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Abstract. Initial steps in statistical downscaling involve being able to compare observed data from regional
climate models (RCMs). This prediction requires (1) regridding RCM outputs from their native grids and at
differing spatial resolutions to a common grid in order to be comparable to observed data and (2) bias correcting
RCM data, for example via quantile mapping, for future modeling and analysis. The uncertainty associated with
(1) is not always considered for downstream operations in (2). This work examines this uncertainty, which is not
often made available to the user of a regridded data product. This analysis is applied to RCM solar radiation data
from the NA-CORDEX (North American Coordinated Regional Climate Downscaling Experiment) data archive
and observed data from the National Solar Radiation Database housed at the National Renewable Energy Lab. A
case study of the mentioned methods over California is presented.
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1 Introduction

Earth system models and regional climate models (RCMs)
are standard tools used to quantify and understand future
changes in climate. These models represent geophysical vari-
ables on fixed grids, and so a comparison among models,
with observations, or with other data products must recon-
cile the differences between variables registered on one set
of grid locations and another set. Regridding is a ubiqui-
tous preprocessing step for climate model analysis to inter-
polate from one gridded field to another. Common grid inter-
polation methods include kriging, cokriging, bilinear inter-

polation, inverse distance weighting, and thin-plate splines
(see McGinnis et al., 2010, for more details). The uncer-
tainty in these statistical and numerical interpolations has
been well documented (Phillips and Marks, 1996; Loghmari
et al., 2018). However, to our knowledge, this uncertainty
is rarely factored into the analysis when a regridded field is
considered. In the worst case, regridded fields are distributed
without the metadata acknowledging the transformation from
their native grid. Moreover, when regridded variables are
used for a subsequent analysis, biases can be introduced into
statistical estimates.

This work is motivated by the practical issue of inferring
the distribution of solar radiation across space and over the
seasonal cycle from simulations provided by RCMs. The
overall goal is to create a solar radiation data product at a
high spatial and temporal resolution that is suitable for siting
new solar power generation facilities, such as photo-voltaic
plants. Since these facilities may have a lifetime of 30 or
more years, it is important to factor in regional changes in
climate in site planning. The projections from a multi-model
ensemble of RCM projections can suggest the potential im-
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pacts of a changing climate on power generation. However,
we anticipate biases in the regional model simulations, as
well as the need to combine several models in an optimal
way. The National Solar Radiation Database (NSRDB) is a
high-resolution, gridded data product that can be used as a
standard for calibration under the current climate and is a
benchmark training and testing sample. The initial step then
is to build a statistical model that relates the regional climate
model data, forced by reanalysis, to a gold-standard solar ra-
diation data product (NSRDB).

Our focus is on a linear model with NSRDB daily aver-
ages as the dependent variable and three RCMs as the in-
dependent variables for prediction. The challenge is that the
native grid for these models is not the same as the NSRDB,
leading to the need for regridding. For illustration, consider
Fig. 1, showing grid projections from two different models.
The differing projections result in an irregular pattern where
some target grid locations are close to a native grid point,
while others fall in between grid locations. It is reasonable to
assume that target grid locations that are close to native ones
are more accurately interpolated than those further away, and
this varying uncertainty should be considered in the regrid-
ded version.

We contrast the approach of just using the regridded RCM
fields as the regression predictors with an empirical Bayesian
model that explicitly incorporates the mismatch between
the RCM grids and the NSRDB grid. The Bayesian ap-
proach takes advantage of recent tools in spatial statistics for
conditional simulation of Gaussian processes and combines
this with classical Bayesian formulas for linear regression
(Cressie and Wikle, 2011). This strategy provides a simple
framework to avoid the biases in an analysis based on a re-
gridded estimate. Moreover, this method can be extended to
more sophisticated prediction beyond a linear relationship.
Our empirical Bayesian method uses the same spatial pre-
diction model that would be used in standard regridding but
adds a step to generate conditional samples of the spatial
fields. These realizations then become the conditioned co-
variate in a Bayesian linear model, with a closed-form ex-
pression for sampling the posterior of the regression param-
eters. The Bayesian approach is useful for determining unbi-
ased estimates of the regression parameters. However, if the
goal is simply prediction based on the linear model, we also
show that the standard regridding regression is appropriate
for prediction, especially when prediction uncertainty is cal-
ibrated with a holdout sample. Therefore, how this problem
is tackled depends partly on the end goals of the analysis.

We illustrate these ideas with an application to solar radi-
ation prediction, and these results are important in their own
right. The analysis suggests the limits of predictability of so-
lar radiation based on regional climate model simulations and
also points to how the models may be biased relative to the
NSRDB data set.

