .

The corresponding deviance statistic from Eq. (14) is then

d0:1(λ)= (ν1+ ν2) logλ, (26)

where

λ=
qTY 0̂H0qY

qTY 0̂H1qY
. (27)

Because d0:1(λ) is a monotone function of λ, maximizing
d0:1(λ) is equivalent to maximizing λ, which leads to the
eigenvalue problem

0̂H0qY = λ0̂H1qY . (28)

Let the eigenvalues be ordered from largest to smallest, i.e.,
λ1 > .. . > λJ , and let the corresponding eigenvectors be de-
noted as qY,1, . . .,qY,J . The rest of the procedure is similar
to that in Sect. 4, and for brevity we simply state the final re-
sults. Specifically, the variates r (0)

1 , . . .,r
(0)
J are uncorrelated,

and the loading vectors are

p̃Y,j = 0̂H1qY,j ,

and if the eigenvectors are normalized as qTY,j 0̂H1qY,j = 1,
then the prewhitened variables are decomposed as

Ê0 = r
(0)
1 p̃TY,1+ . . .+ r

(0)
J p̃

T
Y,J (29)

and the deviance is decomposed as

D0:1 =
∑
j

d0:1(λj ). (30)

We call r (0)
i p̃

T
Y,i a difference-in-dynamics component. Iden-

tity Eq. (30) shows that D0:1 can be decomposed as a sum
of deviances of the individual components. The significance
threshold of λ1 underH0 can be estimated by the same Monte
Carlo method discussed in Sect. 4, except that Eq. (28) is
solved instead of Eq. (23).

Although we have decomposed Ê0 and D0:1, it is not
obvious how this elucidates differences in dynamics. Af-
ter all, dynamics are contained in B̂1 and B̂2, but these
quantities do not appear explicitly in the above decompo-
sition. In Appendix C, we show that the loading vectors
p̃TY,1, . . ., p̃

T
Y,J appear in the generalized singular value de-

composition (GSVD) of B1−B2,

B̂2− B̂1 = s1qX,1p̃
T
Y,1+ . . .+ sJ qX,J p̃

T
Y,J , (31)

where s1, . . ., sJ are singular values, qX,1, . . .,qX,J are left
singular vectors, and p̃Y,j , . . ., p̃Y,J are right singular vec-
tors. In contrast to the standard SVD, the left and right sin-
gular vectors satisfy the generalized orthogonality conditions

qTX,i6HqX,j = δij and p̃TY,i0̂
−1
H1
p̃Y,j = δij . (32)

This decomposition is equivalent to an SVD of a suit-
ably transformed B1−B2 (Appendix C; see also Abdi and
Williams, 2010). The matrix 6H is a covariance matrix de-
fined in Appendix B (see B3). Note that if6H = I and 0̂H1 =

I, then Eq. (32) would be Euclidean norms and Eq. (31)
would be the standard SVD. We call si a difference-in-
dynamics singular value. Appendix C further shows thatD0:1
can be decomposed as

D0:1 =
∑
i

d0:1(1+ s2
i ). (33)
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si can be interpreted as measuring the magnitude of the dif-
ference in dynamics, and p̃Y,i describes the manifestation of
these differences in the prewhitened variables. Furthermore,
Eq. (33) shows that the deviance D0:1 can be decomposed
as a sum of the deviances of the individual components. Al-
though a standard SVD would also decompose B̂2− B̂1, it
would not simultaneously decompose D0:1 into a sum of
terms, each of which depends only on a single component.
If the sum in Eq. (33) is dominated by the first few compo-
nents, then differences in AR parameters can be described by
those components. We call this decomposition a difference-
in-dynamics SVD.

To further clarify the decomposition Eq. (31), note that the
form of Eqs. (2) and (3) implies that qX,j projectsX onto the
j th difference-in-dynamics component. The corresponding
loading vector is

p̃X,j =6HqX,j .

