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Abstract. In this study we detect and quantify changes in the distribution of the annual maximum daily max-
imum temperature (TXx) in a large observation-based gridded data set of European daily temperature during
the years 1950–2018. Several statistical models are considered, each of which analyses TXx using a generalized
extreme-value (GEV) distribution with the GEV parameters varying smoothly over space. In contrast to several
previous studies which fit independent GEV models at the grid-box level, our models pull information from
neighbouring grid boxes for more efficient parameter estimation. The GEV location and scale parameters are
allowed to vary in time using the log of atmospheric CO2 as a covariate. Changes are detected most strongly
in the GEV location parameter, with the TXx distributions generally shifting towards hotter temperatures. Av-
eraged across our spatial domain, the 100-year return level of TXx based on the 2018 climate is approximately
2 ◦C (95 % confidence interval of [2.03,2.12] ◦C) hotter than that based on the 1950 climate. Moreover, averaged
across our spatial domain, the 100-year return level of TXx based on the 1950 climate corresponds approximately
to a 6-year return level in the 2018 climate.

1 Introduction

The greenhouse effect, whereby increasing levels of green-
house gases in the Earth’s atmosphere lead to a warming of
the climate system, has long been understood (Charney et al.,
1979), and in 2019, atmospheric CO2 concentrations were
higher than at any time in at least 2 million years (IPCC,
2021b). Allen et al. (2018) estimate that human-induced
warming in 2017 reached approximately 1 ◦C above pre-
industrial levels and is increasing at a rate of approximately
0.2 ◦C per decade. Hoegh-Guldberg et al. (2018) describe the
impacts of 1.5 ◦C global warming above pre-industrial levels
on natural and human systems. These impacts include an in-
crease in the frequency and intensity of heavy-precipitation
events, more frequent marine heatwaves and reduced crop
production and yields.

Temperature extremes, which may manifest in more in-
tense heatwaves and enhance the risk of fires, pose a risk
to human health (IPCC, 2014, Sect. 2.3.2), with the elderly

being particularly vulnerable to heat-related mortality (Basu
and Samet, 2002). An estimated 40 000–70 000 heat-related
deaths were recorded as a result of the summer of 2003 Eu-
ropean heatwave (Fischer and Schär, 2010; Robine et al.,
2008), with associated economic losses in excess of EUR 13
billion (de Bono et al., 2004). Due to the potentially devastat-
ing consequences, it is clearly important to understand how
the frequency and intensity of temperature extremes may
change in a warming climate.

Several previous studies consider changes in the probabil-
ity distribution of daily temperature and infer that similar
changes should also hold for extremes. Donat and Alexan-
der (2012) consider the distribution of daily maximum and
minimum temperature on a global scale using observational
data and find significant shifts in temperature towards higher
values in almost all regions but less evidence for changes
in variability. Similar conclusions are reported in Weaver
et al. (2014), who analyse data from several hundred climate
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model runs. Schär et al. (2004) on the other hand argue that
an increase in variability in the daily temperature distribution
is required to explain the European heatwave of 2003.

Kiktev et al. (2003) and Morak et al. (2013) both find
that there has been a decrease in the frequency of cold ex-
tremes and increase in the frequency of hot extremes, con-
cluding that human-induced forcing has played an important
role. Stott et al. (2004) consider human influence on the sum-
mer heatwave of 2003 and find that “it is very likely (confi-
dence level > 90 %) that human influence has at least dou-
bled the risk of a heatwave exceeding this threshold mag-
nitude”. Zwiers et al. (2011) use observational data together
with climate model output in a detection and attribution study
of changes in temperature extremes. They consider several
variables, including annual maximum daily maximum (TXx)
and minimum temperatures (TNx), and find evidence for an-
thropogenic forcing for all variables they consider, with the
biggest changes being detected in TNx. More recently, the
IPPC report (IPCC, 2021b) concluded that “human-induced
climate change is the main driver” of the increase in intensity
and frequency of hot extremes.

