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Abstract. Daily meteorological data such as temperature or precipitation from climate models are needed for
many climate impact studies, e.g., in hydrology or agriculture, but direct model output can contain large system-
atic errors. A large variety of methods exist to adjust the bias of climate model outputs. Here we review existing
statistical bias-adjustment methods and their shortcomings, and compare quantile mapping (QM), scaled dis-
tribution mapping (SDM), quantile delta mapping (QDM) and an empiric version of PresRAT (PresRATe). We
then test these methods using real and artificially created daily temperature and precipitation data for Austria.
We compare the performance in terms of the following demands: (1) the model data should match the climato-
logical means of the observational data in the historical period; (2) the long-term climatological trends of means
(climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment;
and (3) even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so
that the wet day frequency is conserved. QDM and PresRATe combined fulfill all three demands. For (2) for
precipitation, PresRATe already includes an additional correction that assures that the climate change signal is
conserved.

1 Introduction

Daily data from climate models are used for various ap-
plications, e.g., in hydrology, silviculture and for general
climate risk studies (e.g., Horton et al., 2017; Seidl et al.,
2019). However, simulated outputs from global climate mod-
els (GCMs) and regional climate models (RCMs) can ex-
hibit large systematic biases relative to observational data
sets (Mearns et al., 2013; Sillmann et al., 2013). Such sys-
tematic errors can be statistically adjusted with gridded ob-
servations. Those adjusted data sets are widely used (e.g.,
Bao and Wen, 2017; Thrasher et al., 2012; Chimani et al.,
2016) but are controversial due to various errors introduced
by statistical adjustment. Later in the introduction we pos-
tulate three demands we have for bias correction which were
the result of reviewing several methods for statistical bias ad-
justment.

Simple methods that only correct the mean and/or the vari-
ance of the model data have been introduced (Maraun, 2016;
Lafon et al., 2013; Widmann et al., 2003) and are still in

use due to their simplicity (Navarro-Racines et al., 2020).
Models may have different biases for extremes than for av-
erage values (Di Luca et al., 2020a, b). To improve the dis-
tribution of meteorological variables, more sophisticated ap-
proaches have been introduced. They adjust every quantile
of the cumulative distribution functions (CDFs) according
to the differences between daily modeled and observational
data during a reference period. There are many different vari-
ations and names for this method in the literature: variable
correction method (Déqué, 2007), distribution-based scaling
(Yang et al., 2010; Seaby et al., 2013), distribution mapping
(Teutschbein and Seibert, 2012), statistical bias-correction
(Piani et al., 2010), statistical transformation (Gudmunds-
son et al., 2012), quantile–quantile mapping (Hatchett et al.,
2016; Potter et al., 2020; Charles et al., 2020) or quantile
mapping (QM) (Lafon et al., 2013; Themeßl et al., 2011; Ma-
raun, 2016).

The distribution of meteorological variables can be de-
scribed with empirical CDFs which is a non-parametric ap-
proach (e.g., Cannon et al., 2015). Many QM methods use a
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parametric approach instead (e.g., Hempel et al., 2013; Piani
et al., 2010; Switanek et al., 2017), where statistical func-
tions such as gamma or normal distributions are fitted to the
CDFs. Whether to use a non-parametric or a parametric ap-
proach is still in scientific discussion (Teng et al., 2015), but
the non-parametric approach is more common. Lafon et al.
(2013) compared non-parametric (empirical) and parametric
QM and found that the empirical approach was the most ac-
curate. Cannon et al. (2015) and Gudmundsson et al. (2012)
also prefer the empirical QM. Themeßl et al. (2012) point out
that parametric QM can introduce new biases, because the
distribution of a meteorological variable is not fully known
and also depends on the region and season. However, non-
parametric QM depends more on the calibration period than
parametric QM. Switanek et al. (2017) argue that the correc-
tion of extremes is more robust with a parametric approach,
as the return level of the most extreme event is somewhat ran-
dom. This can be improved by fitting function to the distri-
butions. Examples for the classification of methods as para-
metric or non-parametric is shown in Table 1.

One key feature of traditional QM is that it may alter the
raw climate change signal (CCS) found in the model (i.e., the
change of the arithmetic mean of a meteorological variable
over time) (Hagemann et al., 2011; Maurer and Pierce, 2014;
Maraun, 2013, 2016). This may sometimes be a desired fea-
ture, as the CCS of the model itself could be biased (Boberg
and Christensen, 2012; Gobiet et al., 2015). In some cases, it
has been argued that CCS-changing bias-adjustment methods
may even improve implausible trends (Maraun et al., 2017).
Particularly, if the model has large errors in circulation pat-
terns, CCS-preserving bias adjustment may amplify the bias
(Maraun et al., 2021) and thus lead to implausible trends.

This means that the choice of a climate model with plausi-
ble weather patterns and a plausible CCS is crucial (Maraun
et al., 2021). If the trend simulated by the model is trustwor-
thy (see Sect. 12 in Maraun and Widmann, 2018 for further
discussion on this topic), one might want to keep the trend
unchanged after bias adjustment. As a workaround for trend
preservation, Bürger et al. (2013) and Hempel et al. (2013)
removed the trend before QM and added the trend back again
after bias adjustment (detrended quantile mapping – DQM).
A trend-preserving method termed as quantile delta mapping
(QDM) was developed by Cannon et al. (2015). It was im-
plemented as a parametric, slightly changed method by Swi-
tanek et al. (2017) who named their approach scaled dis-
tribution mapping (SDM). A very similar approach termed
the equidistant CDF matching method (EDCDFm) was intro-
duced by Li et al. (2010) which was later improved by Pierce
et al. (2015). Cannon et al. (2015) prove in their appendix
that EDCDFm and QDM are equivalent in the end however
different they are in concept.