It follows from this and the first orthogonality constraint in
Eq. (32) that the loading vectors p̃X,j and projection vec-
tors qX,j form a bi-orthogonal set satisfying qTX,j p̃X,k = δjk .
Therefore, multiplying the transpose of Eq. (31) by p̃X,j
yields

(B̂2− B̂1)T p̃X,j = sj p̃Y,j . (34)

This equation indicates that p̃X,i defines an initial condition,
while the vector p̃Y,i describes the corresponding difference
in response, and si measures the amplitude of the difference
in response. In Appendix C, we show that

s2
j =

‖(B̂2− B̂1)T p̃X,j‖
2
0̂H1

‖p̃X,j‖
2
6H

, (35)

where ‖ · ‖A is a distance measure defined as

‖a‖2A = a
TA−1a,

for any vector a and positive definite matrix A. Thus, given
the initial condition p̃X,j , the squared singular value s2

j is
the ratio of the dissimilarity in response over the initial am-
plitude. The dissimilarity in response is measured with re-
spect to a norm based on the average noise covariance matrix
0̂H1 . Thus, the numerator in Eq. (35) is a signal-to-noise ra-
tio, which is an attractive basis for measuring differences in
responses. Because s2

j satisfies the same optimization proper-
ties as λj , it follows that p̃X,1 maximizes Eq. (35), or equiv-
alently, it maximizes the dissimilarity in response subject to
‖p̃X,1‖

2
6H
= 1 (Noble and Daniel, 1988, Theorem 10.22).

The latter condition defines a surface of constant probabil-
ity density under N (0,6H ). Thus, p̃X,1 produces the biggest
difference in response among all “equally likely” vectors un-
der N (0,6H ).

SVD has been used in past studies of empirical dynami-
cal models (e.g., Penland and Sardeshmukh, 1995; Winkler

et al., 2001; Shin and Newman, 2021), so it is of interest to
discuss how the GSVD differs from past applications. For
p = 1, the VAR model with time step τ is mathematically
equivalent to a linear inverse model (LIM) integrated to time
τ . In LIM studies, the SVD is used to identify the “optimal
initial condition” and the “maximum amplification curve”,
which are derived by applying a standard SVD directly to the
propagator B̂. Thus, one obvious difference is that the SVD in
this paper diagnoses differences in dynamics rather than dy-
namics itself. A more fundamental difference is that the stan-
dard SVD uses the Euclidean norm to constrain the initial and
final vectors, which yields singular values that depend on the
coordinate system. In contrast, difference-in-dynamics sin-
gular values are invariant to invertible linear transformations
of Y and therefore are independent of the coordinate system
(this is proven in Appendix D).

6 Application to North Atlantic sea surface
temperatures

We now apply the above procedure to diagnose dissimilari-
ties in internal variability of annual mean North Atlantic SST
(NASST; 0− 60◦N) between observations and climate mod-
els. Our choices for climate models, observations, and VAR
model were discussed in Part II. We first summarize these
relevant results from Part II.

6.1 Summary of NASST analysis in Part II

In Part II, we applied the difference-in-VAR test to pre-
industrial control runs from phase 5 of the Coupled Model
Intercomparison Project (CMIP5 Taylor et al., 2012). These
simulations contain only internal variability and do not con-
tain forced variability on interannual timescales. We ana-
lyzed 36 control simulations of length 165 years.

For dimension reduction, NASST fields were projected
onto the leading Laplacian eigenvectors in the Atlantic basin.
The number of Laplacian eigenvectors J and the order of
the VAR model p were chosen using an objective criterion
called the Mutual Information Criterion (MIC; DelSole and
Tippett, 2021b). This criterion is a generalization of Akaike’s
information criterion to random predictors and selection of
predictands. As discussed in Part II, this criterion selected
different values of p and J for different CMIP5 models. To
quantify differences using our difference-in-VAR test, a com-
mon VAR model must be selected. Which model should be
selected? Choosing p too small may result in residuals that
contain serial correlations, contradicting our distributional
assumptions. Choosing p too large may result in overfitting.
Of the two problems, overfitting is less serious because it
is taken into account in the statistical test. The main nega-
tive impact of overfitting is the loss of statistical power. In
this study, loss of power is not a concern because differences
grow rapidly with p and J . For this reason, we advocate se-
lecting the maximum p and J among the models selected by
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MIC. As documented in Part II, these considerations lead to
selecting J = 7 Laplacian eigenvectors and order p = 1.

To assess model adequacy, we performed the multivari-
ate Ljung–Box test (Lütkepohl, 2005, Sect. 4.4.3). After a
Bonferroni correction, only 1 of the 36 CMIP5 models had
detectable serial correlations, consistent with the expected
rate, suggesting that VAR(1) with J = 7 was adequate for
our data. Our choice of p = 1 leads to a model that is in-
distinguishable from an LIM sampled at discrete time steps.
Numerous studies have shown that LIMs provide reasonable
models of monthly-mean and annual-mean SSTs (Alexan-
der et al., 2008; Vimont, 2012; Zanna, 2012; Newman, 2013;
Huddart et al., 2016; Dias et al., 2018) and can predict trop-
ical SSTs with a skill close to that of state-of-the-art cou-
pled atmosphere–ocean models (Newman and Sardeshmukh,
2017).