The uncertainty in the regridding process for solar radia-
tion has not been given much attention as it relates to cli-

mate simulations, but there are many studies of this issue for
precipitation or temperature (Chandler et al., 2022; Rajula-
pati et al., 2021). McGinnis et al. (2010) considered regrid-
ding error for RCMs in four regridding methods – nearest
neighbors, bilinear interpolation, inverse distance weights,
and thin-plate splines for temperature and precipitation RCM
data. The study found that thin-plate splines performed the
best out of the four methods considered in terms of regrid-
ding but that the chosen interpolation method has a larger
effect when considering local results as opposed to large-
scale phenomena across multiple models. Additionally, spu-
rious extrapolation results need to be considered, particu-
larly when considering extreme events, which temperature
and precipitation analyses often do. The need for regridding
was bypassed in Harris et al. (2022), who proposed neural-
network Gaussian process regression (NNGPR) for predict-
ing temperature and precipitation reanalysis fields from the
ECMWF Reanalysis v5. The proposed method simultane-
ously downscales the same variables to RCM spatial levels
using NA-CORDEX (North American Coordinated Regional
Climate Downscaling Experiment) RCM data for validation.
The method defines the downscaling pixel by pixel for the
output grid by averaging the input climate model fields and
defining a Gaussian process between the climate model fields
and the prediction point in the reanalysis field. Preliminary
results from this study show marginal improvements over ex-
isting methods, including linear models, in terms of combin-
ing climate models and poor uncertainty quantification skill,
which is a direct focus of this study. Additionally, there are
minimal metrics for uncertainty quantification of the method.
While our method does not simultaneously downscale solar
radiation data, this will be addressed in future work, and the
methods proposed in Harris et al. (2022) could be used for a
comparative analysis.

The effects of regridding on precipitation statistics have
also been widely studied (Accadia et al., 2003; Berndt and
Haberlandt, 2018; Ensor and Robeson, 2008; Diaconescu
et al., 2015; Rauscher et al., 2010). In particular, the effects
from regridding were found to have the largest impact at
higher quantiles (Rajulapati et al., 2021). The same study
also found that the difference in precipitation statistics be-
tween the original and regridded data decreased with higher
grid resolutions and vice-versa for lower resolutions. This is
also true at fine temporal scales (i.e., daily, sub-daily).

Our understanding is that there is a gap in the literature in
terms of analyzing the downstream effects on modeling af-
ter regridding and for solar radiation data in particular. Note
that this focus is related to the classic errors in variable mod-
els (Whittemore, 1989), where covariates are unknown or
contain problematic data. Predictions based on the covari-
ates containing errors are reliable provided data with the er-
rors are consistently used. However, inferring scientific re-
lationships between the predictand and predictors is not reli-
able. Thus the focus in this study is whether final conclusions
based on downstream modeling and evaluation of an RCM
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Figure 1. A comparison of differing grid projections. The left shows a close up of two differing grids on a 20 km scale and a zoomed-out
projection on the right.

contribution to prediction skill will change when regridding
uncertainty is taken into account. As noted above, this study
includes an analysis of possible effects using a Bayesian re-
gression approach in order to quantify the uncertainty due to
regridding. In particular, we develop a Bayesian hierarchi-
cal model (BHM) as a complete description of the analysis
uncertainties and then explain how simpler approaches re-
sult from approximations to this BHM (Cressie and Wikle,
2011). Although we do not showcase a complete Bayesian
analysis, we believe our approximate version is informative
and is more easily implemented than the full Bayesian pos-
terior computations.

The rest of the article is organized as follows: Sect. 2 in-
troduces and describes the data utilized in this article, fol-
lowed by an overview of the BHM in Sect. 3; Sect. 4 details
the method to analyze the uncertainty of regridding; Sect. 5
shows results from this analysis; and finally, Sect. 6 con-
cludes this work and discusses future directions.

2 Data

2.1 National Solar Radiation Database

Modeled solar radiation data are part of the NSRDB, pro-
vided by the National Renewable Energy Lab (NREL) (see
Sengupta et al., 2018, and the references therein for more
details). The NSRDB is widely used by a variety of agen-
cies, including local and federal governments, utility compa-
nies, and universities. Although primarily used for energy-
related applications, its uses have been extended to others
such as the connection between solar exposure and cancer.
The NSRDB contains hourly and half-hourly measurements
for the three most common solar radiation variables: global
horizontal irradiance (GHI), direct normal irradiance (DNI),
and diffuse horizontal radiation (DHI) (in units of Wm−2).
Solar radiation data are calculated using the Physical Solar
Model, which takes as input satellite measurements, cloud
properties, and GHI derived from DNI and DHI. The data
product for GHI and DNI has been validated and shown to

be within 5 % and 10 %, respectively, when compared to sur-
face observations. The NSRDB covers all of North America
and surrounding countries for the years 1998–2021 at a 4 km
resolution. For the purposes of this study, however, the data
set is averaged to a grid resolution of 20 km to be comparable
with climate model outputs at a similar resolution. The reader
may note that the step of aggregation is related to the change-
of-support problem (Cressie, 1996; Gelfand et al., 2001). In
aggregating from the 4 to the 20 km grid for the NSRDB data
set, we are hoping to avoid the change-of-support issue and
to target the problem of regridding rather than the problem of
downscaling. By using data that are on the 20 km grid for the
NSRDB, which closely aligns to the size of the RCM grid,
we are isolating the problem of regridding, and we target the
uncertainty related to this step only.