In this paper we consider statistical models for the vari-
able TXx at approximately 12 000 locations of a gridded data
set in a large subset of Europe. We consider the question of
whether, over various large sub-regions of Europe, there is
evidence for changes in the distributions of TXx and, if so,
how such changes are best described. Our approach can, in-
formally, be viewed as macroscopic, since we are interested
in detecting changes in TXx on a large scale rather than at
any one specific geographic location. We fit statistical mod-
els that allow for changes in both the location and scale of
the TXx distributions. A change in the location of the TXx
distribution corresponds to a horizontal shift in the distribu-
tion, with the mean and all quantiles being shifted by the
same amount. A change in scale corresponds to a horizontal
stretching or compression of the distribution, which in turn
changes measures of variability, such as the variance of TXx.
Figure 1 illustrates both of these effects for a hypothetical
TXx distribution.

Most of the studies mentioned above treat the data occur-
ring at different geographic locations in an independent man-
ner, fitting separate statistical models to the data at each lo-
cation. One difficulty with this approach in the context of
extremes is that, as extreme observations are by definition
rare, we will only have a small sample at each location,
making precise estimation of trends problematic. Although
it may be unreasonable to assume a common trend at ev-
ery geographic location of a large spatial domain, we would
nonetheless expect nearby regions to be similarly affected by
climate change. There are several classes of models, such as
varying coefficient models (Hastie and Tibshirani, 1993) or
geographically weighted regression models (Brunsdon et al.,
1998), that allow us to borrow strength from neighbouring
locations to obtain spatially coherent estimates of trends.
Varying coefficient models allow for regression coefficients,

Figure 1. The solid black curve shows a hypothetical probability
density function of TXx. The dashed curve illustrates the effect of a
shift in the location of the distribution towards hotter temperatures,
while the dotted curve illustrates a change in the scale, leading to
greater variability in TXx.

e.g. trends, to vary smoothly over a spatial domain and may
be formulated under the generalized additive model (GAM)
framework of Wood (2017) and consequently fit with the R
(R Core Team, 2021) package mgcv. As we work with a
gridded domain, we consider a discrete analogue of vary-
ing coefficient models that are based on Gaussian Markov
random fields (Rue and Held, 2005) and fall under the gen-
eral smooth modelling framework of Wood et al. (2016).
Previous studies that make use of GAMs or smooth mod-
els for modelling environmental extremes include Chavez-
Demoulin and Davison (2005) and Youngman (2019).

The lack of availability of high-resolution, continental-
scale, temporally complete and homogenized observational
data, together with the impracticality of performing large-
scale controlled experiments on the climate system, means
that climate researchers often rely on gridded data prod-
ucts (New et al., 2002). Common types of gridded data in-
clude climate model output (Eyring et al., 2016), reanalysis
data (Hersbach et al., 2020) and gridded station data (Cornes
et al., 2018; Dunn et al., 2020).

Gridding of station data is performed using aggregation of
stations within spatial boxes, often with estimates of uncer-
tainty. This yields estimates of area-averaged data that are
comparable with climate model data over a similarly sized
grid box, making them widely used for climate model eval-
uation (Kim et al., 2020), although they have also been used
to detect past changes in mean climate and climate extremes
(Haug et al., 2020; Zwiers et al., 2011). Alternatives in-
clude kriging of station data (Rohde and Hausfather, 2020),
which tend to yield similar results to grid-box-averaged data
over densely covered regions. Reanalysis data are data from
weather analysis models that operate on grids by construction
and are also often used to detect and correct biases that exist
in climate models (Thorarinsdottir et al., 2020). The method-
ology that we develop in this paper for gridded data may
be useful in other contexts and help improve the robustness

Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, 2023 https://doi.org/10.5194/ascmo-9-45-2023



G. Auld et al.: Changes in the distribution of annual maximum temperatures in Europe 47

of findings compared to the commonly applied independent
grid-box analyses.

