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Abstract. General circulation model (GCM) outputs are a primary source of information for climate change
impact assessments. However, raw GCM data rarely are used directly for regional-scale impact assessments
as they frequently contain systematic error or bias. In this article, we propose a novel extension to standard
quantile mapping that allows for a continuous seasonal change in bias magnitude using localized regression.
Our primary goal is to examine the efficacy of this tool in the context of larger statistical downscaling efforts
on the tropical island of Puerto Rico, where localized downscaling can be particularly challenging. Along the
way, we utilize a multivariate infilling algorithm to estimate missing data within an incomplete climate data
network spanning Puerto Rico. Next, we apply a combination of multivariate downscaling methods to generate
in situ climate projections at 23 locations across Puerto Rico from three general circulation models in two carbon
emission scenarios: RCP4.5 and RCP8.5. Finally, our bias-correction methods are applied to these downscaled
GCM climate projections. These bias-correction methods allow GCM bias to vary as a function of a user-defined
season (here, Julian day). Bias is estimated using a continuous curve rather than a moving window or monthly
breaks. Results from the selected ensemble agree that Puerto Rico will continue to warm through the coming
century. Under the RCP4.5 forcing scenario, our methods indicate that the dry season will have increased rainfall,
while the early and late rainfall seasons will likely have a decline in total rainfall. Our methods applied to the
RCP8.5 forcing scenario favor a wetter climate for Puerto Rico, driven by an increase in the frequency of high-
magnitude rainfall events during Puerto Rico’s early rainfall season (April to July) as well as its late rainfall
season (August to November).

1 Introduction

In general, island climates are distinctly difficult to charac-
terize, with Puerto Rico being no exception. Puerto Rico is
situated well within the belt of easterly trade winds. These
winds carry seasonal weather, generally dry from Decem-
ber through March when sea-surface temperatures typically
reach a minimum (Taylor et al., 2002; Comarazamy and
González, 2008; Ramseyer and Mote, 2018) and wetter from
April through November. The wet season is broken into two
distinct periods: the early rainfall season (ERS; April–July),
and the late rainfall season (LRS; August–November) (An-
geles et al., 2010). While hurricanes are typically the most

extreme events arising from these tropical waves, severe
weather commonly occurs seasonally in Puerto Rico from
less well developed systems. As a consequence of this, ac-
curate short-term and long-term forecasting at the local scale
is a particularly desirable objective for this island. The long-
term forecasting of a single extreme event may not be feasi-
ble, but what is of particular interest in these long-term fore-
casts is the frequency and intensity of these extreme events.

Many studies have utilized dynamic downscaling (DD)
and statistical downscaling (SD) techniques in an effort
to accurately model Puerto Rico’s future climate. Bhard-
waj et al. (2018) and Bowden et al. (2021) employ high-
resolution regional climate models (RCMs) to develop dy-
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namically downscaled climate estimates across a 2 km grid
in Puerto Rico. Ramseyer and Mote (2016) and Ramseyer
et al. (2018, 2019) examine the utility of neural networks as
a method for downscaling precipitation within Puerto Rico,
while other studies (Khalyani et al., 2016; Van Beusekom
et al., 2016; Miller et al., 2019) focus on the impacts of cli-
mate change on water availability in Puerto Rico using sev-
eral downscaled products.

In this study, we will employ SD in Puerto Rico in an effort
to generate realistic daily temperature and precipitation data
at 23 locations spanning Puerto Rico (Fig. 1). This work is
unique in the fact that many prior Puerto Rico downscaling
efforts do not focus on a suite of climate variables in tandem.
A primary disadvantage of statistical downscaling is that the
individually downscaled variables do not always act together
in a physically consistent fashion, although some more recent
approaches attempt to address this issue (Pierce et al., 2014;
Cannon, 2018; Guo et al., 2019).

2 Data sources and cleaning

2.1 Global Historical Climatological Network data

The primary historical climate data are from the pub-
licly available Global Historical Climatological Network
(GHCN). Specifically, we are using the 23 weather stations
listed in Table 1 (labeled west to east); refer to Fig. 1 for
location.

At each of these locations we have daily climate data con-
sisting of maximum temperature (TMAX; ◦C), minimum
temperature (TMIN; ◦C), and total precipitation (PRCP;
mm). We focus on a 40-year time period from 1 January 1978
through 31 December 2017. Ideally, at each of our 23 sta-
tions we would have 14 610 observations (one for each day),
but as is the case with many climate datasets, this dataset
has many missing data points. We use the multivariate vector
autoregressive time series methods of Washington and Sey-
mour (2019) to infill missing values in this climate network.
These methods extend the general multivariate autoregres-
sive methods to allow for the inclusion of contemporaneous
observations (as opposed to just lagged observations).

2.1.1 Temperature data cleaning

According to the National Weather Service (NWS), the
hottest temperature ever recorded in San Juan, Puerto Rico,
is 104 ◦F, while the minimum temperature ever recorded is
40 ◦F. These values have been cross-validated by the NCEI
and/or by the State Climate Extremes Committee and deter-
mined to be valid. While these NWS temperature extrema
should not be used as strict temperature cutoffs (any values
outside of these bounds are removed), they still represent
a plausible range of observed temperature values in Puerto
Rico. By cross-referencing the monthly temperature boxplots
reported in Fig. 2 and this NWS observed temperature range,

it is apparent that there are a considerable number of poten-
tially invalid temperature readings, thus exhibiting the need
for quality control.

Figure 2 provides a representation of the seasonal cycle
for temperature data across all 23 locations of interest; how-
ever, this general trend can be expected to vary from station
to station. To identify temperature inaccuracies, all observa-
tions are first standardized across season and station as in
Lund et al. (1995) and Washington et al. (2019). Suppose
{Xt,j,ν}

N
t=1 represents our daily temperature series at time t ,

for station j , in month ν, where N indicates the total sample
size. Then, borrowing notation and terminology from Wash-
ington et al. (2019), the seasonally standardized anomaly
(SSA) time series is constructed as in Eq. (1).

At,j,ν =
Xt,j,ν −E[Xt,j,ν]

Var(Xt,j,ν)1/2 =
Xt,j,ν − µ̂j,ν

σ̂j,ν
,

j = 1, . . .,23; ν = 1, . . .,12. (1)

Here, At,j,ν represents the SSA value at time t , station j ,
and month ν;E[Xt,j,ν] = µ̂j,ν denotes the station j , month ν
mean; and Var(Xt,j,ν)1/2

= σ̂j,ν denotes the station j , month
ν standard deviation. With the seasonally standardized tem-
perature readings, inaccurate values may be more easily de-
tected. Figure 3 displays the daily temperature maxima from
1 January to 31 December 1993 (left panel) and the corre-
sponding SSA time series (right panel) for the Adjuntas Sub-
station weather station (Location 8 in Fig. 1).

In Fig. 3, one clearly incorrect value can be observed on
3 September 1993, although there are possibly more incor-
rect values over this calendar year (in particular, 20 June).
Suspected inaccuracies can be more easily observed in the
right panel of Fig. 3 as they have been seasonally standard-
ized. We use an automated temperature verification method
which relies on a preliminary examination of the SSA series
to flag anomalous temperatures. These flagged temperatures
are then examined more closely.