Bias adjustment methods that do not alter the CCS implic-
itly assume time invariance (Maraun and Widmann, 2018)
for the bias, i.e., that the mean bias is time-independent
and therefore the predicted trends are credible. Methods

that do not alter the CCS include MBSC (Grillakis et al.,
2013, 2017), QDM, PresRat, EDCDFm and SDM. In the end,
all five of these methods assume that the biases at quantiles
do not change over time (overview in Table 1). In contrast,
QM implicitly assumes a constant bias at a certain value and
determines the quantile for a given future value from the cal-
ibration distribution (hence the name quantile mapping). In
other words, QM assumes stationarity of the bias for each
quantile with quantiles derived from the calibration distribu-
tion regardless of whether a value is taken from the calibra-
tion or from the future periods. QDM and similar methods
assume a stationary bias for each quantile but with the quan-
tiles for a value from the future period derived from the future
distribution.

Note that the definition of the time-invariance assump-
tion, sometimes also called stationarity assumption (Swi-
tanek et al., 2017), is inconsistent in the literature. For exam-
ple, Switanek et al. (2017) state that standard QM has the un-
derlying assumption of time-invariant stationarity contradict-
ing Maraun and Widmann (2018). We assume these inconsis-
tencies come from different definitions. Stationarity can re-
fer to a time-independent mean bias or to a time-independent
bias found at certain absolute values of a meteorological vari-
able. Since QM does alter the CCS, we conclude that QM
implies that the mean bias changes over time.

EDCDFm and QDM are always capable of preserving the
CCS in the median (and also at every quantile). If applied ad-
ditively, this also holds true for the arithmetic mean. For pre-
cipitation, a multiplicative approach is more suitable. Pierce
et al. (2015) call the multiplicative method PresRAT; it pre-
serves the model-predicted CCS in median (and also at every
quantile) but not the mean CCS. It may make sense to correct
the mean CCS on a monthly, seasonal or annual basis after
bias adjustment (Pierce et al., 2015).

Most of the bias-correcting methods correct a wet day bias
of a climate model (i.e., the number of wet days above a spe-
cific precipitation threshold) only if the model has a posi-
tive wet day bias. However, in some rare cases, the model
may have too few wet days. Often, a multiplicative bias ad-
justment is selected for precipitation (e.g., Switanek et al.,
2017; Pierce et al., 2015; Cannon et al., 2015). To avoid di-
vision by zero during bias adjustment, dry days have to be
treated separately. Only few studies have focused on correct-
ing a negative wet day bias, with one of them being Themeßl
et al. (2012). They use a simple linear interpolation to fill
the gap of wet days in the precipitation CDF. This does not
necessarily conserve precipitation sums, because the CDF of
precipitation does not follow a linear curve. Some authors
solved this problem by modifying the dry days prior to bias
adjustment (Cannon et al., 2015; Cannon, 2018; Mehrotra
et al., 2018; Vrac et al., 2016). The latter authors named the
method singularity stochastic removal (SSR). This method is
already part of QDM from Cannon et al. (2015) and in Pres-
RAT from Pierce et al. (2015), although in their papers there
is no explicit name for this wet day correction.
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There is no single best bias-adjustment method that fits
all needs. The advantages and disadvantages of the bias-
adjustment methods mentioned here depend on the applica-
tion. Maraun and Widmann (2018) and Doblas-Reyes et al.
(2021) comprehensively review the whole topic, the mo-
tivation behind bias adjustment and the historic develop-
ment. Generally speaking, distribution-based methods like
QM usually outperform other simpler methods like mean
bias adjustment, as shown by Lafon et al. (2013) or Themeßl
et al. (2011). In Pierce et al. (2015), EDCDFm is preferred
over QM because it does not alter the CCS. Casanueva et al.
(2020) tested SDM, DQM, QDM, an empirical and a para-
metric QM, and others and concluded that trend-preserving
methods like SDM and DQM are preferable. Large compar-
ative studies (Maraun et al., 2019; Gutiérrez et al., 2019;
Widmann et al., 2019) provide an overview of many bias-
adjustment methods.

The goal of this paper is to find a suitable quantile-based
bias-adjustment method that could be used for climate impact
modeling studies that are sensitive to the changes in means to
thresholds effects. In the course of this, we will also show the
systematical differences of several methods. We choose to
focus only on quantile-based methods, because they usually
outperform simpler methods, as described above. We posit
that three important demands should be met:

1. The bias-adjusted data should match the observational
data in the historical period in terms of arithmetic mean.

2. The CCS should not be altered during bias adjustment.
In other words the mean change between historical and
simulated future period from the raw model should be
preserved. This should also hold true for the ratio of the
CCS, if the bias adjustment is applied multiplicatively.

3. Models with too few wet days should be corrected rea-
sonably, which means that a way has to be found to add
wet days.

In this paper we compare how well certain quantile-based
bias-adjustment methods meet these three demands. SDM is
selected because it has been used for larger projects in Aus-
tria (Chimani et al., 2016, 2019), it outperforms other meth-
ods (Casanueva et al., 2020) and it is a parametric method.
Traditional empirical QM is widely used and is part of many
comparison studies (Widmann et al., 2019; Maraun et al.,
2019; Pierce et al., 2015; Casanueva et al., 2020; Smith et al.,
2014). As a third method, we use either QDM (Cannon et al.,
2015) or PresRAT (Pierce et al., 2015). The latter is only
used for precipitation, and the slight difference between the
two methods is described in Sect. 3.3. We apply them in an
explicitly empirical (non-parametric) manner, as we experi-
enced problems with fitting functions to the CDF of daily
precipitation values (Vlček and Huth, 2009). This empiri-
cal aspect is an important feature of these two methods. In
Pierce et al. (2015) it is not clearly stated if PresRAT is an

Figure 1. Area of interest with Austrian state borders. © European
Union, Copernicus Land Monitoring Service 2020, European Envi-
ronment Agency (EEA).

empiric or a parametric approach. Table 1 shows a classifica-
tion of quantile-based bias-adjustment methods. The meth-
ods in bold are used in this paper and are representatives of
all methods that are within each of the groups.