For observations, we used version 5 of the extended re-
constructed SST data set (ERSSTv5; Huang et al., 2017)
and considered the 165-year period 1854–2018. To remove
forced variability, we regressed out either a second- or ninth-
order polynomial function of time. For the sake of simplicity,
we focus only on residuals from a quadratic. The CMIP5 and
observation time series were split in half (82 and 83 years),
and time series from the earlier half were compared to those
in the latter half. The motivation behind this analysis was that
if a time series comes from the same source, then the null hy-
pothesis is true and the method should detect a difference at
a rate consistent with the significance threshold, which was
borne out by the results. Virtually all CMIP5 models were
found to be inconsistent with observations. However, the na-
ture of these differences was not diagnosed. The goal of this
section is to diagnose these differences.

6.2 Testing equality of noise covariances

First, we decompose the deviance asD0:2 =D0:1+D1:2. The
individual terms D0:1 and D1:2 are shown in Fig. 1. We test
each term at the 5 % significance level. The corresponding
critical values are indicated as horizontal lines in Fig. 1. In
most cases, differences in both noise covariances and AR pa-
rameters contribute substantially to the total deviance. We
reject H1 (i.e., equality of noise covariances) when D1:2 ex-
ceeds its critical value (i.e., when blue bars cross the blue
line). The figure shows that D1:2 is significant for all but
one model (GFDL-CM3), indicating that for most models the
noise covariances differ between observations and CMIP5
models.

6.3 Diagnosing differences in noise covariances

To diagnose differences in noise covariances, we perform the
discriminant analysis described in Sect. 4 to find the compo-
nents that maximize D1:2. Specifically, observations in the
first period are compared to models and observations in the
second period. The corresponding ratios of noise variances θ

Figure 1. The deviance statistics D1:2 (blue) and D0:1 (red) for
comparing ERSSTv5 1854–1935 to 82-year segments from 36
CMIP5 pre-industrial control simulations and to ERSSTv5 1936–
2018. The 5 % critical values for D1:2 and D0:1 are indicated by
the horizontal blue and red lines, respectively. The dots indicate H1
is not rejected; i.e., equality of noise covariance matrices is not re-
jected.

Figure 2. Range of noise variance ratios for maximizing the noise
devianceD1:2 between ERSSTv5 1854–1935 and 82-year segments
from 36 CMIP5 pre-industrial control simulations. The horizontal
dotted lines show the 2.5 % and 97.5 % significance thresholds un-
der hypothesis H1. The dots identify the noise variance ratio that
dominates the deviance (deviance measures the difference from one
but does not distinguish between values greater than or less than
one).

are shown in Fig. 2. The ratio is defined as model over obser-
vations, so a ratio exceeding one indicates that the discrimi-
nant has a larger variance in the model than in observations.
The horizontal dotted lines show the 2.5 % and 97.5 % sig-
nificance thresholds for extreme ratios. The results show that
most CMIP5 models have too little variance in their leading
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Figure 3. Percent of devianceD1:2 explained by the first noise dis-
criminant, for the variance ratios shown in Fig. 2.

discriminant (where “leading” means the maximum value of
θ1 or 1/θ1).

It is worth mentioning that a significant extreme ratio is
not always expected when a significant deviance is detected.
Discriminant analysis is designed to compress as much de-
viance as possible into the fewest number of components.
The extent of compression depends on the data. If little com-
pression is possible (e.g., the deviances are spread uniformly
in phase space), then the most extreme ratio may not be sig-
nificant, but nevertheless the overall deviance may be signif-
icant because individual deviances accumulate. The fact that
in some CMIP5 models the most extreme noise variance ratio
is insignificant, despite the noise deviance being significant,
simply means that the deviance cannot be compressed signif-
icantly into a single component.

The percent of devianceD1:2 explained by the leading dis-
criminant is shown in Fig. 3. The leading discriminant ex-
plains more than 40 % of the deviance in about a half of the
models. In these cases, the leading discriminant can provide
an efficient basis for describing differences in noise covari-
ances. Recall that these discriminants pertain to prewhitened
variables. The time-lagged autocorrelation function of dis-
criminant time series r (k)

j reveals little serial correlation (not
shown).