1. Designate any observation with an absolute SSA value
that is larger than 4 as a flagged value, the validity of
which must be examined more closely.

2. Extract an 11 d interval of temperature readings within
5 d on either side of the flagged observation for all 23
weather stations. For example, 29 August to 8 Septem-
ber is the 11 d window surrounding the flagged value
on 3 September 1993, from Fig. 3. These observations
are then used to estimate the distribution of SSA values
across this 11 d window.

3. Finally, if the flagged SSA value is more than 5.5 stan-
dard deviations away from the mean SSA value in this
11 d window, then the flagged temperature is recorded
as not available (NA). The 5.5 standard deviation cut-
off, though arbitrary, was chosen after examining the
number of flagged observations from several potential
cutoffs between 3 and 6 standard deviations.
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Figure 1. The 23 weather stations of interest in Puerto Rico. This image was created using a combination of © Google Maps 2018, Kahle
and Wickham (2013), and Wickham (2016).

Table 1. The 23 GHCN weather stations of interest in Puerto Rico along with the proportion of missing observations (after cleaning – see
Sect. 2.1.1 and 2.1.2) from 1 January 1978 through 31 December 2017.

Map Station name Station number Percentage of Percentage of Percentage of
number missing TMIN missing TMAX missing PRCP

1 Coloso RQC00662801 5.4 % 5.4 % 3.6 %
2 Mayaguez City RQC00666073 30.4 % 30.5 % 30.3 %
3 Borinquen Airport RQW00011603 31.7 % 32.1 % 26.5 %
4 Lajas Substation RQC00665097 4.2 % 4.6 % 3.9 %
5 Isabela Substation RQC00664702 8.8 % 8.7 % 11.5 %
6 Magueyes Island RQC00665693 25.0 % 24.0 % 16.4 %
7 Maricao 2 SSW RQC00665908 31.9 % 31.6 % 28.7 %
8 Adjuntas Substation RQC00660061 3.5 % 3.7 % 4.0 %
9 Arecibo Observatory RQC00660426 11.1 % 11.0 % 9.5 %
10 Dos Bocas RQC00663431 4.7 % 3.7 % 2.9 %
11 Cerro Maravilla RQC00662336 29.7 % 29.7 % 20.0 %
12 Ponce 4 E RQC00667292 4.6 % 4.6 % 5.0 %
13 Manati 2 E RQC00665807 12.7 % 11.1 % 6.8 %
14 Corozal Substation RQC00662934 24.5 % 24.5 % 24.9 %
15 Aguirre RQC00660152 17.7 % 16.8 % 12.6 %
16 Guayama 2 E RQC00664193 12.9 % 12.8 % 11.1 %
17 Rio Piedras Experimental Station RQC00668306 23.2 % 23.1 % 25.8 %
18 Trujillo Alto 2 SSW RQC00669521 9.2 % 8.7 % 7.1 %
19 San Juan L M Marin International Airport RQW00011641 0.0 % 0.0 % 0.0 %
20 Gurabo Substation RQC00664276 6.0 % 6.5 % 6.0 %
21 Juncos 1 SE RQC00665064 5.7 % 5.1 % 4.4 %
22 Pico del Este RQC00666992 38.4 % 37.4 % 38.3 %
23 Roosevelt Roads RQW00011630 20.6 % 20.6 % 14.8 %
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Figure 2. TMAX (left) and TMIN (right) seasonal temperature boxplots for all 23 GHCN stations along with the NWS San Juan maximum
and minimum observed temperature extrema (red and blue lines, respectively). This figure was created using Wickham (2016).

Figure 3. Daily temperature maxima from 2008 (left) and the corresponding SSA series (right) at the Adjuntas Substation in Puerto Rico.
This figure was created using Wickham (2016).

This process not only allows one to identify potential out-
liers quickly (Item 1), but also provides a screening method
to examine the validity of these potential outliers more
closely (Item 2) and a threshold for acceptance–rejection
(Item 3). By selecting an 11 d window around a flagged ob-
servation (Item 2), we allow for the possibility of a brief hot
spell or cold spell. For example, it may be the case that a
flagged observation (|SSA|> 4, Item 1) may be unexpected
when compared to the entire 40-year time frame but may not
be unexpected when compared to its 11 d time window.

After the screening was completed, 128 of the 933 flagged
TMAX values were changed to NA, and 235 of the 855
flagged TMIN values were changed to NA. Finally, if a
TMAX value is less than or equal to the corresponding
TMIN value, both of the values are reported as NA. Alto-
gether, these temperature quality control efforts omitted 252
TMAX and 359 TMIN recorded values. Combined with pre-
screening missing values, this brings our total TMAX and
TMIN missing values to 52 064 (15.5 % missing) and 52 886
(15.7 % missing), respectively.
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2.1.2 Precipitation data cleaning

Precipitation quality control is particularly challenging in the
tropics where isolated warm-water processes can drop large
amounts of rain very quickly. Nesbitt et al. (2006) found that
these isolated convective storms contributed a larger propor-
tion of the total precipitation in the eastern Caribbean than
larger-scale systems did. Furthermore, precipitation data are
commonly zero-inflated and right-skewed, suggesting a need
for an alternative cleaning mechanism (i.e., a seasonal stan-
dardization may not be appropriate for zero-inflated precipi-
tation data). As was done with temperature, we identify and
cull precipitation anomalies by examining them both spa-
tially and seasonally. The quality control process is detailed
below.

1. For each month, identify the largest 0.5 % of precipita-
tion totals as flagged observations to be examined more
closely.

2. For each flagged value, extract all 23 PRCP observa-
tions, representing each weather station on the given
day.

3. If the flagged PRCP observation is more than 4 standard
deviations away from the mean PRCP value on this day,
then the precipitation value is rejected and recorded as
NA.

Of the 1431 flagged precipitation observations (deter-
mined by taking the largest 0.5 % of each month’s precipi-
tation totals, Item 1), 158 of these were converted to NA as
a result of the method described above for a total of 45 890
missing observations (13.7 % missing).

2.2 General circulation model data

We restrict ourselves to two common radiative forcing sce-
narios: RCP4.5 and RCP8.5 – that is, 4.5 and 8.5 W m−2

of additional radiative forcing beyond what the Sun is con-
tributing. We are using data from the most recently com-
pleted Coupled Model Intercomparison Project at the time of
this research: CMIP5 (however, now CMIP6 has been com-
pleted). In the CMIP project, ensemble model runs (or re-
alizations) are named using what is referred to as the RIP
nomenclature: R for realization (the starting point), I for
initialization (initial model parameters at the beginning of
the “burn-in” period), and P for physics (quantifiable atmo-
spheric relationships), followed by an integer (Taylor et al.,
2011, 2012). This study uses the first ensemble number (de-
noted: r1i1p1) for each of the three models (Table 2) to com-
pare general circulation model (GCM) projections from two
forcing scenarios (RCP4.5 and RCP8.5). Within each model,
a fixed ensemble member allows for historical data to join
seamlessly with the corresponding future projections (Taylor
et al., 2011).