2.2 Climate model database

Climate model data are sourced from the NA-CORDEX data
archive, containing RCM output forced by various global cli-
mate models (GCMs) (McGinnis and Mearns, 2021; Mearns
et al., 2017). The NA-CORDEX data archive contains many
common climate variables, including surface downwelling
shortwave radiation, at daily scales and sub-daily scales for
some variables. Note that surface downwelling shortwave ra-
diation is recorded as “rsds” in NA-CORDEX but is equiva-
lent to GHI and is measured in the same units. Therefore, it
will be referred to as GHI throughout this article. The archive
includes ERA-Interim-driven runs generally covering 1979–
2014. GCM-driven runs cover both historical periods (1949–
2005) and future years (2006–2100) for various climate path
scenarios and a model domain covering all of the contermi-
nous United States, as well as most of Alaska, Canada, Mex-
ico, and the Caribbean.

The data chosen for this study will later be used in sta-
tistical downscaling operations for solar radiation for future
years, and RCMs for this study are chosen with this long-
term goal in mind. The outputs chosen for this study are three
ERA-Interim-driven RCMs: the Weather Research and Fore-

https://doi.org/10.5194/ascmo-9-103-2023 Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, 2023



106 M. D. Bailey et al.: Regridding uncertainty

casting model (WRF), the Canadian Regional Climate Model
4 (CanRCM4), and the fifth-generation Canadian Regional
Climate Model from the University of Quebec at Montreal
(CRCM5-UQAM). These RCMs have desirable representa-
tive concentration pathways (RCPs) and grid resolutions for
future GCM-driven runs.

3 Bayesian hierarchical model (BHM)

A key part of this study is understanding the predictability of
solar radiation based on RCM simulations. Here we organize
the statistical assumptions as a BHM for clarity. This helps in
tracing the Bayesian approximation used in our application,
and the standard approach based on regridding also follows
as an additional approximation.

Let {si} be the NSRDB grid, and let y(si, t) denote the
average daily solar radiation reported at grid point si and day
t . For convenience, consider a single grid location and let
yi = y(si, .) denote the vector of all daily values at location
si . In a similar way let xk(si, t) be the covariate value from
the kth RCM at location si and day t . The key assumption
here is that this covariate makes sense at locations that are
not part of the native grid of the RCM, and so we define the
correct covariate vector Xik = xk(si, .). With this assumption
our main focus is on the linear model given below, applied to
available days and for each target grid location:

yi = β0+

M∑
k=1

Xikβk +Sγ + εi =Xiβ +Sγ + εi, (1)

where yi represents the observed data from the NSRDB at
the ith location,Xi is an (M+1) column matrix formed from
the constant term,M refers to the number of RCM covariates,
and S is the matrix of seasonal covariates. We will also as-
sume εi to be the mean zero multivariate normal and variance
σ 2. The estimated coefficients are the relative adjustments in
matching the RCM simulations to observations. Overall the
goal is to estimate the coefficients β and γ and to use these in
a prediction model for unobserved yi . Of course this would
be a straightforward problem in linear regression if Xi was
known. However, the complicating issue is that Xi must be
inferred from other locations of the RCM grid. Moreover, we
also note the complication that εi may exhibit dependence
over time, which makes it more difficult to derive valid mea-
sures of uncertainty. This will be discussed in Sect. 3.3. The
values of εi will not show dependence over space but may
show correlation at differing locations (i 6= i′). As we are
running this model from climate model reanalysis data, the
spatial correlation of the errors should naturally be accounted
for when i 6= i′.

3.1 Observation and process levels

We assume a stationary Gaussian process model for trans-
formed RCM fields that are independent over time. Let {uj }

denote the native grid for the RCM simulated fields, distinct
in the number and position from the NSRDB grid. The raw
RCM solar variable, x, is transformed to x∗ with the log-
linear function according to

x∗ = 0(x)=

{
log(x) if x ≤ ν

log(ν)+ 1
ν

(x− ν) if x > ν

for a fixed value of ν. We found this transformation makes
a Gaussian process assumption on x∗k (., t) more reasonable
and constrains predictions transformed back into the origi-
nal scale to be positive. For x > ν, 0(x) reverts to a linear
transformation and so retains interpretability for the larger
and more relevant solar values. In this study, ν is set to be
the 20th percentile of the RCM values. The value of ν was
chosen from a range of possible percentiles, spanning [10th,
50th], as it resulted in summary statistics for the regridded
values that were closest to the same statistics calculated from
RCM data on the native grid. In this way, the regridded val-
ues are as similar as possible using the ν = 20th percentile
compared to if a different value had been chosen.

Given these transformed fields, we assume that, for fixed
t , x∗k (s, t) will be a Gaussian process with a mean func-
tion µk(s)= E[xk(s)] and a stationary, exponential covari-
ance function of

COV(x∗k (s, ·),x∗k (s′, ·))= ρk exp(−‖s− s′‖/θk), (2)

and for t 6= t ′,

COV(x∗k (s, t),x∗k (s′, t ′))= 0.