To diagnose the spatial structure, we derive regression co-
efficients in which the observed local SST is the independent
variable and r (k)

j in Eq. (19) is the dependent variable. Since
the discriminants differ from model to model, differences in
amplitude have complex interpretations, and hence for sim-
plicity each regression pattern is scaled to have a maximum
absolute coefficient of one. Figure 4 shows regression pat-
terns for the case in which prewhitened variables in CMIP5
models have too much variance compared to ERSSTv5. As
can be seen, the spatial structure of these discriminants is

similar across CMIP5 models, suggesting a common model
deficiency. The regression patterns associated with discrim-
inants with too little (prewhitened) variance are shown in
Fig. 5. Here, there is no obvious common structure across
different models, although some patterns tend to be similar
for CMIP5 models from the same institution.

6.4 Diagnosing differences in dynamics

We now turn to diagnosing differences in AR parameters.
Equality of AR parameters is rejected when D0:1 exceeds its
critical value (i.e., when the red bars cross the red line), pro-
vided H1 is not rejected. However, H1 is rejected for virtu-
ally all models, so for these models, strictly speaking, the
testing procedure halts before testing equality of AR param-
eters. Having noted this fact, we nevertheless proceed with
discriminant analysis of D0:1 for the purpose of illustrating
the procedure.

The leading difference-in-dynamics singular value s1 for
each model is shown in Fig. 6. The model with the largest
singular value is HadGEM2-ES. The results of difference-in-
dynamics SVD are shown in Fig. 7. The left-hand-side pan-
els show the initial condition pX,1 that maximizes the differ-
ence in responses (which is the same for the CMIP5 model
and observations), and the right-hand-side panels show the
response pY,1 of the respective VAR model to these ini-
tial conditions (along with the associated difference). We
see that HadGEM2-ES gives a reasonable 1-year evolution
over the subtropical–tropical areas but is much too persis-
tent in the northernmost part of the domain compared to ob-
servations. To illustrate the diagnostic further, we show one
more example. The results of difference-in-dynamics SVD
for MIROC-ESM is shown in Fig. 8. As can be seen, the
responses are dramatically different. Specifically, the VAR
model from ERSSTv5 is predominantly a damping, whereas
the VAR model from MIROC-ESM produces anomalies of
the opposite sign in the North Atlantic.

7 Conclusions

This paper proposed techniques for optimally diagnosing dif-
ferences between serially correlated, multivariate time series.
The starting point is to assume each time series comes from
a vector autoregressive model and then test the hypothesis
that the model parameters are equal. The likelihood ratio test
for this hypothesis was derived in Part II of this paper se-
ries, which leads to a deviance statistic that measures the
difference in VAR models. However, merely deciding that
two processes differ is not completely satisfying because
it does not tell us the nature of those differences. For in-
stance, a VAR can be viewed as a dynamical system driven
by random noise, but do differences arise because of differ-
ent dynamics, different noise statistics, or both? We show
that the deviance between VAR models can be decomposed
into two terms, one measuring differences in noise statistics
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Figure 4. Regression patterns between local SST and the discriminant associated with the largest model-to-observation variance ratio. Only
regression patterns associated with significant maximum variance ratios are shown. Each regression pattern is scaled to have a maximum
absolute coefficient of one and is then plotted using the same color scale (red and blue are opposite signs). The CMIP5 model and percent of
deviance D1:2 explained by the discriminant are indicated in the title of each panel.

and another measuring differences in dynamics (i.e., differ-
ences in AR parameters). Under suitable assumptions, the
two terms are independent and have asymptotic chi-squared
distributions, which leads to straightforward hypothesis test-
ing. Then, the linear combination of variables that maximizes
each deviance is obtained. One set of combinations identifies
components whose noise covariances differ most strongly
between the two processes. The other set of combinations
effectively finds the initial conditions that maximize the dif-
ference in response from each VAR model.

The proposed method was applied to diagnose differences
between annual-mean North Atlantic sea surface temperature
variability between climate models and observations. The re-
sults show that differences in dynamics and differences in
noise covariances both play a significant role in the overall
differences. In fact, only one model was found to be consis-
tent with observations. However, this consistency is not ro-
bust. In further analyses (not shown), we changed the half of
observations used to diagnose differences and found that this
model no longer was consistent with observations. In fact,
no model was found to be consistent with both halves of the
observational period. For half the models, the leading dis-
criminant of noise variance explains 40 % or more of the de-
viance in noise covariances. For most models, the leading
discriminant underpredicts the noise variance, and the asso-
ciated spatial structures are highly model dependent. In con-
trast, models that have leading discriminants with too much
noise variance tend to have similar spatial structures.