Figure 4. The bounding box for which GCM coordinates are kept
(latitudes range from 17.65 to 18.75◦, and longitudes range from
−68.00 to−64.90◦). The CanESM2 location inside the box (red) is
kept, while CanESM2 locations outside the box (black) are not kept.
This image was created using a combination of © Google Maps
2018, Kahle and Wickham (2013), and Wickham (2016).

For each of the three climate models listed within Ta-
ble 2 below, we have three separate data sources: simula-
tion data using historical radiative forcing conditions and
two future emission scenarios (RCP4.5 and RCP8.5). The
variables of interest include daily average precipitation flux
(kg m−2 s−1), daily minimum near-surface air temperature
(K), and daily maximum near-surface air temperature (K).
Although the temporal resolution (daily data) is consistent,
the calendar type, spatial resolution, and temporal extent may
differ across climate centers. The grid structure and temporal
extents for each model are reported below.

Because this work is focused on Puerto Rico, we may
greatly reduce the size of our GCM data. Figure 4 displays
the CanESM2 grid structure surrounding Puerto Rico. Only
coordinates which fall inside of the bounding box (high-
lighted in red) are retained in the reduction. As these models
have their own spatial resolutions, the number of locations
retained will vary (see Fig. A1 (GFDL-ESM2G) and Fig. A2
(MOHC-HadGEM2-ES) in Appendix A).

3 Spatial downscaling methodology

Many Caribbean downscaling methods used in climatology
are applied to univariate time series and neglect dependence
between variables (Cannon, 2018). Clearly, there is a strong
correlation between daily minimum and maximum temper-
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Table 2. The grid structure and temporal extents of each of the three GCMs utilized in this study.

Model name Modeling center Calendar type Historical sim-
ulation range

RCP simulation
range

Grid structure

CanESM2 Canadian Centre for Climate
Modelling and Analysis (CC-
CMA)

365 d (no leap
day)

1 Jan 1850 to
31 Dec 2005

1 Jan 2006 to
31 Dec 2100

128 longs by 64 lats

ESM2G NOAA’s Geophysical Fluid Dy-
namics Laboratory (GFDL)

365 d (no leap
day)

1 Jan 1861 to
31 Dec 2005

1 Jan 2006 to
31 Dec 2100

144 longs by 90 lats

HadGEM2-ES United Kingdom’s Hadley Cen-
tre (MOHC)

360 d (12 30 d
months)

1 Dec 1859 to
30 Nov 2005

1 Dec 2005 to
30 Nov 2099

192 longs by 145 lats

atures. For this reason, multivariate downscaling methods
should be applied. To this end, we present a combination
of ideas from Jeong et al. (2012a, b) to downscale climate
data atK = 23 locations simultaneously. Jeong et al. (2012a)
employs a two-part multivariate multisite statistical down-
scaling model (MMSDM): (1) a multivariate multiple lin-
ear regression (MMLR) model combined with (2) a spatially
correlated stochastic component to downscale maximum and
minimum temperatures at K = 9 weather stations in south-
ern Quebec. In Jeong et al. (2012b) the MMSDM model is
used to downscale precipitation probability and precipitation
amount.

For each station (k = 1, . . .,K), we consider three pre-
dictands: daily temperature maximum (TMAXk), daily tem-
perature minimum (TMINk), and daily total precipitation
(PRCPk). As accurate forecasting of future precipitation be-
havior is so critical in this region, we decompose PRCPk
into two separate variables: probability of precipitation oc-
currence (POCk) and precipitation amount (PAMk). POCk is
coded as 1 for a rainy day (a day having more than 1 mm of
rain) or a 0 for a dry day (Ben Alaya et al., 2014). In addition
to this, many studies have found precipitation amounts to be
gamma-distributed (Yang et al., 2005; Mattingly et al., 2017).
To combat this right skew, we log-transform precipitation
amount prior to downscaling: LogPAMtk = ln(PAMtk + 1),
where t = 1, . . .,T designates the time (day). We add a small
positive value to PAMtk in order to log-transform days with
no precipitation; the value 1 preserves zeros: (ln(1)= 0).

Final precipitation values are generated by drawing a sin-
gle uniform random number for each day, ut ∼ Unif(0,1),
and comparing this uniform draw to all of the POCtk val-
ues (there should be 23 of them in our example) on day
t . If ut < POCtk , it will be deemed a rainy day at sta-
tion k; otherwise, it will be deemed a dry day at station k.
For rainy days, final precipitation amounts will be gener-
ated by back-transforming LogPAMtk values. We define the
T ×M dimensional (M = 4K) response matrix Y grouping
all T × 1 predictand vectors (TMAXk , TMINk , POCk ,

and LogPAMk) as follows.

Y=[TMAX1,TMIN1,POC1,LogPAM1, . . .,

TMAXK ,TMINK ,POCK ,LogPAMK ] (2)

Define XT×l to be the design matrix containing l− 1 pre-
dictor variables. The exact dimensions of X will depend
on the number of GCM locations retained and are noted in
Sect. 5. The MMLR model can be expressed via

YT×M = XT×l ×β l×M +ET×M , (3)

where E is the residual matrix. The parameter matrix β can
be estimated via the standard ordinary least-squares (OLS)
estimator: β̂ = (XTX)−1XTY. The MMLR predicts only the
deterministic components which are explainable by a linear
relationship between the predictands and the GCM data (the
predictor variables). The MMSDM introduced by Jeong et al.
(2012a) utilizes the MMLR model as a means of simulat-
ing deterministic climate series from coarse-scale GCM data.
The MMLR is unable to reproduce the spatial correlation ob-
served between each location adequately.

In order to correct for the spatial bias, spatially correlated
random noise is added to the simulated deterministic climate
series. This random noise is generated from a multivariate
normal distribution. The multivariate covariance matrix is es-
timated from the error matrix E. By definition,

E= Y− Ŷ, (4)

where Ŷ= Xβ̂. Define H∼MVN(0,6) to be the cross-
correlated error matrix used as a means of more adequately
capturing the spatial correlation among weather stations. Fi-
nally, define 6 = SCS, where S is a diagonal matrix contain-
ing the estimated standard deviations of each column of the
residual matrix, E, and C represents the correlation matrix
of the residual matrix, E. Now, this stochastic component is
added directly to the deterministic component to obtain spa-
tially correlated estimates of the predictands:

Ỹ= Xβ̂ +H. (5)
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4 Bias-correction methods

Raw GCM output frequently contain systematic error or bias
(Thrasher et al., 2012). In many cases, the errors in GCM
simulations relative to historical observations can be quite
large (Ramirez-Villegas et al., 2013). Downscaling exists not
only to refine GCM output both spatially and temporally, but
also to quantify and correct these systematic errors. There
are numerous bias-correcting methods (Müller et al., 2011;
Cannon, 2018), and no one method is universally accepted
as optimal in all situations. GCM bias may vary spatially,
temporally, and across model, variable, and season. In addi-
tion to this, GCMs are known to have a “drizzle problem”
where too many low-magnitude rain events are projected to
occur as compared with historical GHCN observations (Chen
et al., 2021; Gutowski et al., 2003).