That is, we are assuming no temporal correlation in this pro-
cess. However, we will relax this assumption in Sect. 3.3.
Finally, in the following, it is convenient to let xtu denote the
kth RCM values on its native grid and for day t . With this
setup, we have the BHM defined in Table 1. Here the latent
processes are independent Gaussian processes with covari-
ance given in Eq. (2). The joint distribution for this problem
is thus

[yi |β,γ ,Xi,Si,σ 2
] [Xi1|{x

∗

1 (uj , t)},ρ1,θ1]. . .

[XiM |{x
∗

M (uj , t)},ρM ,θM ] [β,γ ,σ 2, {ρk}, {θk}],

where yi , Si , and x∗1 (uj , t) up to x∗M (uj , t) are the terms
based on observed data that are fixed in the Bayesian compu-
tation. The Bayesian formalism is to identify this expression
via Bayes theorem as proportional to the posterior density for
the unknown parameters. Conceptually one would integrate
this expression over XiM to give a marginal posterior density
in the statistical parameters. An exact integration, however,
does not have a closed form, and instead, the standard ap-
proach is to sample from the posterior using Monte Carlo
methods.
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Table 1. BHM for including regridding uncertainty into the coefficient estimates for multi-model analysis.

Observations [yi |β,γ ,Xi ,Si ,σ 2
] ∼MN (Xiβ + Siγ ,σ 2I ) NSRDB

[xi1|ρ1,θ1,µ1], . . . , [xi
M
|ρM ,θM ,µM ] sampled RCMs on native grid and

for all days

Latent process [0−1(x∗
k

(u, t))|ρk,θk] for k = 1, . . .,M and t = 1, . . .,T

Priors on statistical parameters [β,γ ,σ 2, {ρk}, {θk}]

3.2 Approximate BHM

From a Bayesian perspective, this posterior is a complete
characterization of the uncertainty in all unknown quantities.
Unfortunately, in this case, as in many BHMs, there is not a
closed form for the normalized posterior, and so one approx-
imates this distribution. In our case a complete sampling of
the posterior is complicated by the fact that the posterior for
the Gaussian process covariance parameters is coupled to the
linear model through the RCM covariates. Because the linear
model only depends on the RCM through its value at the ob-
servation grid, one can break the sampling into two obvious
steps and, in so doing, arrive at the usual strategy used for
regridding.

Step 1 Bayesian regridding. Sample Xik from the density
proportional to

[Xik|{x
∗

k (uj , t)},ρk,θk][ρk,θk].

Step 2 Bayesian linear model. Sample β,γ ,σ 2 from the
density proportional to

[yi |β,γ ,Xi,Si,σ 2
][β,γ ,σ 2

].

The first step has been studied by several authors (Hand-
cock and Stein, 1993; Finley et al., 2013) and is imple-
mented with publicly available software and approximations
for larger numbers of locations. This step can be approxi-
mated further by an empirical Bayes assumption where the
maximum likelihood estimates (MLEs) for ρk , θk , and µk are
substituted into the conditional distribution. Explicitly this
approximation leads one to sample Xik from a multivariate
normal distribution:

Xik ∼MN (µik,6
i
k).

Here, µik is the conditional mean for the RCM field on the
target grid given the values on the native grid and given the
covariate parameters at the MLE. 6ik is interpreted as the
conditional covariance matrix describing the variation for the
target grid values conditional on the native grid ones. Sam-
pling from this distribution for fixed covariance parameters is
referred to as conditional simulation in geostatistics, and sev-
eral computational algorithms have been developed for large
problems. We also note that the conditional mean vector, µik ,

in this setting is the well-known kriging spatial prediction
from geostatistics. Finally, in this step, if one skips any sam-
pling and sets Xik ≡ µ

i
k , then this is the standard practice for

regridding.
Several regridding methods were considered for this study,

including thin-plate splines and bilinear interpolation. The
chosen method, kriging with an exponential covariance func-
tion, performed the best when considering mean-squared er-
rors on test data. Because this study is focused on the un-
certainty in this step itself and, more importantly, the down-
stream effects of the regridding step, a single regridding
method was chosen. The differences between regridding and
interpolation methods themselves are considered in other
studies (McGinnis et al., 2010).

The second step, conditional on having Xi in hand, is a
standard Bayesian linear model. In our case, although not
necessary, we adopt a noninformative, uniform prior on β,γ ,
and log(σ 2), written as follows:

[β,γ ,σ 2
|Xi] ∝ σ−2,

giving a posterior of

[β,γ ,σ 2
|yi,Xi] = [β,γ |σ 2,yi,Xi][σ 2

|yi,Xi]. (3)

For the first term,

[β,γ |σ 2,yi,Xi] ∼MN ((β̂, γ̂ ), (σ 2�)−1), (4)

where β̂ and γ̂ are the ordinary least-squares point estimates
for the parameters, and

�(Xi,Si)=
(

(Xi)TXi (Xi)T Si

(Si)TXi (Si)T Si

)
.