Discriminant analysis was also applied to identify differ-
ences in dynamics, or more precisely, differences in AR pa-
rameters. These discriminants can be interpreted as finding
suitably normalized initial conditions that maximize the dif-
ference in response from the two VAR models. Examples
from this analysis revealed dramatic errors in the 1-year
predictions of some models. For instance, the VAR model
trained on HadGEM2-ES gives realistic 1-year predictions at
the mid to low latitudes of the North Atlantic but are much
too persistent at the high latitudes. The VAR model trained

on MIROC-ESM produces 1-year predictions with the wrong
sign in the North Atlantic.

Although previous climate studies have diagnosed differ-
ences in variability using discriminant techniques (Schneider
and Griffies, 1999; DelSole et al., 2011; Wills et al., 2018),
the above procedure differs from previous analysis in im-
portant ways. Specifically, here discriminant techniques are
applied to a measure of dissimilarity that has a simple sig-
nificance test. This means that the dissimilarity measure can
be tested for significance before embarking on a diagnosis of
the dissimilarities. The simplicity of the test is a consequence
of measuring dissimilarities of prewhitened variables rather
than dissimilarities in the original, serially correlated vari-
ables. In general, prewhitened variables are closer to white
noise than the original data, and hence their asymptotic dis-
tributions are simpler than those of the original process.

Diagnosing differences in dynamics leads to generalized
SVD, which differs from the SVD used in previous studies
to diagnose dynamics of linear inverse models (e.g., Pen-
land and Sardeshmukh, 1995; Winkler et al., 2001; Shin and
Newman, 2021). In particular, standard SVD uses the Eu-
clidean norm to constrain the initial and final vectors, which
yields singular vectors that depend on the coordinate sys-
tem. This dependence might be averted by asserting a norm
to be some physical quantity like energy or enstrophy, but
these assertions usually have no compelling justification and
lead to statistics with no simple significance test. In contrast,
difference-in-dynamics SVD emerges from a rigorous statis-
tical framework, and, as a result, it leads to simple signifi-
cance tests, and the norms chosen for maximization are dic-
tated by the statistical framework and lead to results that are
independent of the arbitrary coordinate system.

One reason for diagnosing differences in stochastic pro-
cesses is to gain insight into the causes of the differences. For
instance, dissimilarities in noise processes indicate differ-
ences in the one-step prediction errors of the associated VAR
models. Comparison of prediction errors may give clues as
to the locations or processes that dominate the errors, which
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Figure 5. Same as Fig. 4 except for discriminants associated with the smallest model-to-observation variance ratio (i.e., CMIP5 models
whose stochastic noises are smaller than those in observations).

https://doi.org/10.5194/ascmo-8-97-2022 Adv. Stat. Clim. Meteorol. Oceanogr., 8, 97–115, 2022



108 T. DelSole and M. K. Tippett: Comparing time series 3

Figure 6. The leading difference-in-dynamics singular value for
each CMIP5 model. The 5 % significance threshold under H1 is
shown as the dotted horizontal line. Significant and insignificant
singular values under H1 are indicated by filled and open circles,
respectively.

may be helpful for improving a climate model. Similarly, dif-
ferences in dynamics indicate differences in the memory or
in the evolution of anomalies between observations and cli-
mate models. The diagnostics derived here may give clues as
to the physical source of the differences, which in turn may
give insight into how to improve climate models.
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Figure 7. The initial condition (a, c, e) that maximizes the difference in 1-year response of VAR models estimated from HadGEM2-ES (a,
b) and ERSSTv5 (c, d). The resulting response of the initial condition is shown in (b), (d), and (f). Panel (e) shows panels (a) minus (c);
panel (f) shows panels (b) minus (d). The color scale is the same across panels but is not shown because the amplitude is arbitrary for linear
initial value problems.
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Figure 8. Same as Fig. 7 except for MIROC-ESM.
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Appendix A: Decomposition of D1:2

This Appendix proves the key results of decomposing D1:2,
namely, Eqs. (24) and (25). We begin with the eigen-
value problem Eq. (23). Let us collect the eigenvectors
qY,1, . . .,qY,J into the matrix