Many downscaling methods are able to capture and cor-
rect at least some of a GCM’s bias through the use of transfer
functions (Winkler et al., 1997). However, different transfer
functions do not uniformly capture GCM bias. Furthermore,
bias-correction techniques may be applied to the raw GCM
data prior to downscaling or applied to the generated climate
data after downscaling. When applying a post hoc bias cor-
rection, one must assume that the spatial and temporal corre-
lations of the raw downscaled data are preserved after any ad-
justments to one or more variables in the network. In this re-
search, we introduce post hoc bias-correction methods where
bias is estimated via a combination of locally estimated scat-
terplot smoothing (LOESS) methods (Cleveland et al., 2017)
and quantile mapping.

Quantile mapping (QM) is a commonly used technique to
remove or diminish systematic GCM error (Park et al., 2012;
Thrasher et al., 2012; Lafon et al., 2013; Maraun, 2013).
There are several criticisms of quantile mapping. Perhaps
most notably, standard QM methods adjust a climate vari-
able’s distribution as a whole and do not explicitly account
for spatial, temporal, nor multivariate aspects of the predic-
tands (Maraun, 2016). Put differently, standard quantile map-
ping inherently assumes that the bias magnitude is constant
across space and time (or season) and, in a multivariate set-
ting, does not significantly impact the correlation between
downscaled climate variables. For this reason, much of the
current literature extends standard quantile mapping to allow
bias to vary seasonally. For instance, Thrasher et al. (2012)
utilize a 31 d window (center day ±15 d) to construct the cu-
mulative distribution functions (CDFs). Wood et al. (2002)
utilize a monthly bias correction so that each month is as-
sumed to have its own bias magnitude. Despite its criticisms,
QM remains a highly regarded and widely used GCM bias-
correction method. We propose a similar extension to stan-
dard quantile mapping techniques that allows for a continu-
ous seasonal change in bias magnitude to be estimated using
LOESS smoothing splines.

Figure 5. Log precipitation cumulative distribution function esti-
mates of the observed (red curve), fitted (green curve), downscaled
RCP4.5 (blue curve), and downscaled RCP8.5 (purple curve).
Downscaled projections are derived from Canada’s CanESM2. This
figure was created using Wickham (2016).

4.1 LOESS quantile mapping

Through motivating examples using one generation of down-
scaled CanESM2 precipitation data (as precipitation is of-
ten most difficult to characterize), we introduce and dis-
cuss our novel bias-correction technique we call LOESS
quantile mapping or LQM. LQM accounts for a bias which
may vary seasonally by combining elements of LOESS re-
gression and quantile mapping. LOESS methods (Cleveland
et al., 2017) approximate a “best-fitting” smoothed scatter-
plot curve through a series of weighted regressions. The
curve is estimated using a local neighborhood of points sur-
rounding a location x, weighted by their distance from x:
wi = (1− ( di

D
)3)3. The local neighborhood is chosen using

a smoothing parameter, α, where 0< α ≤ 1: α indicates the
proportion of data considered to be neighboring x. In this
section, we apply these methods to the raw LogPAMk (log
precipitation amount) values, but these methods will also be
used to correct temperature bias. Figure 5 displays the esti-
mated CDFs of the observed (red), fitted (green), downscaled
RCP4.5 (blue), and downscaled RCP8.5 (purple) log precip-
itation distributions.

A standard QM procedure maps the fitted CDF (green
curve in Fig. 5) onto the observed CDF (red curve in
Fig. 5). By comparing these two curves, we can see that
the MMSDM downscaling also falls victim to the “drizzle
problem” mentioned earlier: low-magnitude rain events are
overpredicted, and high-magnitude rain events are underpre-
dicted. In the top panels of Fig. 6, we plot the quartiles of the

https://doi.org/10.5194/ascmo-9-1-2023 Adv. Stat. Clim. Meteorol. Oceanogr., 9, 1–28, 2023



8 B. J. Washington et al.: LOESS quantile mapping

observed (red) and fitted (cyan) log precipitation as a func-
tion of Julian day. Recall that raw fitted log precipitation val-
ues may be negative. In the bottom panels, we plot the differ-
ences between the two curves (observed−fitted) along with a
LOESS smoothing spline.

Perhaps bias is negligible across season for lower-
magnitude rain events because a negative bias-correction fac-
tor in LogPAMk may not heavily affect back-transformed
PRCPk (first two columns of Fig. 6). However, the bias as-
sociated with larger precipitation events (daily third-quartile
rain events, for example) is clearly dependent on season
(third column of Fig. 6). Fitted precipitation values in the
third quartile of daily precipitation totals that fall around day
50 (mid-February) are overpredicted, whereas similar third-
quartile rainfall events that occur around day 140 (mid-May)
or day 275 (the beginning of October) are underpredicted.
These under-fitted high-magnitude rain events in May and
October are consistent with the Caribbean’s distinct bimodal
rainy season (Chen and Taylor, 2002; Taylor et al., 2002;
Angeles et al., 2010; Ramseyer and Mote, 2018). The LQM
methodology is laid out below.

1. Estimate the percentiles of the observed values,
F−1
X,Obs(p,ν), and fitted values, F−1

X,Fit(p,ν), of a
downscaled random variable, X (log precipitation,
LogPAMk), at specified steps in probability, p (0.01),
as a function of season, ν (day).

2. Estimate the bias magnitude as a function of proba-
bility and season: B(p,ν)= F−1

X,Obs(p,ν)−F−1
X,Fit(p,ν),

where ν = 1, . . .,N , and N is the number of unique sea-
sons (365).

3. Using a localized regression (LOESS) or some other
smoothing mechanism, fit a smooth curve through the
estimated bias scatter: l(B(p,ν)). This smoothed-bias
estimate will be the bias-correction factor for a given
percentile, p, and a given day, ν.

4. If the estimated percentile of a value of the random
variable X, say xp,ν , falls exactly at a step increment
of the percentile (p = 0.00,0.01,0.02, . . .,0.99,1.00),
then simply correct this value using the estimated bias
for that percentile and day: x∗p,ν = xp,ν + l(B(p,ν)),
where x∗p,ν indicates the corrected value.

5. More often than not, the estimated percentile of a single
value of the random variable X will not fall exactly at
a step increment of p. In this case, round the estimated
percentile to a user-specified resolution (three decimals)
and linearly interpolate between its two nearest step in-
crements – see graphical example in Figs. 7 and 8.

Take, for example, a fitted log precipitation value on day ν.
Suppose its rounded percentile is p = 0.804 when compared
to all other fitted log precipitation values on day ν. Figure 7

displays the bias magnitudes of the 80th (red) and 81st (cyan)
daily percentiles of log precipitation.

In Fig. 8, we expand the 100 d period from day ν =

101 (11 April) to day ν = 200 (19 July). On day ν = 139
(19 May), we graphically display the bias magnitude inter-
polation process. Dashed lines indicate bias corrections for
fitted values located between 80th (red) and 81st (cyan) per-
centiles of log precipitation on day ν = 139. The solid purple
line indicates the bias-correction factor for a fitted log pre-
cipitation on 19 May (Julian day ν = 139) whose percentile
(rounded to three decimals) is p = 0.804. The intersection of
the solid purple line and the solid black line represents the
estimated bias-correction factor for 19 May.