The marginal posterior distribution for σ 2 is taken from
the inverse Chi-square distribution:

[σ 2
|yi,Xi] ∼ Inv−χ2(n− k,s2),

where s2 is the unbiased variance estimate, also from ordi-
nary least squares. The resulting posterior distributions for β
and σ 2 can then be compared to the linear model estimates
for each location from Eq. (1). As a final approximation, the
Bayesian computation can be made more efficient by omit-
ting the posterior uncertainty in σ 2 and substituting the point
estimate into the first conditional density.
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In summary, starting with a general formulation of predict-
ing a field based on misregistered spatial covariates, we have
detailed the series of approximations to identify the regrid-
ding algorithm. Here the RCM covariables are found by geo-
statistical prediction and substituted for the unknown fields
values. The problem with this approach is highlighted by the
matrix �−1 in Eq. (4), which determines β̂ and its uncer-
tainty and is a nonlinear function of Xi . Thus substitution
of a conditional mean of Xi into this expression will not be
equivalent to the better approximation afforded by the sam-
pling in step 2 above. In particular,�(Xi,Si)−1 is a nonlinear
function ofXi . The conditional mean of the matrix inverse is
not the same as substituting the conditional mean forXi , and
this difference suggests the BHM is the correct approach for
quantifying the uncertainty calculated from �(·).

3.3 Autoregression component of BHM

It is worth mentioning that, in the above analysis, there
is no time series addition to explain possible autocorrela-
tion in the residuals. However, we determined that a tem-
poral component may not be necessary through fitting sev-
eral auto-regressive moving average models of order p and
q (i.e., ARMA(p,q)) and assessing the resulting Akaike in-
formation criterion (AIC) and Bayesian information crite-
rion (BIC) values. Across the 4 months considered (February,
May, August, November), ARMA(0,0) was largely the best
model according to both AIC and BIC. However, in August,
an MA(2) model had the lowest AIC. Across all months, the
model with the second lowest AIC or BIC was frequently an
MA(2) or MA(1), followed by an AR(1) model. Although not
crucial to our case study, for completeness, we have included
below how the analysis would change with the addition of a
time series component for the Bayesian analysis.

With a time series component for εi in Eq. (1), the final
prediction results will be similar to those from the model
in the previous section, but the prediction variance will be
affected by the inclusion of an ARMA(p,q) model. Since
single-parameter models (i.e., AR(p) or MA(q)) had lower
AIC and BIC more frequently than higher-order models (i.e.,
ARMA(p,q)), the time series parameter for both MA and
AR models will be denoted generically by η in the follow-
ing.

The joint posterior in Eq. (3) becomes

[β,γ,σ 2,η|yi,Xi] = [yi |β,Xi,σ 2,γ,η][β][σ 2
][η].

Then, the joint density conditional on all parameters is

[yi |Xi,β,σ 2,η] ∼MN ((β̂, γ̂ ),σ 2�(η)),

where now, the covariance matrix σ 2�(η) depends on the
autocorrelation parameter(s) η. This is useful for single-
parameter time series models, such as AR(1) or MA(1), as
well higher-order models ARMA(p,q) that are also causal

and therefore can be written in an MA(∞) representation:

Xt =

∞∑
j=0

ajwt,j · · ·,

and it can be shown that the MA(∞) process has the autoco-
variance function

COV(Xt ,Xt+h)= γ (h)= σ 2
∞∑
j=0

ajaj+|h|,

with the parameters a′j s depending on p and q from the AR
and MA processes, respectively.

We now find the marginal posterior for [η|yi,Xi]. This can
be done by averaging over β,σ 2:

[η|yi,Xi] ∝

∫
[yi,Xi |β,σ 2,η][β,σ 2,η]dβdσ 2.

After some algebra, [η|yi,Xi] remarkably has a closed form,
found through this integration:

[η|yi,Xi] ∝
1

(SS)(n−p)/2+1
|XT�(η)−1X|1/2

|�(η)|1/2
,

where SS=
∑n
i=1(yi − f̂ (Xi))2 is the residual sum of

squares found by fitting the linear model to yi conditional
on Xi . With the marginal posterior distribution for η read-
ily available, one samples values of η and continues with the
analysis as outlined previously. Section 3.2 can be carried out
by transforming the data and response through multiplying
by �(η)−1/2, converting to an ordinary least-squares prob-
lem.

4 Solar radiation example

The model described in Sect. 3 was fit once for each location
in a subset area of California, shown in the far-right bottom
panel of Fig. 2, which includes coastal and inland areas. Ad-
ditionally, the model was fit for 4 separate months (February,
May, August, and November) across all years of overlapping
data (1998–2009). Initially, all covariates are included in the
model. However, not all covariates were found to be signifi-
cant. In particular, the CanRCM4.ERA-Int was found to hold
no significance for the months of February, May, and Novem-
ber for most locations and no significance for about half of
the locations in the month of August. The seasonal covariate
held no significance for any of the months, which is expected
since the data were subset into a single month from each sea-
son. Because of this, the seasonal covariate was removed for
all 4 months.

4.1 Posterior distribution of model coefficients

Often, the regridded data set resulting from kriging is used
as the ground truth for further analysis. This section outlines
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Figure 2. Posterior predictions for each coefficient compared to the naive regridding estimates for a particular location in California for
February, May, August, and November (1998–2009). The solid dots represent the point estimate for the naive regridding method and the
median value of the posterior distribution from the Bayesian method. The whiskers represent the 95 % credible and confidence intervals for
the posterior distribution and the naive regridding estimates, respectively.

the method for analyzing the uncertainty associated with the
regridding and linear model prediction step and downstream
effects by generating draws from the posterior distributions
of each β in Eq. (1).