The structure of the paper is as follows. Section 2 describes
the data that are used for fitting statistical models. Section 3
describes the models that are considered and Sect. 4 presents
the results which are summarized in Sect. 5.

2 Data

We use the daily E-OBS data, publicly available through
the European Climate Assessment and Dataset (ECA & D)
project. E-OBS is based on observational data from an un-
derlying network of weather stations interpolated onto a reg-
ular 0.25◦× 0.25◦ grid. Although the data set covers all of
Europe as well as northern Africa and the Middle East, the
spatial density of the underlying weather station network that
is used to estimate the gridded areal averages is highly vari-
able over the domain.

E-OBS is frequently used as a benchmark at the European
scale (Kotlarski et al., 2017) and was also used in the most
recent IPPC report, e.g. for the atlas (IPCC, 2021a) of ob-
served trends in temperature and precipitation. It is used in
Haug et al. (2020), who also seek to provide a more rigorous
methodology beyond the independent grid-box-level analy-
ses by fitting a spatial model for trends in mean temperatures
in Europe. However, they use an earlier version of E-OBS
that is less suitable for detection of trends than the version
we use here.

Both Hofstra et al. (2009) and Hofstra et al. (2012) ex-
press reservations about using E-OBS for the detection of
trends, mainly due to inhomogeneities that may be present in
the underlying station data, i.e. non-climatic factors such as
changes in instruments or observing practices, as well as the
fact that the network density is not homogenous in time. The
documentation accompanying the release of E-OBS v18.0
also comes with a similar warning: “it remains the case that
many of the input station series have not been homogenized
and at present we caution against the use of E-OBS for eval-
uating trends” (Cornes et al., 2018). For this reason we use
the E-OBS v19.0eHOM data, which are a version of E-OBS
that has been homogenized by the ECA & D in collabora-
tion with the Horizon 2020 EUSTACE project. The method
by which the data were homogenized is described in Squintu
et al. (2019).

In addition to inhomogeneities, a further issue with
observation-based gridded data is that in regions with very
low station density, grid-box areal averages may be poorly
estimated and have large interpolation uncertainties. How-
ever, these problems are less severe for a spatially smooth
variable such as temperature in comparison to precipitation
(Doblas-Reyes et al., 2021, Sect. 10.2.2.4). As discussed in
Hofstra et al. (2009), the spatial smoothness of temperature
means that, although extreme-value methods have not been
employed in the gridding of the daily-level E-OBS data,

overall extreme temperature events will be quite well rep-
resented. Working on a much coarser grid than we do here,
Zwiers et al. (2011) argue that the spatial correlation of tem-
perature at very large distances means that even a single
weather station should represent the grid-box mean extremes
well. As we are interested in detection of large-scale spatially
averaged changes in the distribution of TXx, issues such as
poor sampling of topography in low-density regions should
be less of an issue in comparison if we were seeking to quan-
tify changes at a local level.

A plot of the station network density used in E-OBS can
be found in Schrier et al. (2013), which shows that the high-
est density is in central Europe and that there is particularly
low density in northern Africa, the Middle East and eastern
Europe. The data set covers the years 1950 to 2018, with
some missing data mainly in the early years, although there
are also few data for Russia in the last 10 years. We consider
a large subset of the full domain covered by E-OBS, shown
in Fig. 2, that has reasonable station density. The values dis-
played in Fig. 2 are the maximum value of TXx recorded
during our study period, 1950–2018. With the exception of
the United Kingdom and the Republic of Ireland, islands off
the mainland are excluded. We set the value of TXx at a given
location in a given year as missing if there are more than 10
missing daily values in that year. This is a slightly stricter cri-
terion than is typically applied in other studies; e.g. Zwiers
et al. (2011) allow for 15 missing observations. The value of
TXx in a given grid box in a given year corresponds to an ex-
treme of a regional average which is, arguably, more useful
for measuring heat risk than a local, point-wise, extreme.