Figure 9 displays CanESM2 mean precipitation (mm)
across all 23 stations from 1980 to 2005 as a function of
Julian day for the true historical GHCN observation values
(red), raw fitted values (green), LQM bias-corrected values
(blue), and QM bias-corrected values that do not allow bias
to vary as a function of season (purple) at three different
LOESS bandwidths and two different step sizes. We can see
two distinct peaks in precipitation corresponding to the ERS
and the LRS. As one might expect, and as many other authors
have observed (Thrasher et al., 2012; Wood et al., 2002), we
see that the QM method that does not account for seasonal
change is unable to adequately match the ERS and LRS rain-
fall peaks. Although there is not much difference between
step sizes p = 0.01 and p = 0.001, we do observe substantial
differences for different smoothing parameters. As intuition
would indicate, a smaller smoothing parameter is more able
to capture extreme precipitation.

4.2 LQM and QM model fit

In Sect. 4.1, we introduced LQM through motivating exam-
ples using CanESM2 precipitation data. In this section, we
will compare results of LQM and QM on CanESM2 tem-
perature and precipitation data. In Fig. 10, we plot the aver-
age LQM RMSE (red, smoothing parameter: 0.05) and QM
RMSE (cyan) as a function of Julian day for TMAX (left),
TMIN (middle), and PRCP (bottom right).

While LQM RMSE does not always outperform QM
RMSE by a large margin, it is slightly lower overall. How-
ever, LQM (using smoothing parameter 0.05) does clearly
outperform QM when we examine daily mean fitted val-
ues. Figure 11 plots the average TMAX (left), TMIN (mid-
dle), and PRCP (right) across all 23 stations from 1980 to
2005. We observe that the LQM bias-corrected fitted values
(green) tend to match up to the true historical GHCN obser-
vations (red) better than the QM bias-corrected fitted values
do (blue). LQM is clearly more able to mimic the observed
historical (GHCN) seasonal cycle for temperature (Fig. 11).
Furthermore, the LQM bias-corrected precipitation is more
able to capture the ERS and LRS peaks in mean rainfall.
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Figure 6. Quartiles of fitted (cyan) and observed (red) log precipitation (mm) as a function of Julian day (top panel) using Canada’s
CanESM2. The differences between the observed and fitted precipitation along with a LOESS smoothing spline with smoothing parameter
λ= 0.50 (bottom panel). This figure was created using Wickham (2016).

5 Puerto Rico downscaled climate projections

In this section, we discuss the results of statistical down-
scaling efforts in Puerto Rico using the combination of our
MMSDM methodology described in Sect. 3 with our LQM
bias-correction methods of Sect. 4. We focus on results from
the Canadian Centre for Climate Modelling and Analysis’
CanESM2. Figures and tables generated for the US GFDL’s
ESM2G and the UK Hadley Centre’s HadGEM2-ES can be
found in Appendices B and C, respectively.

5.1 CCCMA’s CanESM2 downscaled climate

Only one CanESM2 location is used to generate a down-
scaled climate in Puerto Rico (Fig. 4). The MMSDM down-
scaled climate estimates are derived from Eq. (5): Ỹ= Xβ̂+
H, where Ỹ34 675×92 contains the downscaled climate es-
timates, X34 675×4 contains the raw GCM climate projec-
tions, β̂4×92 indicates the estimated parameter matrix, and

H34 675×92 is a matrix of spatially correlated stochastic noise.
The MMSDM model is trained using 26 years of histori-
cal observations (1980–2005) from the GHCN. Leap days,
which are intentionally excluded in these methods, can be
reasonably interpolated using a neighborhood of observa-
tions surrounding 29 February; however, we do not dwell on
the generation of leap day climate here.

5.1.1 Temperature

Table 3 reports the extrema and deciles of historical and
downscaled daily temperature maxima (◦C, top panel) and
daily temperature minima (◦C, bottom panel). The extrema
and deciles of the downscaled temperature maxima tend to be
between 0–2 ◦C warmer than historical GHCN observations,
while the extrema and deciles of the downscaled temperature
minima tend to be between 1–3 ◦C warmer than historical
observations. The extrema on the bottom-most ends of these
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Figure 7. Bias magnitudes of the 80th (red) and 81st (cyan) daily percentiles of log precipitation (mm). This figure was created using
Wickham (2016).

distributions are lower that what might typically be expected
in Puerto Rico, even at its highest elevations. These down-
scaled values are likely the result of inaccurate GHCN values
that slipped through our culling process. We note that the oc-
currence of temperature minima between 1–3 ◦C is extremely
rare (literally on the scale of a handful of times across 23 lo-
cations spanning Puerto Rico in the upcoming century).

Figure 12 displays the CanESM2-estimated mean daily
maximum temperature (left panel) and daily minimum tem-
perature (right panel) as a function of year (1980–2100). We
note that the subsequent plots may depict a small gap be-
tween the observed GHCN time series and the downscaled
projections. This is merely an artifact of a GCM’s “spin-
up” period which represents a random realization of internal
variability associated with its forcings and, therefore, may
not perfectly align with GHCN observations. RCP4.5 projec-
tions indicate an increase in mean temperature that tapers off
between 2050 and 2075, while RCP8.5 projects increasing
maximum temperatures that continue to grow through 2100.
These patterns are likely directly attributed to the green-
house gas emissions exhibited by each forcing scenario. By
2100, maximum temperatures are projected to increase be-
tween 1.5–3 ◦C, on average (across all 23 locations), while

minimum temperatures are projected to increase between 2–
3.5 ◦C, on average.

These observations are consistent with a large number of
other downscaling works focused on the Caribbean (Centella
et al., 2008; Harmsen et al., 2009; Campbell et al., 2011;
Stennett-Brown et al., 2017). Because minimum temperature
is expected to increase at a faster rate than maximum tem-
perature, the average day will not only become warmer, but
it will also observe a narrower range of diurnal temperatures.
Both Biasutti et al. (2012) and Jennings et al. (2014) note a
similar decrease in diurnal temperature variability through-
out the Caribbean and Gulf of Mexico.

5.1.2 Precipitation

There is an overwhelming consensus of literature showing
agreement that increasing greenhouse gas emissions will di-
rectly contribute to global warming (Lashof and Ahuja, 1990;
Satterthwaite, 2008; Meinshausen et al., 2009). In a tropical
climate, it is likely that temperature rise will be accompa-
nied by an increase in specific humidity. Despite this, precip-
itation is likely to increase in some regions and decrease in
others (Biasutti et al., 2012) making precipitation even more
difficult to forecast.
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Figure 8. Graphical display of the interpolation process for fitted log precipitation (mm) values, with percentiles falling between p = 0.80
and p = 0.81 on 19 May (day ν = 139, vertical black line). The red and cyan curves represent the 80th and 81st percentiles of log precipitation
as a function of day, respectively. This figure was created using Wickham (2016).

Table 3. Maximum daily temperature extrema and deciles (◦C, top panel) and minimum daily temperature extrema and deciles (◦C, bottom
panel) for the observed historical (GHCN) climate, the downscaled RCP4.5 climate, and the downscaled RCP8.5.