2 Data and area of interest

This study focuses on Austria which is located in Central
Europe and is representative of a mountainous area in the
middle latitudes. The topography is shown in Fig. 1. A large
part of the Eastern Alps are within the Austrian borders.
The elevation ranges from 114 m in the east of Austria to
3798 m a.m.s.l. on the highest mountain. Because of the com-
plexity of the topography, the spatial resolution of GCMs and
also RCMs is not sufficient to resolve mountain ridges and
valleys. The climatological properties can change within a
few kilometers due to topographically induced effects (Stauf-
fer et al., 2017).

Austria has a large number of high-quality weather obser-
vation stations that are operated by Zentralanstalt für Mete-
orologie und Geodynamik (ZAMG). Also, gridded observa-
tional data sets called SPARTACUS for minimum tempera-
ture, maximum temperature and precipitation are available
on a daily basis at a high spatial resolution of 1 km (Hiebl
and Frei, 2016, 2018). The time span reaches from the year
1961 to 2019. SPARTACUS mostly uses stations with long
time series to provide robust trends for climate change.

For the observational data, SPARTACUS (Hiebl et al.,
2020) in its unchanged form is used (hereafter named OBS).
For model data, synthetic data are produced by smoothing
SPARTACUS data with a running mean of 12 km. This is a
typical spatial resolution of RCMs.

To generate artificial data with loo few wet days and too
little precipitation, the data were further manipulated. This
was done by multiplying the precipitation of each day with a
uniformly distributed random number between 0 and 1. Fur-

https://doi.org/10.5194/ascmo-9-29-2023 Adv. Stat. Clim. Meteorol. Oceanogr., 9, 29–44, 2023



32 F. Lehner et al.: Quantile-based bias adjustment for climate change scenarios

Table 1. Grouping of some quantile-based bias-adjustment methods in two categories. Note that this list is not complete. The methods in
bold are used in this work.

Parametric Non-parametric/empirical

Bias at fixed quantile/trend preserving EDCDFm (Li et al., 2010) PresRATe
MBSC (Grillakis et al., 2013, 2017) QDM (Cannon et al., 2015)
PresRAT (Pierce et al., 2015)
SDM (Switanek et al., 2017)

Bias at fixed value/trend altering DQM (Hempel et al., 2013) QM (Lafon et al., 2013; Themeßl et al., 2011)
QM (Piani et al., 2010; Lafon et al., 2013) QUANT (Gudmundsson et al., 2012)

thermore, a trend to even drier conditions was introduced by
successively canceling more and more wet days going from
1961 to 2019.

To show that the bias-adjusted model data do not always
match the observations in the historical period, we analyzed
data sets in Austria from the projects ÖKS15 (Chimani et al.,
2016; Leuprecht, 2016) and STARC-Impact (Chimani et al.,
2019). In both projects, the model data (Mendlik, 2018) were
bias adjusted with SDM (Switanek et al., 2017). These data
are freely available via the Climate Change Center Austria
(CCCA) and consist of bias-adjusted temperature and pre-
cipitation data from several RCMs at a spatial resolution of
1 km. The data are used for many climate impact studies in
Austria (e.g., Jandl et al., 2018; Unterberger et al., 2018).

We calculated climatological annual precipitation sums for
all models in ÖKS15 and STARC-Impact in the reference pe-
riod 1971–2000 and for the observation data set GPARD1 for
the same time period (e.g., Chimani et al., 2016; Hofstätter
et al., 2015). This period was used for bias adjustment in the
two projects. The bias for each model in the period 1971–
2000 is calculated as the difference between the mean of
models and observation. Figure 2a shows the bias of the do-
main average annual precipitation for each model. The mean
bias ranges from approx. −6 % for the driest model to +2 %
for the wettest model. The comparison on a grid cell basis on
the right side in (Fig. 2b) shows biases of more than 5 % for
the wettest 0.1 percentile, and a bias of approx. −25 % for
the driest grid cells. However, the median bias of all models
is +0.5 %, which we consider as quite good.

Looking further into all the models used in ÖKS15 and
STARC-Impact, we found that the largest errors occur in very
dry models with a distinct negative wet day bias. Therefore,
we focus on the bias adjustment of very dry climate models
in this paper.

3 Methods

This study focuses on implementing QDM and PresRATe to
bias-correct data from climate models and compares it with
two existing methods, namely QM and SDM. All methods
are quantile-based bias-adjustment methods that adjust the
climate model data to match the CDF of the observation.

Figure 2. Box and whisker plot for the relative annual precipitation
bias (%) of the ÖKS15 and STARC-Impact models (a total of 35
models) to the observational data set GPARD1 for the reference pe-
riod 1971–2000. A positive bias indicates that the model is wetter
than the observations. (a) Relative bias for the area mean for each
climate models in Austria. (b) Relative bias on a grid cell basis.
The upper (lower) whisker shows the 99.9 (0.1) percentile. The box
ranges from the 25th to the 75th percentile, the horizontal orange
line shows the median.

The daily data of each grid cell of the model are adjusted
separately with the observations on a monthly basis. For the
calibration data, a time period of 30 years is typical, since the
statistical distribution of data of a shorter time period can be
very noisy and a longer time period usually has pronounced
climatological trends.

3.1 Systematical differences of quantile-based methods

As discussed in the introduction, QM and QDM are system-
atically different when correcting future values. The model
bias in QM is fixed on the quantiles from the calibration dis-
tribution, hence, it is fixed on absolute values. QDM and sim-
ilar methods assume a stationary bias for each quantile but
with the quantiles for a value from the future period derived
from the future distribution.