The study design is as follows. For each RCM, 100 in-
dependent draws are made from the conditional distribution
onto the NSRDB grid. This is step 1 outlined in Sect. 3.2.
For each of these simulations, 50 draws from the posterior
distribution for β and σ 2 are taken, resulting in 5000 poste-
rior draws. This is step 2 in Sect. 3.2. Since each conditional
simulation is equally likely, the posterior draws are aggre-
gated and summarized together. This is done for each of the
114 locations in the study subset. The 95 % credible inter-
vals for the posterior distribution and the 95 % confidence
interval for each β̂ are also considered. The 95 % credible
intervals from the posterior distribution for the linear model
parameters are determined by taking the 2.5 and 97.5 sample
quantiles across the posterior samples.

4.2 Prediction coverage

This study also considers the coverage of the posterior pre-
dictions, i.e., the fraction of days where the prediction inter-
val contains the actual value observed. This portion of the
analysis holds out a single year of data as a testing set, us-
ing the remaining years as a training set. There are 12 years
of overlapping data, resulting in 12 out-of-sample prediction
results. The final coverage is the average coverage for the 12
folds.

5 Results

The results presented here summarize the metrics outlined in
Sect. 4. As the true coefficients are not known, we have sup-
plemented the analysis with a simulation study. The design
and results for this study are described in Appendix A.

https://doi.org/10.5194/ascmo-9-103-2023 Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, 2023



110 M. D. Bailey et al.: Regridding uncertainty

Figure 3. Average bias by location between the naive regridding estimate and the median of all posterior distributions for February, May,
August, and November, top to bottom, respectively.

5.1 Posterior distribution of model coefficients

Resulting parameter estimates from the posterior distribution
vary by location and coefficient. Here we will refer to param-
eter bias as the difference between the naive estimate and that
based on the Bayesian analysis. In general, the naive regrid-
ding model coefficient estimates are within the 95 % credible
intervals of the posterior distributions for the respective co-
efficient. An example of the distributions compared to the
naive regridding estimate can be seen in Fig. 2 for a location
near the coastline of California across 4 different months.
The green lines represent the naive regridding method, and
the purple lines represent the Bayesian regridding method. In
general, there is strong agreement between the two methods
in both the point or median coefficient estimate, as well as
in the confidence or credible intervals, suggesting that incor-
porating the uncertainty associated with the regridding step
has little effect on model estimates. However, in the month
of August (bottom-left plot), we see a case for the WRF co-
efficient where the methods do not agree and where this bias
is offset by the intercept estimate. This bias in the WRF co-
efficient was seen across many locations for the month of
August.

For the entire area considered, the average bias by location
is shown in Fig. 3. The bias is calculated as the BHM esti-
mate subtracted from the naive regridding estimate. Values

close to zero indicate little difference between the two meth-
ods. Negative values indicate that the BHM gives a stronger
weight to the model. The spatial patterns of the bias are most
pronounced for the month of November and are also large
for the month of August. In November, the average biases be-
tween the CRCM5-UQAM and WRF coefficient are spatially
opposite in their signs but both hover around zero. Here, we
can see that the naive method and BHM disagree most for
the WRF coefficient in the month of August, with the naive
method resulting in a much higher weight for WRF com-
pared to the BHM. For additional reference, the estimated
coefficient estimates and standard errors are provided in Ap-
pendix B.

5.2 Prediction coverage and error comparison

The prediction coverage of the naive regridding is calculated
as the percentage of observations that are within the predic-
tion intervals of the linear model. This is calculated by loca-
tion for each of the 4 months considered. A similar method
is implemented to calculate the coverage resulting from the
BHM. We show results for the 4 months in Fig. 4. Note that,
in the figure shown, the percent coverage reported is an aver-
age for holding out each year and is shown as the difference
from the nominal level of 0.95. We see similar results for the
out-of-sample coverage compared to the naive regridding.
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Figure 4. Coverage probability shown as the difference from the nominal level (0.95) by location after holding out each year from 1998–
2009 individually for the 4 months considered. Bayesian model results are in the top row, and naive regridding results are in the bottom row.
Coverage is similar between the two models, hovering around 0.95, and is slightly higher in August.

Similarly, the RMSE between the predicted GHI and the
true GHI is lower across the study domain for August than it
is for November in both the naive regridding model and the
BHM, indicating better predictions for the summer month
compared to the winter month. This is shown in Fig. 5. This
finding may reflect a characteristic of seasonal solar radia-
tion. Incoming solar radiation during summer months typi-
cally has a lower standard deviation when considered on a
monthly or seasonal basis than in winter in California, indi-
cating that there is less variability in day types (i.e., cloudy
versus sunny) or in the amount of incoming solar radiation
during the summer compared to the winter. Therefore, it
makes sense that predictions have a lower RMSE in the sum-
mer months as the covariables and response have less vari-
ability during that season. The RMSE values are also lower
for the naive regridding than they are for the BHM across
the 4 months shown. When regridding uncertainty is taken
into account, the predicted GHI values have a higher error
than when prediction is done directly without considering
regridding uncertainty. This is an interesting finding in that
it suggests that doing prediction directly without consider-
ing any uncertainty may produce more accurate point predic-
tions, but regridding uncertainty contributes additional vari-
ability to the final point estimates, as seen in the BHM.