Min 10 20 30 40 Med 60 70 80 90 Max

Historical max 11.11 25.00 27.78 28.89 29.98 30.56 31.11 31.67 32.22 32.78 41.11
RCP4.5 max 11.86 25.97 29.02 30.20 30.98 31.63 32.23 32.77 33.34 34.00 41.81
RCP8.5 max 11.62 26.29 29.35 30.59 31.36 32.03 32.62 33.17 33.73 34.44 41.67

Historical min 0.56 15.56 17.22 18.33 19.44 20.56 21.11 22.22 22.78 23.89 31.11
RCP4.5 min 3.21 17.44 19.11 20.27 21.24 22.12 22.88 23.68 24.45 25.51 33.08
RCP8.5 min 0.96 17.94 19.65 20.85 21.86 22.71 23.51 24.30 25.10 26.17 34.53

Within the Caribbean, recent literature tends to favor dry-
ing conditions, although some literature does provide con-
flicting opinions. Bowden et al. (2021), Campbell et al.
(2011), and He and Soden (2017) all note a general dry-
ing pattern for Puerto Rico and its surrounding islands. Bi-
asutti et al. (2012) note a 30 % decrease specific to spring
and summer rainfall. Girvetz et al. (2009) and Meehl et al.
(2007) project a decrease in Puerto Rico’s annual precip-
itation, somewhere between 10 % and 30 %. Magrin et al.
(2007), from the Fourth Assessment Report of the IPCC,
project Latin America’s annual precipitation to change any-

where from −40 % to +10 %. Cashman et al. (2010) find
that the Caribbean will exhibit drying trends throughout the
spring, summer, and fall; however, they project increased
precipitation during the winter months, while Angeles et al.
(2007) project a wetter climate for the Caribbean through
2050, driven heavily by increased rainfall during the rainy
season, most likely a result of rising sea-surface temperatures
which bolster large storm systems, potentially leading to an
increase in the scale of extreme precipitation events.

While there may not be a clear consensus about projected
annual Caribbean rainfall at the end of the century, there
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Figure 9. Average precipitation (mm) across all 23 stations from 1980 to 2005 as a function of Julian day for observed values (red), raw
fitted values (green), LQM bias-corrected values (blue), and QM bias-corrected values (purple) using Canada’s CanESM2 model at three
different LOESS smoothing spans and two different step sizes. This figure was created using Wickham (2016).

Figure 10. LQM RMSE (red) and QM RMSE (cyan) as a function of Julian day for TMAX (left), TMIN (middle), and PRCP (right). This
figure was created using Wickham (2016).

seems to be majority agreement within the literature that the
Caribbean will exhibit increased variability in precipitation
in the future. Many studies project an increased number of
consecutive dry days, consistent with a lengthening of the
dry season (Campbell et al., 2011; Biasutti et al., 2012). An
increased number of consecutive dry days may have dire
effects, not only on Puerto Rico’s tropical ecosystem, but
also on the water needs of the general public, who, being

an island nation, rely heavily on consistent rainfall. Many
other studies project an increase in the frequency and mag-
nitude of extreme rainfall events (Magrin et al., 2007; Lint-
ner et al., 2012; Ramseyer and Mote, 2016; Ramseyer et al.,
2018, 2019), which have been shown in the recent past to
have catastrophic and lasting effects on the island.

Table 4 displays the extrema and deciles of historical daily
precipitation (mm) and projected daily precipitation (mm).
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Figure 11. Average TMAX (left), TMIN (middle), and PRCP (right) across all 23 stations from 1980 to 2005. The true historical GHCN
observations are plotted in red, while the LQM bias-corrected fitted values and QM bias-corrected fitted values are plotted in green and blue,
respectively. This figure was created using Wickham (2016).

Figure 12. CanESM2 mean daily maximum (left panel) and minimum (right panel) temperature (◦C) as a function of year. Observed
historical GHCN data from 1980–2005 are plotted in red, while downscaled RCP4.5 and RCP8.5 temperatures from 2006–2100 are plotted
in green and blue, respectively. This figure was created using Wickham (2016).

The 60th percentiles (and the 70th percentile for RCP4.5)
are smaller than those of the historical precipitation data.
This suggests a diminishing number of small rainfall events
in a future Puerto Rican climate. Furthermore, the 80th
percentile, 90th percentile, and maximum projected rainfall
events are all larger than those of the corresponding historical
rainfall data, suggesting that Puerto Rico will begin to expe-
rience an increased number of large precipitation events.

Despite an apparent reduction in low-magnitude precip-
itation events, the CanESM2 clearly favors a wetter future
climate across Puerto Rico (Fig. 13), on average, across all
stations. The RCP4.5 forcing scenario predicts an increase in
average daily rainfall of around 1.5 mm, whereas the RCP8.5
projects an increase of nearly 3.5 mm by 2100.

In Fig. 14, we plot average total precipitation (in mm)
across the 23 weather stations as a function of year and rain-
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Table 4. CanESM2 daily total precipitation (mm) quantiles for the observed historical (GHCN) climate (1980–2005), the downscaled RCP4.5
climate (2006–2100), and the downscaled RCP8.5 climate (2006–2100) across all 23 locations.

Min 10 20 30 40 Med 60 70 80 90 Max

Historical 0.00 0.00 0.00 0.00 0.00 0.00 1.02 2.54 5.59 13.97 581.67
RCP4.5 0.00 0.00 0.01 0.05 0.10 0.21 0.73 2.25 5.78 16.00 1099.89
RCP8.5 0.00 0.00 0.03 0.08 0.15 0.29 0.91 2.65 6.63 17.85 904.66

Figure 13. Observed historical (GHCN) daily mean precipitation (mm) data from 1980–2005 are plotted in red, while CanESM2 RCP4.5
and RCP8.5 downscaled mean precipitation data from 2006–2100 are plotted in green and blue, respectively. This figure was created using
Wickham (2016).

fall season. The RCP4.5 forcing scenario is plotted in the left
panel, while the RCP8.5 forcing scenario is plotted in the
right panel. Clearly, precipitation varies seasonally in Puerto
Rico, where the dry season (December through March) tends
to see the least rainfall, and the late rainfall season (Au-
gust through November) tends to observe the most rainfall.
The CanESM2 projections indicate that Puerto Rico’s total
precipitation will increase across each season for both the
RCP4.5 and RCP8.5 forcing scenarios. However, the precip-
itation increases are much more dramatic under the latter. It is
important to keep in mind that increased water demand from
higher temperatures may more than offset any increased pre-
cipitation. In other words, it can still be “drier”, even with
more rainfall.

Now, we explore the frequency of large-scale rainfall
events. First, we define two types of high-magnitude rainfall
events:

1. extreme rainfall (ER) events, any day such that the is-
land daily average precipitation is larger than the 99th
percentile of observed average daily precipitation totals
from 1980 to 2005: 29.90 mm, and

2. high-magnitude rainfall (HMR) events, any day such
that the island daily average precipitation is larger than
the 95th percentile of observed average daily precipita-
tion totals from 1980 to 2005: 14.81 mm.