For atmospheric CO2 concentration, we use data from the
shared socio-economic pathway (SSP), compiled in Mein-
shausen et al. (2020). The historical, observation-based SSP
data are only available until the year 2015, after which pro-
jections are provided until the year 2500 under different
socio-economic scenarios. For the years 2016 to 2018, we
took values from a mid-range scenario, namely SSP2-4.5,
that are similar to the values recorded at the Mauna Loa Ob-
servatory (Keeling et al., 1976). Although the Mauna Loa
data have observations available for the years 2016–2018,
they have no observations during 1950–1958, so that the first
9 years of our study period are missing.

3 Methods

3.1 Generalized extreme-value distribution

Our approach is based on fitting generalized extreme-value
(GEV) distributions to the TXx values at each grid box.
Another possible and theoretically well-founded approach
to modelling extremes is the peaks-over-threshold method
(Davison and Smith, 1990), which models the distribution
of exceedances above some large threshold rather than the
maximum over large blocks of observations. We prefer the
block maxima approach in our setting due to the difficulty in

https://doi.org/10.5194/ascmo-9-45-2023 Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, 2023



48 G. Auld et al.: Changes in the distribution of annual maximum temperatures in Europe

Figure 2. The spatial domain considered, showing the maximum
value of the variable TXx (annual maximum daily maximum tem-
perature) at each grid box during the period 1950–2018.

making a principled choice of appropriate thresholds at such
a large number of spatial locations as well as the sensitivity
of inference to the choice of thresholds, which is exacerbated
by the presence of trends (Northrop and Jonathan, 2011).

Just as variations in the mean of a large number of in-
dependent and identically distributed random variables are
naturally modelled by a normal (Gaussian) random variable,
variations in the sample maximum are most naturally mod-
elled by a GEV random variable with distribution function

G(y;9)= exp
[
−

{
1+ ξ

(
y−µ

σ

)}−1/ξ

+

]
, (1)

where 9 = (µ,σ,ξ ),σ > 0, is a vector of parameters that re-
late to the location, scale and shape of the distribution re-
spectively and x+ =max(x,0). The formal justification for
using the GEV distribution to model TXx comes from the
extremal types theorem (Coles, 2001, Theorem 3.1.1). The
case where ξ = 0 in Eq. (1) should be interpreted as the limit
as ξ → 0, which gives rise to the Gumbel distribution func-
tionG(y)= exp[−exp{−(y−µ)/σ }],y ∈ R. The case ξ > 0
is known as the Fréchet class of distributions and ξ < 0 as
the Weibull class.

The three classes (ξ = 0,> 0,< 0) differ from each other
in the behaviour in their upper (right) tail. For the Fréchet
class, the right tail decays according to a power law, and for
larger values of ξ , extremes take on an increasingly volatile
nature, such as might be expected in financial (Resnick,
2007) or hydrological (Katz et al., 2002) applications. The
Weibull class has an upper bounded right tail, with µ− σ/ξ

the theoretical maximum possible value, whereas the Gum-
bel class is an intermediate case with a light upper tail
that decays exponentially. Typically, when modelling annual
maximum temperatures, we expect them to be in either the
Weibull or Gumbel class, i.e. ξ ≤ 0 (Andrade et al., 2012).

Suppose that, in grid box i of the E-OBS data, we ob-
serve the annual maximum temperature in a total of ni years,
say ti1, ti2, . . ., tini , which for most grid boxes is each year
from 1950 to 2018 inclusive, so that ni = 69. Let yitj de-
note the annual maximum temperature in grid box i in year
tij , 1≤ j ≤ ni . If we assume that yit1 ,yit2 , . . .,yitni are in-
dependent realizations of a GEV random variable with a
distribution function as in Eq. (1) and parameters 9i =
(µi,σi,ξi), then one way to estimate 9i is to find the pa-
rameter configuration 9̂i = (µ̂i, σ̂i, ξ̂i) that maximizes the
log-likelihood function l(9i), i.e. 9̂i = arg max l(9i), where
l(9i)=