6 Conclusions

This study analyzes the uncertainty in the regridding of spa-
tial data from climate models, which is often the first step

in multi-model climate analysis. Solar radiation data are re-
gridded from their native grid, using kriging with an expo-
nential covariance function and a log-linear transformation,
to the same grid as the NSRDB. Second, we implement a
BHM to estimate linear model weights while incorporating
the uncertainty associated with the regridding step. Finally,
we compare the two and provide an additional simulation
study in Appendix A. The naive regridding model coefficient
estimates were found to be within the range of the posterior
distributions of the model coefficients in most cases. Season-
ally, the month of August produced a mismatch between the
naive regridding coefficient and the posterior distribution for
the WRF RCM forced by ERA-Interim. In particular, we saw
that the resulting coefficient estimates in this month for the
WRF were higher in the naive method than the BHM. This
suggests that, when regridding uncertainty is taken into ac-
count, there is a smaller increase in the WRF data for unit
increases in the NSRDB or that the regridding uncertainty
may result in less bias from the WRF in this particular case.

It was found that the posterior coverage for test data for
the simulated fields was similar to the naive regridding esti-
mates for the months of August and November. This suggests
that, when taking into account the regridding uncertainty of
the simulated fields and the model parameters themselves,
the true value of solar radiation in this case is still likely
to be covered by the 95 % credible interval. Therefore, if
the conditional mean of the regridded field were taken for
ground truth, as it often is, downstream effects of regridding
on modeling appear to be minimal in the case of solar radi-
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Figure 5. A comparison of the RMSE values for out-of-sample prediction for the 4 months considered. Bayesian model results are in the
top row, and naive regridding results are in the bottom row. The RMSE is generally higher for the Bayesian results and in November for both
models.

ation. However, the BHM had higher RMSE values than the
naive regridding models in the months considered, indicating
that the addition of the regridding uncertainty increased pre-
diction error for out-of-sample prediction. It is important to
note that the naive regridding coefficient estimates give good
predictions but are not appropriate to assess the model biases
directly since model biases are dependent on regridding.

Finally, this analysis serves as a framework for under-
standing regridding effects within the context of solar ra-
diation. While this study did not find situations where the
BHM regridding consistently outperformed the naive regrid-
ding method, we note that this analysis revolves around the
chosen variable: GHI. It has been shown that the chosen re-
gridding method has an impact on the extremes of distribu-
tions (McGinnis et al., 2010); however, extremes are not cen-
tral to solar radiation. A future analysis applying the BHM
regridding method to climate variables where extremes of the
data are more widely studied, such as precipitation or tem-
perature, may yield different results and provide an example
where the method proposed in this paper might show higher
uncertainty in downstream modeling. Additionally, this study
takes into account a single type of regridding (kriging with an
exponential covariance), and this analysis could be extended
to other types of interpolation to understand the downstream
effects of those particular methods.

Appendix A: Simulation Study

Here we implement a short simulation study which high-
lights some of the main differences, as well as similarities,
between the naive method and the BHM.

Table A1. Covariance arguments used to simulate RCM data. All
covariance functions are a Matérn with smoothness = 1. No mea-
surement error is included.

Marginal variance Range

RCM1 (CanRCM4) 0.58 8.02
RCM2 (CRCM5-UQAM) 0.095 2.81
RCM3 (WRF) 0.16 4.62

A1 Simulation study setup

For this simulation study, we utilize the same grids from the
original regional climate models. The full grids used in the
original study are shown in the top row of Fig. A1 with the
RCM grids in gray and the NSRDB grid over California in
blue. The magenta points represent the subsetted area used
in the regridding study, which will be also be used in this
short simulation study. The bottom row of Fig. A1 shows
the grids used for this simulation study. The gray and blue
dots show the true grids which include both the RCM and the
NSRDB grid. The magenta points are again the simulation
study area on the NSRDB grid. This will be explained more
fully in the next section. We added a 2◦ buffer around the
final study domain in magenta to avoid any edge effects in
the simulation and regridding steps.

A2 Simulation study steps

The simulation study follows these steps:
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Figure A1. (a, b, c) Original RCM grid for the three RCMs used in the regridding study, plotted with NSRDB grid in blue. Magenta points
represent the study area from the regridding study in the main text. (d, e, f) Subsetted grids used in the simulation study.

Figure A2. Value of β fixed at each location in the study area.