Figure 15 displays the number of ER events as a func-
tion of rainfall season and year. The RCP4.5 emission sce-
nario is displayed on the left, while the RCP8.5 emission
scenario is displayed on the right. The RCP4.5 emission sce-
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Figure 14. CanESM2 average total precipitation (mm) per weather station by rainfall season for the RCP4.5 forcing scenario (left) and the
RCP8.5 forcing scenario (right). The years 1980–2005 represent historical GHCN observations and are also included on these plots. The
years 2006–2100 represent downscaled CanESM2 output. This figure was created using Wickham (2016).

Figure 15. Total number of extreme rainfall (ER) events (island daily average rainfall > 29.90 mm) by season for the CanESM2’s RCP4.5
forcing scenario (left) and the RCP8.5 forcing scenario (right). The years 1980–2005 represent historical GHCN observations and are also
included on these plots. This figure was created using Wickham (2016).
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Figure 16. CanESM2 ratio of yearly high-magnitude rainfall (HMR) event total rainfall (island daily average > 14.81 mm) to common
rainfall as a function of year. This figure was created using Wickham (2016).

nario indicates slight increases in ER events during the LRS
and ERS. The RCP8.5 emission scenario indicates a substan-
tial increase in the number of extreme rainfall events during
the LRS and ERS. Under the RCP8.5 emission scenario, the
LRS, or hurricane season, is projected to observe more than
seven ER events each year, and the ERS is expected to see
between four and five ER events each year, while the dry
season (DS) is expected to continue to observe very few ER
events by 2100.

Figure 16 displays the ratio of yearly HMR event (island
daily average > 14.81 mm) total rainfall to the annual total
of smaller rainfall events (island daily average ≤ 14.81 mm).
Historically, the total rainfall from HMR events represented
around 40 % of the total rainfall from more common precip-
itation events. The RCP4.5 emission scenario does not ex-
hibit a clear shift in this relationship. However, in the RCP8.5
emission scenario, the proportion of yearly rainfall due to
HMR events is projected to increase dramatically. By 2100,
the ratio of yearly HMR to yearly rainfall more common
events is nearly 1 : 1.

5.2 Summary of downscaled climate data

In Table 5, we display the approximate changes of several
climatological characteristics from 2005 to 2100. Bolded and
italicized cells are used to indicate increases and decreases of

the specified feature. Approximate changes are calculated by
first fitting separate LOESS smoothing splines to the histori-
cal and future data. We then take the difference between the
LOESS estimates in 2100 and 2005. For the climate mod-
els and methods examined in this study, the RCP8.5 forc-
ing scenario favors a dramatic increase in rainfall for Puerto
Rico. The RCP4.5 forcing scenario favors much smaller in-
creases in rainfall and even a noticeable decreases across
the ERS. NOAA’s GFDL under the RCP4.5 forcing scenario
more closely matches projected rainfall patterns across the
Caribbean from other studies (Biasutti et al., 2012; Cashman
et al., 2010; Girvetz et al., 2009; Meehl et al., 2009).

6 Summary

In this work, we utilize a novel combination of down-
scaling methods of Jeong et al. (2012a, b). We employ a
two-part multivariate multisite statistical downscaling model
(MMSDM) to downscale maximum and minimum tem-
peratures and precipitation at K = 23 weather stations in
Puerto Rico. To downscale precipitation, we first decompose
it into two components: precipitation probability and log-
transformed precipitation amount.

The MMSDM methodology is unable to correct GCM bias
adequately. To quantify and correct for these biases, we pro-
pose LOESS quantile mapping (LQM), which combines el-
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Table 5. Approximate changes of several climatological characteristics from 2005 to 2100. Bolded cells and italicized cells indicate increases
and decreases of the specified feature.

Emission scenario Climatological characteristic CCCMA-CanESM2 GFDL-ESM2G HadGEM2-ES

RCP4.5

Daily maximum temperature (◦C) +1.7 +0.7 +1.3
Daily minimum temperature (◦C) +1.7 +0.4 +1.1
Daily precipitation (mm) +0.4 –0.9 +0.1
DS total precipitation (mm) +133.6 +45.3 +165.5
ERS total precipitation (mm) –76.6 –275.8 –138.6
LRS total precipitation (mm) +93.1 –98.1 –26.7
DS extreme rainfall events –0.6 –0.5 –0.5
ERS extreme rainfall events –0.1 –1.7 –1.1
LRS extreme rainfall events +0.9 –1.5 0.0

RCP8.5

Daily maximum temperature (◦C) +2.9 +1.5 +2.2
Daily minimum temperature (◦C) +3.5 +1.4 +2.6
Daily precipitation (mm) +2.9 +0.9 +2.7
DS total precipitation (mm) +320.8 +132.1 +332.6
ERS total precipitation (mm) +297.4 –33.3 +180.6
LRS total precipitation (mm) +460.2 +235.9 +439.2
DS extreme rainfall events –0.4 0.0 +0.3
ERS extreme rainfall events +2.4 –0.8 +2.2
LRS extreme rainfall events +5.1 +2.0 +4.1

ements of localized regression and quantile mapping. LQM
employs standard quantile mapping techniques as a function
of season, which we defined as Julian day. First, percentiles
of observed and fitted values of a specified random variable
are estimated as a function of season. Next, bias is estimated
as a function of percentile and season by simply taking the
difference between the observed and fitted summaries. Then,
LOESS smoothing techniques are applied to the bias values,
and the bias is estimated via LOESS regression as a function
of season. Finally, the estimated bias, which is allowed to
vary as a function of percentile (as in standard quantile map-
ping) and season (the extension to standard QM), is added
directly to the fitted values (and subsequently added directly
to the downscaled climate projections).

We proceed to combine these new extensions in order to
study the future climate of Puerto Rico. The resulting down-
scaled temperature projections from the three climate mod-
els all agree that Puerto Rico will experience a warmer fu-
ture climate. These projections are consistent with the over-
whelming majority of published literature examining future
Caribbean climate (Biasutti et al., 2012; Jennings et al.,
2014). Not only will Puerto Rico experience a warmer cli-
mate, but the average day will also have a narrower tempera-
ture range as minimum temperatures are expected to increase
at a faster rate than maximum temperatures. The RCP8.5
forcing scenario (carbon emissions continue to grow through
the year 2100) projects a warmer climate than that of the
RCP4.5 forcing scenario (carbon emissions are curbed and
do not grow after a certain date).

The majority of literature agrees that the Caribbean will
see reduced rainfall in its future climate (Bowden et al., 2021;
He and Soden, 2017). Within the RCP4.5 forcing scenario,
our methods tend to be consistent with those of the literature.
The three models explored here agree that the DS will ob-
serve increased rainfall, while the ERS and LRS will likely
observe a decline in total rainfall. However, GCM output
from the RCP8.5 forcing scenario tends to favor the oppo-
site: a wetter climate for Puerto Rico, driven by an increase
in extreme rainfall events.
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Appendix A: GCM climate plots

Figure A1. The bounding box for which GCM coordinates are kept (latitudes range from 16.90 to 19.50◦, and longitudes range from
−68.00 to −64.90◦). ESM2G locations inside the box (red) are kept, while ESM2G locations outside the box (black) are not kept. Note
that the bounding box was only extended for this model. This image was created using a combination of © Google Maps 2018, Kahle and
Wickham (2013), and Wickham (2016).