We postulate that the bias of a climate model is corre-
lated to the modeled weather pattern. In other words, we
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consider that the RCM is able to predict a ranked category
of temperature or precipitation but not the value for this
variable (Déqué, 2007). If we assume that the frequency of
weather patterns does not change significantly over time,
this means that certain quantiles of temperature are linked
to certain weather situations. Because QM corrects abso-
lute values, regardless of the underlying weather conditions,
trends are modified. Thus, if one wants to preserve trends,
one must at least implicitly account for weather conditions.
Now, we argue that QDM and similar methods do this implic-
itly, assuming that weather situation frequencies change lit-
tle and that biases are primarily weather-situation-dependent
not absolute-value-dependent: a weather situation in the fu-
ture would then have a higher temperature value accordingly
but still the same quantile. This becomes more obvious when
shown in two examples:

– A cold winter day in Austria is related to moderate
northeasterly flows and usually high atmospheric pres-
sure with low wind and clear sky conditions. Cold trans-
lates to a low quantile for temperature. In future, the
error of the model in this weather situation is assumed
to stay constant. This weather situation will still trans-
late to a low quantile in the future distribution, however,
the absolute temperature values are higher (respectively,
the corresponding quantile calculated from the histori-
cal distribution is higher).

– Consider the daily maximum temperatures for a grid
point during a summer month in Europe, where three
quantiles of the observations in the reference period are
20, 25 and 30 ◦C. The model simulates 20, 30 and 32 ◦C
for the same period, i.e., there is a warm bias especially
in the middle quantile. QM would suggest 0, −5 and
−2 ◦C as correction values for the model values. For
the future period, the model simulates 25, 35 and 36 ◦C.
QM would correct this to 22.5, 33 and 34 ◦C. In this
example, values in between are linearly interpolated,
values above the range in the reference period (above
32 ◦C) are found through constant extrapolation; that
is, the correction value for the highest temperature also
applies for even higher temperatures. QDM corrects at
quantiles (not fixed values) which yields to 25, 30 and
34 ◦C. In this simple example, QDM seems to plausi-
bly correct the model’s warm bias at middle quantiles,
while QM does not.

This means that the two systematically different ways to ap-
ply a quantile correction influences the result. Traditional
QM may alter the raw CCS found in the model, while other
methods like QDM and PresRAT do not. Preserving the CCS
is a choice of the researcher and not an a priori given. Our
approach of correcting quantiles is also supported by Ma-
raun and Widmann (2018) who state that biases depend not
only on the actual values but more generally on the state of
the climate system. The effect of QM on the CCS can be seen

in Fig. 3. The resulting CDF of QM is much warmer than the
CDF of QDM. Also, Fig. 3 points out schematically where
the correction values are applied on the CDFs.

3.2 PresRATe (precipitation) and QDM (all other
variables)

QDM (Cannon et al., 2015) and PresRAT (Pierce et al.,
2015) are trend-conserving methods. We apply these meth-
ods strictly non-parametrically, as we experienced problems
with fitting functions to daily precipitation values (Vlček and
Huth, 2009); hence, we add the letter “e” for empiric (Pres-
RATe). QDM and PresRATe are almost equivalent. The dif-
ference between the two methods is that PresRATe adjusts
the CCS after the bias adjustment of precipitation, so that ei-
ther the mean monthly, seasonal or annual CCS of the raw
model is conserved (Sect. 3.3).

The mathematical description of QDM and PresRATe is
similar to EDCDFm in Eq. (2) in Li et al. (2010). The starting
point is the second and third term on the right side of this
equation which is the term that corrects the raw model data
as follows:

xcorr = xm−f+F
−1
o−c (Fm−f(xm−f))−F−1

m−c (Fm−f(xm−f))︸ ︷︷ ︸
correction term

, (1)

where xcorr is the time series of the corrected variable, xm−f
is the original time series of the variable, and F is the CDF
of either the observations (o) or model (m) for a historic (cal-
ibration) period (c) or future (projection) period (f). F is an
empirical function in this and all following equations. The
terms in brackets (Fm−f(xm−f)) are now replaced by F100
that consists of 100 equidistant values from 0.5 % to 99.5 %,
which are the 100 percentiles for which the CVs are defined
through Eq. (4):

F100 =


0.995
0.985
. . .

0.015
0.005

 (2)

CV= F−1
o−c (F100)−F−1

m−c (F100) . (3)

The number of 100 points seems to be a reasonable compro-
mise. A higher number would be less robust to extremes, as
especially the CVs of extremes would depend even more on
single extreme events. A lower number would provide less
detail about the distributional shape of the model bias. In
Eq. (3), the CVs are defined as the difference between two
inverse CDFs which is used for variables such as tempera-
ture and dew point.

For variables that have a meteorologically meaningful zero
value as a lower boundary, a multiplicative approach is more
useful, e.g., for precipitation, wind speed or global radiation
(see also Pierce et al., 2015). The CVs for those variables are
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Figure 3. Schematic of bias adjustment for temperature data. CDFs are shown for following data: observational data (black), raw historical
model (orange), raw future model (red), future model corrected with QDM (blue) and future model corrected with QM (purple). The arrows
illustrate the bias-adjustment path for future model data. Panel (a) shows QDM, where the model bias in the calibration period (left arrow) is
applied to the future model data (right arrow that has the same length as the left arrow). Panel (b) shows QM, where the correction value is
found at the model bias in the historical period of the same absolute value.

found by

CV=
F−1

o−c (F100)

F−1
m−c (F100)

. (4)

If the model wind speed and global radiation should ever
reach exact zero in the denominator, Eq. (4) would not be de-
fined. For this case, the corresponding CVs are manually set
to 0. For precipitation, the procedure is described in Sect. 3.4.
The CVs can be interpreted as the model bias for each quan-
tile of the model data at a given grid cell.