QY =
(
qY,1 qY,2 . . . qY,J

)
. (A1)

Recall that eigenvectors are unique up to a multiplica-
tive factor, and hence we may normalize them such that
qTY,i0̂1qY,i = 1. Because 0̂1 and 0̂2 are symmetric, the
eigenvectors satisfy the following properties (see Seber,
2008, result 6.67):

QT
Y 0̂1QY = I and QT

Y 0̂2QY =2, (A2)

where 2 is a diagonal matrix with diagonal elements
θ1, . . .,θJ . For each eigenvector qY,i , a time series r (k)

i can
be computed from Eq. (19). The variates for all the eigenvec-
tors may be collected into a single matrix as

R(k)
=

(
r

(k)
1 r

(k)
2 . . . r

(k)
J

)
.

Then, Eq. (19) implies

R(k)
=

(
Yk −XkB̂k

)
QY , (A3)

and this combined with Eqs. (9), (10), and (A2) implies that
the associated covariance matrices are

1
ν1

(
R(1)

)T
R(1)
= I and

1
ν2

(
R(2)

)T
R(2)
=2.

Diagonal covariance matrices imply that the variates are un-
correlated and therefore independent under normality.

Because the eigenvectors are distinct and form a complete
basis set, QY is non-singular, and we may define

P̃ Y =Q
−1T
Y = 0̂1QY , (A4)

where the first equality is a definition and the second equality
follows from Eq. (A2). Multiplying Eq. (A3) on the right by
Q−1
Y and using Eq. (A4) yields

R(k)P̃ TY =
(

Yk −XkB̂k
)
. (A5)

If the column vectors of P̃ Y are denoted as p̃Y,1, . . ., p̃Y,J ,
then Eq. (A5) can be written equivalently as Eq. (24).

Importantly, the above decomposition also decomposes
the deviance. To see this, note that Eqs. (A2) and (A4) im-

ply

0̂1 = P̃ Y P̃
T
Y , 0̂2 = P̃ Y2P̃

T
Y ,

and 0̂H1 = P̃ Y

(
ν1I + ν22

ν1+ ν2

)
P̃ TY .

Substituting these expressions into Eq. (15) and using stan-
dard properties of the determinant yields

D1:2 = ν1 log

(
|0̂H1 |

|0̂1|

)
+ ν2 log

(
|0̂H1 |

|0̂2|

)

= ν1 log

∣∣∣ ν1I+ν22
ν1+ν2

∣∣∣
|I |

+ ν2 log

∣∣∣ ν1I+ν22
ν1+ν2

∣∣∣
|2|

=

∑
j

d1:2(θj ),

which is Eq. (25). This completes the proofs of Eqs. (24) and
(25).

Appendix B: Decomposition of 0̂H0

In this Appendix, we prove that the matrix 0̂H0 defined in
Eq. (11) can be decomposed as

0̂H0 = 0̂H1 +1, (B1)

where

1=
(

B̂2− B̂1

)T
6H

(
B̂2− B̂1

)
(B2)

and

6H =

((
XT1 X1

)−1
+

(
XT2 X2

)−1
)−1

/ (ν1+ ν2) . (B3)

Identity Eq. (B1) clarifies that D0:1 defined in Eq. (14) mea-
sures differences in AR parameters, because if B̂2 = B̂1, then
D0:1 vanishes (because then 1= 0 and therefore 0̂H0 =

0̂H1 ); otherwise, D0:1 is positive (because 0̂H1 is positive
definite). This identity will be needed in Appendix C.

Starting from the definition Eqs. (6)–(11), we note that the
MSEs satisfy the standard orthogonality relations

XT1
(

Y1−X1B̂1

)
= 0 and XT2

(
Y2−X2B̂2

)
= 0.

It follows from these orthogonality relations that

bbY1−X1B̂0cc = bbY1−X1B̂1cc+ bbX1

(
B̂1− B̂0

)
cc

= ν10̂1+bbX1

(
B̂1− B̂0

)
cc,

bbY2−X2B̂0cc = bbY2−X2B̂2cc+ bbX2

(
B̂2− B̂0

)
cc

= ν20̂2+bbX2

(
B̂2− B̂0

)
cc.

Therefore, the MLE of 00 in Eq. (11) can be written equiva-
lently as

0̂H0 =
ν10̂1+ ν20̂2

ν1+ ν2
+1= 0̂H1 +1, (B4)
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where

1=
bbX1

(
B̂1− B̂0

)
cc+ bbX2

(
B̂2− B̂0

)
cc

ν1+ ν2
.