1. Simulate ground truth data 100 times on the combined
grids shown in Fig. A1. This is done using the Cholesky
decomposition to result in an exact simulation of the
Gaussian process given fixed covariance arguments.
That is, for a fixed σ 2 and θ , the process has the co-
variance function

Cν(d)= σ 2 21−ν

0(ν)

(
√

2ν
d

θ

)ν
Kν

(
√

2ν
d

θ

)
(A1)

for a distance d between two grid points. The covariance
arguments that were estimated in fitting a spatial model

to the RCM data for the month of August in the original
study were again used here to create a realistic spatial
process. This results in three sets of combined RCM and
NSRDB data that follow the same defined GP. Each of
the 100 fields represents a day of data. Since these days
were assumed to be independent in our original study,
we maintain this independence in the simulation here.
The parameters used for each Gaussian process are in
Table A1.

2. Subset the gray points in the bottom row of Fig. A1 to
only the points that fall in the original RCM grid, in gray
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in the top row of Fig. A1. The true NSRDB observations
are generated by weighting each RCM grid in a linear
model by location:

yi = β0+

3∑
j=1

βjX
i
j + ε

i, (A2)

where εi ∼N (0,γ i), and γ i is fixed as the estimated
variance of the residuals from the regridding study in the
primary paper for the month of August. The estimated
coefficients from the naive method for the same month
from the original study are used here as weights for each
RCM to create a realistic observation set on the magenta
points or the NSRDB study area.

3. Regridding and model fitting are done for each method
in the following way:

a. Bayesian regridding. Conditionally simulate each
day or field 100 times onto the NSRDB study area
from the RCM grids. For each simulation, run the
BHM as described in Sect 3.2, and take 50 draws
from the posterior distribution for each coefficient,
resulting in a posterior distribution for each location
and for each coefficient.

b. Naive regridding. Regrid once from the RCM grid
to the NSRDB grid using kriging. Then estimate a
linear model for each location across the 100 d, or
fields.

4. Compare the coefficient estimates and standard errors of
the coefficients from the naive regridding and the BHM
regridding method.

A3 True coefficients

In step 2, the true response, representing the observations
from the NSRDB, is generated by weighting each RCM at
each location in the study area across all 100 d. These co-
efficients are set by taking the average β̂ from the BHM
in the original study. The true values for the intercept and
each RCM at each location are shown in Fig. A2. The
weights correspond to the weights estimated for the Can-
RCM4, CRCM5-UQAM, and WRF. The WRF had the high-
est weight between the three RCMs in the original study.

A4 Results

The raw differences relative to the RMSE between the es-
timated β̂ from the linear model and the mean of the pos-
terior distribution for the BHM are shown in Fig. A3. Gen-
erally, relative to the overall variation of the error, the dif-
ference between the true and estimate coefficients is smaller
for the BHM and higher for the naive method. This indicates
that the regridding uncertainty decreases the raw error in the

estimated weights. We also see that, for the largest weight
(RCM3), the BHM slightly underestimates β3, but the naive
method sees larger errors. In general we can say that the bias
between the estimates from the BHM is lower than that of
the naive regridding method.

We can also look that raw error without normalizing by
the RMSE, seen in Fig. A3. This figure shows similar errors
between the two methods compared to the true coefficients.
The exception is seen in the coefficient estimate for RCM3,
which is slightly overestimated by the BHM when consider-
ing the raw difference compared to the RCM, which slightly
underestimates or is closer to the true coefficient.

One interesting finding is that the coefficient standard er-
ror is larger for the posterior distribution of the BHM esti-
mates than it is for the naive coefficient estimates. This is
seen in Fig. A4, where the top row shows the standard error
for the naive regridding coefficient estimates, and the bottom
row shows the posterior standard deviations of the BHM esti-
mates. The coefficient standard error for the BHM estimates
is, on average, 46 % larger than it is for the naive method.
This signifies that incorporating the regridding uncertainty
results in a slightly wider range of potential weights for the
RCMs in predicting the observed values. However, the differ-
ence in the standard error is not large, and because the pos-
terior mean of the BHM coefficient estimates and the naive
regridding estimates are very similar, this result may not have
much of an effect in this application.

A5 Simulation study conclusions

This simulation study highlights some important differences
between the naive regridding and BHM regridding meth-
ods. In particular, the biases between the true coefficients
(weights) and the estimated weights is smaller relative to the
error variance for the BHM and larger for the naive method.
This indicates that, when regridding uncertainty is taken into
account, the BHM is more precise in estimating the RCM
weights. This finding is further emphasized in the standard
error of the coefficients for the two methods. This value is
lower for the BHM than it is in the naive method, though
the difference in standard error between the two methods is
small. Overall we can conclude that taking regridding un-
certainty into account results in more precise estimates for
model weights when predicting observed values based on
climate model output. This precision provides increased un-
derstanding in which climate model may have higher impor-
tance in predicting observed outcomes and, therefore, future
projections for solar radiation.
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Figure A3. Top: bias between the resulting coefficient estimates from the two methods and the true coefficients. Bottom: bias between the
resulting coefficient estimates normalized by the RMSE between the true and estimated coefficients from each method.
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Figure A4. Standard error of the estimated coefficients at each location in the simulation study area.
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Appendix B: Regridding coefficient estimates

Figure B1. Coefficient estimates for the intercept and each RCM for each month considered between the two methods.
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Figure B2. Standard error of the coefficient estimates for the intercept and each RCM for each month considered between the two methods.
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