Any desired time period for bias adjustment is selected
(future or historical). It is possible to choose the calibration
period itself. The time period to be chosen is usually a 30-
year period, as for the calibration time period. For the final
bias adjustment, the CVs are added (Eq. 4 for temperature
and dew point) or multiplied (Eq. 5 for precipitation, global
radiation and wind speed) to the selected (e.g., future) model
data xm-f. This results in the bias-corrected data xcorr. Math-
ematically, this can be described as

xcorr = xm-fr +CVi (5)
xcorr = xm-fr ·CVi, (6)

where xm-fr is the ranked future model data and the CVs are
interpolated to CVi to match the length of xm-fr . This ensures
that every value of xm-fr is matched with the CV of the same
quantile. For values within the range of F100, the CVs are
linearly interpolated. For extreme data at both ends of the
distribution, the CVs have to be extrapolated. This is done
via constant extrapolation, i.e., the first (last) CV is used for
correcting data below (above) the outermost CDF value. All
model data values below the 0.5 % percentile are corrected
with the CV attached to the 0.5 % percentile, and model data
values above the 99.5 % percentile are corrected with the CV
attached to the 99.5 % percentile. As the result, xcorr is also
ranked, the values have to be rearranged in the original order
in the time series.

The graphical solution for bias adjustment for temperature
data is shown in Fig. 3. The temperature data in this plot are
artificially created following a normal distribution, where the
historical period is 1981–2010 and the future period is 2071–
2100. In this hypothetical case, the present-day model has a
significant bias in mean and variance as follows:

– The observational data feature a mean of 10 ◦C and a
standard deviation of 3.1 ◦C.

– The raw historical model (1981–2010) has a cold bias
in the data with a mean of 8 ◦C and a standard deviation
of 1.8 ◦C.

– The raw future model (2071–2100) is warmer with a
mean of 12.4 ◦C, but the standard deviation remains un-
changed to the historical model with a standard devia-
tion of 1.8 ◦C.

For the raw historical model, these distributions result in too
low temperatures at the upper end of the CDF and slightly
too high temperature at the lower end. During the bias adjust-
ment of QDM, this model bias of each quantile is added to
the future model resulting in the bias-corrected model (pur-
ple line). In contrast, QM uses absolute model values from
the historical period. As during climate change, higher tem-
peratures occur more often, correction values from the upper
part of the CDF are used more often. As higher temperatures
tend to have larger biases in the raw historical model, the ad-
justment with QM results in a bias-adjusted model that is too
warm.

3.3 Precipitation: conserving the CCS

QDM and PresRATe (Sect. 3.1) conserve the raw model’s
CCS on each quantile. For additive bias adjustment (used
for temperature and dew point), this is also valid for means
and sums. However, pure multiplicative bias adjustment does
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not conserve the relative CCS of means for precipitation. As
the precipitation sum (monthly sum, annual sum) is usually
more important than the precipitation at a specific quantile
in the CDF, an additional algorithm is developed to repro-
duce the raw model’s change in means. This is referred to
as the conservation of the model CCS. Depending on the ap-
plication of the corrected precipitation data, one can adjust
the monthly, seasonal or the annual CCS. The following ap-
proach is equivalent to the ones in Pierce et al. (2015) and
Charles et al. (2020).

For a future time period, the CCS for precipitation for the
raw model for one grid point is

CCSm =
Rm-f

Rm-c
, (7)

where Rm-f is the mean precipitation of the model in the fu-
ture time period, and Rm-c is the mean precipitation of the
model in the historical (calibration) time period. The mean
is either a monthly or annual climatological mean. The CCS
for the bias-adjusted data after QDM is

CCScorr =
Rcorr-f

Rcorr-c
. (8)

The error E of the CCS of the corrected model compared to
the CCS of the raw model (in %) is defined as

E =
CCScorr

CCSm
· 100− 100, (9)

where a value of 0 is a perfect bias-adjustment method. The
precipitation (daily data) of the bias-adjusted model data
Rcorr-f,t for every day t is corrected with

Rcorr CCS,t = Rcorr-f,t ·
CCSm

CCScorr
(10)

to match the CCS of the raw model data (then called Pres-
RATe) and makes the difference between QDM and Pres-
RATe. Equations (7) and (8) can be applied for either
monthly, seasonal or annual data, or for all, applied one af-
ter the other. However, every CCS cannot be exactly con-
served at the same time, because the second CCS (e.g., the
annual one) alters the data from the first CCS correction (e.g.,
monthly).

3.4 Precipitation: adding wet days QDM

All tested methods correct by default the number of wet days
if the model has more wet days than the observational data
by multiplying the lower parts of the model CDF by 0. How-
ever, a quantile-based bias adjustment cannot add wet days
that are initially not in the model. This is already described
in Cannon et al. (2015) for QDM and in Pierce et al. (2015)
for PresRAT. Vrac et al. (2016) called this method singular-
ity stochastic removal (SSR), and they provide a more de-
tailed explanation. SSR corrects the number of wet days by

replacing the zero precipitation days with a trace amount (be-
low 0.05 mm) before calculating the correction values for the
bias adjustment. This allows to use all days for bias adjust-
ment, even the dry days, where otherwise zeros could cause
problems during the bias adjustment when dividing by zero.
After, bias-adjustment values below the trace amount are re-
set back to zero.

If we use QDM without SSR, we call this QDMd (d for
dry).