∑ni
j=1logg(yitj ;9i) and g(y)= dG

dy , with G as in
Eq. (1), is the GEV density function. The explicit expression
for the log-likelihood function is

l(9i)=− logσi − (1+ ξ−1
i )

ni∑
j=1

log
[

1+ ξi

(
yitj −µi

σi

)]
+

−

ni∑
j=1

[
1+ ξi

(
yitj −µi

σi

)]−1/ξi

+

, (2)

with the case ξi = 0 being defined by continuity. Although
the annual maximum temperatures may not be independent,
it is assumed that the dependence between maxima from dif-
ferent years is sufficiently weak that the log-likelihood in
Eq. (2) may be used as a reasonable approximation of the
true likelihood. The resulting maximum-likelihood estimator
9̂i is a consistent and asymptotically normal estimator of the
true parameter vector provided that ξ >−1/2 (Smith, 1985;
Bücher and Segers, 2017). Hosking (1985) gives details for
implementing the Newton–Raphson method to find the pa-
rameters 9 that maximize Eq. (2), and several R (R Core
Team, 2021) packages, e.g. ismev (Heffernan and Stephen-
son, 2018) or extRemes (Gilleland and Katz, 2016), pro-
vide routines for estimating the GEV parameters using max-
imum likelihood. The maximum-likelihood estimates of the
three GEV parameters at each grid box of the E-OBS data
are shown in Fig. 3, which were calculated using ismev.

Having estimated9i , we may estimate the temperature yp
that is exceeded in grid box i in a given year with probability
p by solving the equation G(yp)= 1−p for yp, with G as
in Eq. (1). This yields the estimate ŷp of yp:

ŷp =

{
µ̂i −

σ̂i

ξ̂i
[1−{−log(1−p)}−ξ̂i ], ξ̂i 6= 0,

µ̂i − σ̂i log{−log(1−p)}, ξ̂i = 0.
(3)

The quantity yp is known as the return level with an associ-
ated return period 1/p.

From Eq. (3) we see that errors in the estimated value of
ξi may be magnified in the estimate of yp. When the sample
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size is small, the maximum-likelihood estimator of ξi can
have a high bias, leading to absurd estimated return levels
that would be deemed physically impossible, and several au-
thors (Coles and Dixon, 1999; Martins and Steidinger, 2000)
have proposed adjustments to the log-likelihood function,
Eq. (2), to overcome this difficulty.

An alternative to maximum-likelihood estimation that is
more robust to small sample sizes is the method of L-
moments or, equivalently, probability-weighted moments
(Hosking et al., 1985; Hosking, 1990). The method of L-
moments is often used in a spatial setting (Kharin and
Zwiers, 2005) as part of a regional frequency analysis (RFA),
as set out in Hosking and Wallis (2005). In a RFA, data
from different regions that are deemed to be sufficiently ho-
mogenous are pulled together to increase the sample size and
hence reduce the uncertainty in parameter estimates. One dif-
ficulty with RFA is the sensitivity of the results to the method
used to identify homogenous regions. Moreover, L-moment
estimation is not suited to statistical modelling as it does not
allow the GEV parameters to depend on the values of covari-
ates such as the atmospheric level of CO2. Our approach, de-
scribed in Sect. 3.2, has a similar motivation to RFA, but as it
is likelihood-based, it allows for the inclusion of covariates.

3.2 Statistical models

In this section we describe the statistical models that we fit
to the E-OBS data. For computational convenience, and also
to allow for the possibility that different models may be bet-
ter suited to different regions, we partition our spatial do-
main into eight sub-regions, which are defined in Table 1.
The abbreviations used for the regions are meant to be in-
formative and correspond, roughly, to south-western Europe
and France (SWFR), central and southern–central Europe
(CESC), central Europe 2 (CE2), south-eastern Europe (SE),
eastern Europe (EAST), Norway and Sweden (NRSW), Fin-
land (FIN) and the United Kingdom and Republic of Ireland
(UKRI).