To show that this 1 equals Eq. (B2), note that

B̂0 =
(

XT1 X1+XT2 X2

)−1(
XT1 Y1+XT2 Y2

)
=

(
XT1 X1+XT2 X2

)−1((
XT1 X1

)
B̂1+

(
XT2 X2

)
B̂2

)
.

To simplify notation, we define

A1 = XT1 X1 and A2 = XT2 X2.

Then,

B̂0− B̂1 = (A1+A2)−1
(

A1B̂1+A2B̂2

)
− B̂1

= (A1+A2)−1
(

A1B̂1+A2B̂2− (A1+A2) B̂1

)
= (A1+A2)−1A2

(
B̂2− B̂1

)
.

Similarly, we have

B̂0− B̂2 = (A1+A2)−1A1

(
B̂1− B̂2

)
.

Thus,

bbX1

(
B̂0− B̂1

)
cc =

(
B̂0− B̂1

)T
A1

(
B̂0− B̂1

)
=

(
B̂2− B̂1

)T
A2(A1+A2)−1

A1(A1+A2)−1A2

(
B̂2− B̂1

)
=

(
B̂2− B̂1

)T (
A−1

1 +A−1
2

)−1

A−1
1

(
A−1

1 +A−1
2

)−1(
B̂2− B̂1

)
.

Similarly, we have

bbX1

(
B̂0− B̂2

)
cc =

(
B̂2− B̂1

)T (
A−1

1 +A−1
2

)−1

A−1
2

(
A−1

1 +A−1
2

)−1(
B̂2− B̂1

)
.

Adding these together, dividing by ν1+ ν2, and returning to
the original notation gives

1=
(

B̂2− B̂1

)T((
XT1 X1

)−1
+

(
XT2 X2

)−1
)−1

(
B̂2− B̂1

)
/(ν1+ ν2).

which is Eq. (B2), as desired.

Appendix C: Decomposition of D0:1

This Appendix proves the key results of decomposing D0:1,
namely, Eqs. (31), (33), (34), and (35). Our starting point
is the solution to the eigenvalue problem Eq. (28). Let the
eigenvalues from Eq. (28) be λ1, . . .,λJ and the associated
eigenvectors be qY,1, . . .,qY,J . The eigenvectors may be col-
lected into the matrix QY , analogous to Eq. (A1). Further-
more, because the matrices in Eq. (28) are symmetric, the
eigenvectors may be normalized to satisfy (see Seber, 2008,
result 6.67)

QT
Y 0̂H1QY = I and QT

Y 0̂H0QY =3, (C1)

where 3 is a diagonal matrix with diagonal elements
λ1, . . .,λJ . If the eigenvalues are distinct, then the eigenvec-
tors form a complete basis set and QY is non-singular, and
hence we may define

P̃ Y =Q
−1T
Y = 0̂H1QY , (C2)

where the second equality follows from the first identity in
Eq. (C1). Using Eq. (C2), the identity Eq. (C1) can be written
equivalently as

0̂H1 = P̃ Y P̃
T
Y and 0̂H0 = P̃ Y3P̃

T
Y . (C3)

Now, consider the Rayleigh quotient Eq. (27). The matri-
ces 0̂H0 and 0̂H1 are related to each other through Eq. (B1).
Substituting Eq. (B1) into Eq. (27) yields

λ= s2
+ 1, (C4)

where s2 is the Rayleigh quotient

s2
=

qTY1qY

qTY 0̂H1qY
. (C5)

Let 0̂1/2
H1

denote the matrix square root of 0̂H1 . Then,
Eq. (C5) can be written equivalently as

s2
=
vT8T8v

vT v
, (C6)

where

v = 0̂
1/2
H1
qY (C7)

and

8=6
1/2
H

(
B̂2− B̂1

)
0̂
−1/2
H1

. (C8)

A standard result in linear algebra states that extrema of
Eq. (C6) are given by the eigenvectors of 8T8 or equiva-
lently the singular vectors of 8. Let the singular value de-
composition (SVD) of 8 be

8= USVT , (C9)
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where U and V are orthogonal matrices and S is a diago-
nal matrix with non-negative diagonal elements called sin-
gular values. Because λ= s2

+1, maximizing s2 in Eq. (C6)
is equivalent to maximizing λ in Eq. (27). Therefore, the
squared singular values s2

1 , . . ., s
2
J must equal the eigenval-

ues λ1, . . .,λJ , and the eigenvectors qY,1, . . .,qY,J must give
the right singular vectors v1, . . .,vJ through Eq. (C7). Let
s1, . . ., sM be ordered from largest to smallest.