3.5 Empirical quantile mapping (QM)

We compare the performance of QDM and PresRATe with
other methods. One of them is the traditional QM in a non-
parametric form, that is widely used (e.g., Piani et al., 2010;
Themeßl et al., 2011; Teng et al., 2015; Gutiérrez et al., 2019;
Maraun et al., 2019; Widmann et al., 2019). Quantile map-
ping in its original form is usually written as (Li et al., 2010;
Themeßl et al., 2011)

xcorr = F
−1
o-c (Fm-c(xm-f)) , (11)

where F is the (in our case, empirical) CDF of either the ob-
servations (o) or model (m) for a historic (calibration period)
climate (c) or future period (f). This QM cannot produce val-
ues that are outside the observed range. In the context of cli-
mate change, new extremes are considered via a simple ex-
trapolation: For values that are above or below the most ex-
treme values found in the observations, a constant correction
of the last value is applied (Boé et al., 2007). For example,
if the highest temperature found in the historical model is
34 ◦C and the highest value in the observations is 36 ◦C, a
correction value of +2 ◦C is applied to all future model val-
ues above 34 ◦C. QM including extrapolation is written as

xcorr = F
−1
o-c (Fm-c(xm-f))+ xm-f−F

−1
m-c (Fm-c(xm-f))︸ ︷︷ ︸

Extrapolation term

. (12)

This formula is used in this work and is part of the code
in the pyCAT module for Python. The extrapolation term is
zero when xm-f lies within the range of historical model val-
ues. Comparing Eq. (12) with Eq. (1) shows that QM calcu-
lates the CDF from the model in the historical period (Fm-c),
whereas QDM and PresRATe use data from the period where
the correction is applied on (Fm-f).

3.6 Scaled distribution mapping (SDM)

SDM is a further development based on QDM and is ex-
plicitely parametric (Switanek et al., 2017). SDM is avail-
able via the pyCAT module for Python. SDM is a paramet-
ric method. For precipitation, gamma distribution can be se-
lected. The parameters for the gamma distribution are found
iteratively via the maximum likelihood function which can
be computationally expensive. In our work, we observed the
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SDM script to be more than one order of magnitude slower
than the other empiric bias-adjustment methods.

Tests showed that the fitting is sometimes defective and
results in errors when the corrected model data are compared
with the observations (see Fig. 2). Hence, the SDM script is
not always able to reproduce the past climate by correcting
the model according to the observations.

Therefore, we generated several versions of SDM. For this
work, we improved the fitting of the gamma functions by
adding initial guesses to the fitting function. According to
the methods of moments (Thom, 1958; Wiens et al., 2003),
the initial guess for the scale parameter θ for the gamma dis-
tribution is defined as

θ =
Var(X)
X̄

, (13)

where X is the data to be fitted, and X̄ is the mean of the
data. Optionally also the shape parameter k can be used for
the initial guess as

k =
X̄2

Var(X)
. (14)

We used four different versions of SDM which are as fol-
lows:

– SDM(raw). This is the version of SDM as presented in
Switanek et al. (2017). SDM(raw) lacks the correction
of wet days, if the model has too few wet days.

– SDM(0). In addition to SDM(raw), corrected wet days
are interpolated to the expected number of wet days
which corrects a wet day bias. This algorithm was pro-
vided by the authors of Switanek et al. (2017).

– SDM(1). In addition to SDM(0), the shape parameter k
is used as an initial guess for the gamma distribution of
precipitation.

– SDM(2). In addition to SDM(0), both shape parameter
k and scale parameter θ are used in the initial guess.

4 Results

QDM, PresRATe, QM and SDM are evaluated in terms of
three demands expressed at the end of Sect. 1.

4.1 Demand (1): conservation of historical climate

The four versions of SDM are compared with non-parametric
QM and QDM/PresRATe, respectively. We already showed
that biases can be introduced by the bias-adjustment meth-
ods themselves with the example of ÖKS15 and STARC-
Impact data (Fig. 2). To reproduce some of the biases, we
used the smoothed observational data as produced in Sect. 2.
Depending on the method of bias adjustment, even after cor-
rection, the bias can be significant (Fig. 4). Figure 4a is the

observed average annual precipitation (OBS), where the im-
pact of small-scale spatial patterns like valleys, mountains
and windward and leeward side can be seen. Figure 4b is
the artificial smoothed model but otherwise very similar to
OBS. The only difference is the spatial resolution between
OBS and the model. Figure 4c shows the difference between
the observations and the model, which shows the patterns of
the much finer resolution of the observations, like drier val-
leys and wetter mountains. Figure 4d–i shows the difference
of the mean annual precipitation of the bias-adjusted model
data minus the mean annual precipitation of the OBS.

Figure 4d uses SDM(raw) which produces the largest er-
rors with a mean absolute error of 51.3 mm in annual pre-
cipitation. The difference in annual precipitation exceeds
100 mm in parts of East Tyrol and Carinthia (southwest-
ern parts of Austria). The errors produced by SDM(0) and
SDM(1) (Fig. 4e and f) are considerably smaller. The small-
est errors are produced when using SDM(2), where the error
is 10 mm or less in most parts of Austria with a mean abso-
lute error of 3.7 mm yr−1.

For comparison, the model data were corrected with other
methods such as QM and QDM/PresRATe where the error is
close to zero. This is because these methods calculate em-
pirical CDFs of both model and OBS which produces very
accurate results in the reference period.

4.2 Demand (2): climate change signal (CCS)

Demand (2) for the bias adjustment is that the CCS of the
raw climate model should not be altered. As stated by Ma-
raun (2016), methods like standard QM modify the CCS of
temperature where the CCS is defined as an absolute value.
Therefore, we calculated the CCS for all three methods for
temperature. As temperature data, we used the artificial data
as generated in Sect. 3.2. The corresponding CDFs are shown
in Fig. 3. In Fig. 5 we show the smoothed mean annual
temperature for the detrended observations, the raw climate
model and for the bias-corrected model data. The temper-
ature of the raw model shows an increase of 0.41 ◦C each
decade. The bias-adjustment methods SDM and QDM repro-
duce the exact same trend and are thus able to exactly con-
serve the CCS. In contrast, QM inflates the climate change
signal with a linear trend of 0.72 ◦C per decade. We also
tested all three methods with non-linear trends, where QM
tends to inflate or deflate the CCS (not shown), while SDM
and QDM keep the CCS unchanged.