Figure A2. The bounding box for which GCM coordinates are kept (latitudes range from 17.65 to 18.75◦, and longitudes range from−68.00
to −64.90◦). HadGEM2-ES locations inside the box (red) are kept, while HadGEM2-ES locations outside the box (black) are not kept. This
image was created using a combination of © Google Maps 2018, Kahle and Wickham (2013), and Wickham (2016).
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Appendix B: USA GFDL’s ESM2G downscaled
climate

B1 Temperature

Table B1. ESM2G maximum daily temperature quantiles (◦C, top panel) and minimum daily temperature quantiles (◦C, bottom panel) for
the observed historical (from GHCN) climate, the downscaled RCP4.5 climate, and the downscaled RCP8.5 climate.

Min 10 20 30 40 Med 60 70 80 90 Max

Historical max 11.11 25.00 27.78 28.89 29.99 30.56 31.11 31.67 32.22 32.78 41.11
RCP4.5 max 10.88 25.18 28.20 29.40 30.18 30.86 31.47 32.05 32.63 33.29 40.66
RCP8.5 max 10.39 25.40 28.41 29.62 30.40 31.09 31.72 32.31 32.92 33.64 40.46

Historical min 0.56 15.56 17.22 18.33 19.44 20.56 21.11 22.22 22.78 23.89 31.11
RCP4.5 min 1.84 16.30 17.96 19.11 20.13 21.01 21.82 22.61 23.42 24.47 31.31
RCP8.5 min 1.60 16.61 18.28 19.46 20.48 21.37 22.19 23.01 23.84 24.93 33.50

Figure B1. ESM2G mean daily maximum (left panel) and minimum (right panel) temperature (◦C) as a function of year. Observed historical
GHCN data from 1980–2005 are plotted in red, while downscaled RCP4.5 and RCP8.5 temperatures from 2006–2100 are plotted in green
and blue, respectively. This figure was created using Wickham (2016).
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B2 Precipitation

Table B2. ESM2G daily total precipitation (mm) quantiles for the observed historical GHCN climate, the downscaled RCP4.5 climate, and
the downscaled RCP8.5 climate.

Min 10 20 30 40 Med 60 70 80 90 Max

Historical 0.00 0.00 0.00 0.00 0.00 0.00 1.02 2.54 5.59 13.97 581.66
RCP4.5 0.00 0.00 0.00 0.01 0.03 0.10 0.51 1.74 4.70 13.34 1824.82
RCP8.5 0.00 0.00 0.00 0.02 0.06 0.14 0.61 1.97 5.21 14.55 1059.38

Figure B2. ESM2G-observed historical (GHCN) daily mean precipitation (mm) is plotted as a function of year (1980–2005) in red, while
ESM2G RCP4.5 and RCP8.5 downscaled mean precipitation from 2006–2100 is plotted in green and blue, respectively. This figure was
created using Wickham (2016).
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Figure B3. ESM2G average total precipitation (mm) per weather station by rainfall season for the RCP4.5 forcing scenario (left) and the
RCP8.5 forcing scenario (right). Historical GHCN observations are also indicated on these plots (1980–2005). This figure was created using
Wickham (2016).

Figure B4. Total number of ER events (island daily average rainfall > 29.90 mm) by season for the ESM2G’s RCP4.5 forcing scenario
(left) and the RCP8.5 forcing scenario (right). Historical GHCN observations are also indicated on these plots (1980–2005). This figure was
created using Wickham (2016).
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Figure B5. ESM2G ratio of yearly HMR event total rainfall (island daily average > 14.81 mm) to common rainfall as a function of year.
This figure was created using Wickham (2016).

Appendix C: UK’s HadGEM2-ES downscaled climate

C1 Temperature

Table C1. Maximum daily temperature quantiles (◦C, top panel) and minimum daily temperature quantiles (◦C, bottom panel) for the ob-
served historical GHCN climate, the downscaled RCP4.5 climate, and the downscaled RCP8.5 climate using the Hadley Centre’s HadGEM2-
ES.

Min 10 20 30 40 Med 60 70 80 90 Max

Historical max 11.11 25.00 27.78 28.89 29.99 30.56 31.11 31.67 32.22 32.78 41.11
RCP4.5 max 11.43 25.59 28.70 29.87 30.61 31.24 31.81 32.35 32.89 33.53 41.49
RCP8.5 max 12.37 25.87 28.95 30.18 30.94 31.59 32.17 32.69 33.24 33.93 41.15

Historical min 0.56 15.56 17.22 18.33 19.44 20.56 21.11 22.22 22.78 23.89 31.11
RCP4.5 min 2.64 17.02 18.67 19.83 20.79 21.64 22.39 23.16 23.91 24.93 31.57
RCP8.5 min −0.47 17.45 19.13 20.32 21.31 22.16 22.93 23.70 24.47 25.50 33.56
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Figure C1. Mean daily maximum (left panel) and minimum (right panel) temperature (◦C) as a function of year. Observed historical GHCN
data from 1980–2005 are plotted in red, while downscaled RCP4.5 and RCP8.5 temperatures (from the UK’s HadGEM2) from 2006–2100
are plotted in green and blue, respectively. This figure was created using Wickham (2016).

C2 Precipitation

Table C2. Daily total precipitation (mm) quantiles for the observed historical GHCN climate, the downscaled RCP4.5 climate, and the
downscaled RCP8.5 climate using the UK’s HadGEM2-ES.

Min 10 20 30 40 Med 60 70 80 90 Max

Historical 0.00 0.00 0.00 0.00 0.00 0.00 1.02 2.54 5.59 13.97 581.66
RCP4.5 0.00 0.00 0.00 0.04 0.08 0.18 0.68 2.14 5.59 15.49 1211.61
RCP8.5 0.00 0.00 0.02 0.06 0.13 0.25 0.82 2.47 6.28 17.11 1942.12
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Figure C2. Observed historical (GHCN) daily mean precipitation (mm) is plotted as a function of year (1980–2005) in red. RCP4.5 and
RCP8.5 downscaled mean precipitation from 2006–2100 is plotted in green and blue, respectively. This figure was created using Wickham
(2016).

Figure C3. Average total precipitation (mm) per weather station by rainfall season for the UK’s HadGEM2 RCP4.5 forcing scenario (left)
and the RCP8.5 forcing scenario (right). Historical GHCN observations are also indicated on these plots (1980–2005). This figure was created
using Wickham (2016).
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Figure C4. Total number of ER events (island daily average rainfall > 29.90 mm) by season for the HadGEM2’s RCP4.5 forcing scenario
(left) and the RCP8.5 forcing scenario (right). Historical GHCN observations are also indicated on these plots (1980–2005). This figure was
created using Wickham (2016).

Figure C5. The ratio of yearly HMR event total rainfall (island daily average > 14.81 mm) to common rainfall as a function of year. This
figure was created using Wickham (2016).
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Code availability. R codes for performing the statistical anal-
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