Comparing Eqs. (C8) and (C9), we can anticipate that U
describes initial conditions, V describes differences in re-
sponses, and diagonals of S measure response amplitudes.
To be more precise, define

QX =6
−1/2
H U, QY = 0̂

−1/2
H1

V,

P̃X =6
1/2
H U, P̃ Y = 0̂

1/2
H1

V.
(C10)

Note that Eqs. (C2) and (C3) hold for the above definitions,
as they should since the eigenvalue problem Eq. (28) and
SVD Eq. (C9) perform the same decomposition. Further-
more, Eq. (C10) implies the additional identities

QT
X6HQX = I ,

P̃ TY 0̂
−1
H1
P̃ Y = I , and

P̃ TX6
−1
H P̃X = I , (C11)

the first two of which give Eq. (32), and the last implies
‖p̃X‖

2
6H
= 1. However, Eq. (C9) can be rearranged into the

form

B̂2− B̂1 =QXSP̃ TY , (C12)

which, after expandingQX and P̃ TY into column vectors, can
be written equivalently as Eq. (31). Decomposition Eq. (C12)
and the first two identities in Eq. (C11) are a weighted form
of the generalized singular value decomposition (Abdi and
Williams, 2010).

Just as the column vectors of V maximize the Rayleigh
quotient Eq. (C6), the column vectors of U maximize

s2
=
uT88T u

uT u
=

‖B̂T2 p̃X − B̂T1 p̃X‖
2
0̂H1

‖p̃X‖
2
6H

, (C13)

which is Eq. (35). In addition, the identity 8TU= VST im-
plies(

B̂2− B̂1

)T
P̃X = P̃ YST ,

which gives Eq. (34). An additional property of P̃ Y can be
derived from the identity 8T8= VS2VT , which implies

1= P̃ YS2P̃ TY ,

which in turn can be written equivalently as

1= s2
1pY,1p

T
Y,1+ . . .+ s

2
JpY,Jp

T
Y,J .

This identity shows that 1 can be decomposed into a sum
of terms involving pY,i without any cross terms. Finally,
Eqs. (30) and (C4) imply

D0:1 =
∑
i

d0:1

(
1+ s2

i

)
, (C14)

which shows that the SVD of 8 partitions the deviance into
a sum of components ordered by their contribution to D0:1.

Appendix D: Invariance to linear transformation

In this section, we prove that the eigenvalues from Eqs. (23)
and (28) are invariant to invertible linear transformations of
the form

Y′ = YG,

where primes indicate transformed quantities and G is a
square, non-singular matrix. Using straightforward matrix al-
gebra, Eqs. (6)–(13) are transformed as

B̂′1 = B̂1G, (D1)

B̂′2 = B̂2G, (D2)

0̂′1 =GT 0̂1G, (D3)

0̂′2 =GT 0̂2G, (D4)

0̂′H0
=GT 0̂H0G, (D5)

0̂′H1
=GT 0̂H1G. (D6)

Substituting transformed quantities into the eigenvalue prob-
lem Eq. (23) yields

0̂′1q
′

Y = θ 0̂
′

2q
′

Y ,

GT 0̂1Gq ′Y = θGT 0̂2Gq ′Y ,

0̂1Gq ′Y = θ 0̂2Gq ′Y ,

0̂1qY = θ 0̂2qY ,

where the second line follows by substituting Eqs. (D3) and
(D4), the third line follows by multiplying both sides on the
left by the inverse of GT (which is possible because G is
invertible), and the fourth line follows by defining

qY =Gq ′Y . (D7)

This shows that linear transformations do not affect the
eigenvalues of Eq. (23), while they transform the eigenvec-
tors as Eq. (D7).

Similarly, substituting transformed quantities into the
eigenvalue problem Eq. (28) yields

0̂′H0
q ′Y = λ0̂

′

H1
q ′Y .

By the same steps as above, this eigenvalue problem can be
transformed to Eq. (28). This shows that the eigenvalues of
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Eq. (28) are invariant to invertible linear transformations. Be-
cause of Eq. (C4), it follows that the difference-in-dynamics
singular values sj are also invariant to invertible linear trans-
formations.
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