For precipitation, the CCS is defined as a relative value as
shown in Eqs. (7) and (8). The relative CCS is greater than
1 in case of more precipitation in the future. In Sect. 2, an
artificial dry model was produced by drying OBS. Figure 6a
shows the mean annual precipitation of the model for the his-
torical climate (much drier than observations), and Fig. 6b
shows the mean annual precipitation of the model for a fu-
ture period which is even drier. Figure 6c–f show the CCS
error of the bias-adjustment methods according to Eq. (9).
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Figure 4. Bias adjustment of precipitation data. The model is produced by smoothing OBS. (a) Observational annual precipitation. (b) Raw
model annual precipitation. (c) Difference of annual precipitation between model and observation. (d–i) Difference in annual precipitation
(model minus observational data) in millimeters for (d) SDM(raw), (e) SDM(0), (f) SDM(1), (g) SDM(2), (h) QM and (i) QDM/PresRATe.
ME – mean error. MAE – mean absolute error.

Figure 5. Running means of temperature data of detrended obser-
vations, the raw model and three different bias-correcting methods
(QM, SDM and QDM). SDM and QDM are almost identical. On
top: average linear trends in ◦C per decade (1981–2100) for each
bias-adjustment method. The data are identical to the data used in
Fig. 3.

As before, SDM underestimates the CCS (Fig. 6c), while
QDM (without the CCS correction) and QM overestimate the
CCS (Fig. 6d and e). However, the mean absolute error of
QDM (1.9 %) is smaller than those of SDM (4.3 %) and QM
(3.3 %). In Fig. 6f with PresRATe, the CCS of the annual pre-

cipitation is forced to match the raw model CCS via Eq. (10),
therefore, the error is almost 0 %.

4.3 Demand (3): wet day frequency in dry models

As already discussed in relation to Fig. 4, parametric meth-
ods do not always reproduce the observational climate. Fur-
thermore, very few bias-adjustment methods accurately bias
correct climate models with a distinct dry bias. We com-
pare SDM, QM and QDM/PresRATe using the artificial dry
model data (Fig. 7b). The difference of the model data cor-
rected with SDM(2) minus OBS shows quite good results,
but overall the corrected data show a slight wet bias that ex-
ceeds 40 mm in some grid cells (Fig. 7c). The area mean an-
nual bias of SDM(2) is 6 mm. QM corrects the precipitation
for already existing wet days but cannot add wet days. Thus,
there is still a dry bias after bias adjustment (Fig. 7d), where
the area mean is −48.5 mm. QDM shows a similar pattern
(Fig. 7e) when the algorithm for wet days is not used, hence
the name QDMd (Sect. 3.4). QDMd it is almost identical to
QM in the historical period, with the only difference that we
used 100 discrete percentiles for QDMd and all values for
QM for the CDFs. QDM/PresRATe are able of reasonably
reproduce climatological precipitation sums in the histori-
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Figure 6. Error of CCS compared to CCS of raw model (Eq. 9). (a) Raw model annual precipitation in historic period (mm). (b) Raw model
annual precipitation in future period (mm). (c) SDM, (d) QM, (e) QDM of the CCS and (f) PresRATe. A perfect bias adjustment equals 0 %.

cal period with an average annual precipitation bias of only
8.6 mm.

Figure 8 shows the number of precipitation days. The av-
erage number of precipitation days per year is much higher
in the observations (Fig. 8a) than in the model (Fig. 8b). The
difference of Fig. 8a and b is the error of precipitation days
per year of the raw model.

The parametric SDM(2) produces too many new precip-
itation days (Fig. 8c). The average annual wet day bias is
+15.5 d. Both the non-parametric QM and QDMd (Fig. 8d
and e) cannot change the number of wet days without further
modifications, so the average annual wet day bias of−69.9 d
of the raw model is unchanged. QDM/PresRATe (Fig. 8f)
performs best of all methods with an average bias of only
−5 wet days per year. Only very few grid cells exceed a wet
day bias of +10 or −10 d.

5 Discussion and conclusion

Statistical bias-adjustment methods are widely used to im-
prove direct model output from climate models but cannot
fully remove all model errors. The adjusted data are of-
ten used as input for climate impact studies where biases
can significantly alter the impact analysis, so one has to
be aware of the limitations of the bias-adjustment methods.

We compared different methods (Empirical QM, SDM and
QDM/PresRATe) that all adjust the statistical distribution of
meteorological variables. We evaluate the methods with the
three demands formulated in the introduction for synthetic
climate data to show that errors can originate from the bias-
adjustment method and not only from climate models.

Table 2 summarizes our main results on two of the three
demands. The tested bias-adjustment methods are grouped
by how the CDFs are calculated (empirical or parametric)
and by whether the bias is assumed to stay constant at quan-
tiles or at a specific value of a variable (trend preserving or
trend altering). Seen from another side, some methods deter-
mine the quantile for a given future value from the calibration
period (trend altering), some directly from the future period
(trend preserving). We assume that SDM can be seen as a
representative of parametric methods in general because the
errors introduced with SDM are mainly due to the fitting of
functions.

– Demand (1): QDM/PresRATe and QM are capable of
statistically correcting the model’s past climate to fit
the observations accurately. This is mostly due to the
fact that they are non-parametric methods, i.e., they use
empirical distribution functions instead of fitted func-
tions (for variables like temperature, precipitation etc.)
which allows the CDF to follow any possible shape (Ta-
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Figure 7. Climatological annual precipitation (mm) sum in the historical period for dry model data. (a) OBS annual precipitation. (b) Raw
model (dry) annual precipitation. (c–f) Difference in annual precipitation (model minus observed data) in millimeters for (c) SDM, (d) QM,
(e) QDMd (QDM without wet day algorithm) and (f) QDM/PresRATe.

ble 2). The fitting of functions (SDM) will always pro-
duce errors which can be minimized with a good fitting
algorithm (Fig. 4). Also, parametric approaches require
knowledge about the statistical distribution of a meteo-
rological variable in order to choose a suitable distribu-
tion function.

– Demand (2): QDM/PresRATe and SDM barely enhance
or suppress the mean CCS in contrast to traditional QM;
i.e., they explicitly reproduce the same CCS as in the
raw model. For additive QDM and SDM (e.g., for tem-
perature), this is valid without any limitation (Fig. 5).
For multiplicative QDM/PresRATe and SDM (e.g., for
precipitation), the CCS is defined as a ratio between his-
torical and future climatological mean. SDM and QDM
preserve this ratio at every quantile (Table 2). However,
in general, the relative CCSs of monthly and annual
means differ from the ratios at quantiles. Depending on
the application, a decision has to be made either to con-
serve the relative CCS at quantiles or at means. In the
latter case, an algorithm in PresRATe corrects means to
match the raw model’s CCS.

– Demand (3): QM is not able to correct models with
too few wet days, if applied multiplicatively. SDM(0),

SDM(1) and SDM(2) interpolate the wet days to the
expected number of wet days which should correct the
bias. Figure 8c shows that there is still a wet day bias af-
ter correction with SDM(2), though with a positive sign
(too many wet days). The reason for this positive wet
bias is still in discussion. We suspect that it might be
caused by the fitting of gamma functions to the CDFs
which introduces new errors. As a solution, QDM and
PresRATe include an algorithm that adds additional wet
days in order to reproduce the observation’s precipita-
tion sums and wet day frequency (Figs. 7f and 8f) by
setting the zero-precipitation days to a small non-zero
value below a threshold (e.g., 0.05 mm). As a supple-
mentary method, this algorithm can be applied after any
bias-adjustment method and could therefore also be ap-
plied with QM. In the case of a model having too many
wet days, the wet day frequency is automatically cor-
rected with all three methods.

A good performance of the corrected data in any of the
three demands is crucial, as it is used as input for further im-
pact studies. Impact models (e.g., plant growth models) are
often calibrated with bias-corrected historical meteorological
data from a climate model. The focus of impact studies often
lies on the CCS. If an impact model is calibrated with inaccu-
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Figure 8. Wet days per year (≥ 0.1 mm) in the historical period for dry model data. (a) Annual wet days in OBS. (b) Raw model annual wet
days. (c–f) Difference in annual wet days (model minus observed data) for (c) SDM, (d) QM, (e) QDMd and (f) QDM/PresRATe.

Table 2. As in Table 1. (1), (2) and (3) refer to the demands formulated in the introduction.

Parametric Non-parametric/empirical

Bias at fixed quantile/trend preserving SDM:
(1) no
(2) yes (additively), only at quantiles
(multiplicatively)
(3) to some extent, yes

QDM/PresRATe:
(1) yes
(2) yes (additively), yes for PresRATe
(multiplicatively)
(3) yes

Bias at fixed value/trend altering (not tested) Empirical QM:
(1) yes
(2) no
(3) no

rate meteorological data in the historical period, the impact
of climate change can lead to wrong conclusions even if the
CCS is accurate.

To sum up, QDM and PresRATe are able to reproduce the
observation’s statistical distribution, are able to preserve the
raw model’s CCS and can add wet days if necessary because
of a supplementary algorithm.

QDM along with many other methods corrects each grid
cell independently and therefore belongs to the group of uni-
variate bias-adjustment algorithms. We showed that the spa-
tial patterns of the corrected data match the observations for

long-term means, which is a significant improvement over
the raw model data. However, for spatial patterns of smaller
timescales (e.g., a season, a month or a single day), some
univariate methods are still able to improve spatial patterns
compared to raw model data (Widmann et al., 2019) and
the temporal variability of model data (Maraun et al., 2019)
to some extent. Other authors find the results of univariate
methods for spatial precipitation patterns on specific days in
the model unsatisfactory (Pastén-Zapata et al., 2020; Potter
et al., 2020; Charles et al., 2020). For a more accurate repre-
sentation of temporal or spatial correlations, other methods
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have to be applied (e.g., Pierce et al., 2015; Nguyen et al.,
2016, 2017; Mehrotra and Sharma, 2016; Mehrotra et al.,
2018; Mehrotra and Sharma, 2019; Volosciuk et al., 2017;
Cannon, 2018). However, multivariate methods suffer from
disadvantages such as very high computational demands or a
limited measure of the full multivariate dependence of struc-
ture (e.g., Cannon, 2018; Bürger et al., 2011).

Some authors introduce methods to correct the tempo-
ral autocorrelation across several days, weeks or months
(Nguyen et al., 2016, 2017; Pierce et al., 2015; Mehrotra
and Sharma, 2016). When several timescales are corrected
one after the other, this is referred to as nesting approach. A
different approach to improve temporal statistics was intro-
duced by Volosciuk et al. (2017) with a two-step approach. It
consists of QM on the model’s spatial resolution in a first step
and a downscaling with a stochastic regression-based model
as a second step which adds random small-scale variability.
However, the added skill is different from case to case and
may even increase the bias at times.

Other authors find the results of univariate methods for
spatial precipitation patterns on specific days in the model
unsatisfactory (Pastén-Zapata et al., 2020; Potter et al., 2020;
Charles et al., 2020). Spatiotemporal statistics like the plau-
sibility of weather patterns can be improved by correcting
across multiple timescales and variables (even though on a
single grid cell) as shown by Mehrotra and Sharma (2016),
Mehrotra et al. (2018) and Mehrotra and Sharma (2019).
However, multivariate methods suffer from disadvantages
such as very high computational demands or a limited mea-
sure of the full multivariate dependence of structure (e.g.,
Cannon, 2018; Bürger et al., 2011).
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