For statistical modelling of TXx, the log-likelihood func-
tion in Eq. (2) may be considered too simple in at least two
respects. Firstly, it assumes that the GEV parameters at a
given grid box remain fixed from year to year, whereas a po-
tentially more realistic model would allow them to change
over time. Secondly, we expect that the parameters of neigh-
bouring grid boxes are more likely to be similar than those
of grid boxes that are far apart, and Eq. (2) does not allow
us to incorporate this belief. Moreover, maximizing Eq. (2)
separately for each grid box i may lead to highly uncertain
or unrealistic parameter estimates due to the small sample
available at each grid box, and for the purposes of statistical
inference, we also run into problems with multiple compar-
isons (Farcomeni, 2008; Chen et al., 2017).

The dependency of the GEV parameters on time can be
linked to that of a climatological covariate, and for this pur-
pose we will use the atmospheric concentration of CO2,

which is the dominant greenhouse gas that affects temper-
ature (Stips et al., 2016). More specifically, we will use the
derived covariate xt = log (CO2,t/280), where CO2,t is the
atmospheric concentration, in parts per million (ppm), of
CO2 in year t of our study period, 1≤ t ≤ 69, with t = 1
corresponding to the year 1950, and 280 ppm is, approxi-
mately, the pre-industrial atmospheric concentration of CO2.
The reason for using the log-transformed covariate xt rather
than the raw CO2,t values is the approximate logarithmic ef-
fect of CO2 on temperature (Jones and Hegerl, 1998).

We assume that the annual maximum temperature in grid
box i in year t , 1≤ t ≤ 69, follows a GEV distribution
with the time-varying parameter vector 9it = (µit ,σit ,ξit ).
A simple model we may consider, to which we will add fur-
ther structure and covariates later, is

µit = µ
(0)
i +µ

(1)
i xt ,

σit = σi,

ξit = ξi .

For this model, only the GEV location parameter is time-
varying. The intercept parameter µ(0)

i can be interpreted as
the value of the GEV location parameter in grid box i if at-
mospheric CO2 were at its pre-industrial level, whereas the
slope parameter µ(1)

i is the change in the location parame-
ter that would occur if xt increased by 1 unit, i.e. if atmo-
spheric CO2 increased by a factor of e ≈ 2.718. Over the
course of our study period, atmospheric CO2 has increased
by a factor of 1.31, i.e. CO2,69 = 1.31CO2,1. As in Sect. 3.1,
if in grid box i we have observations in years ti1, ti2, . . ., tini ,
then, writing θ i = (µ(0)

i ,µ
(1)
i ,σi,ξi), the log-likelihood func-

tion for θ i is

li (θ i )=−ni logσi −
ni∑
j=1

[
1+ ξi

(
yitj −µ

(0)
i −µ

(1)
i xtj

σi

)]− 1
ξi

+

− (1+ ξ−1
i )

ni∑
j=1

log
[

1+ ξi

(
yitj −µ

(0)
i −µ

(1)
i xtj

σi

)]
+

. (4)

If there are n grid boxes in total, then maximizing Eq. (4)
separately for each i, 1≤ i ≤ n is equivalent to jointly
maximizing the function l(θ )=

∑n
i=1li(θ i), where θ =

(θ1,θ2, . . .,θn) is the vector containing the parameters for all
the grid boxes. This is because the j th term in the summa-
tion defining l(θ ) contains only the parameters of grid box
j which occur at no other terms in the summation, and so
the maximization problem is separable. Rather than fitting a
model where every grid box is forced to “learn for itself”, one
way to obtain parameter estimates for all grid boxes that are
spatially coherent and reduce uncertainty in the estimates is
to add a term to the objective function l(θ ) that will penalize
model fits where there is too much local variation in the pa-
rameters. As we are working on a discrete gridded domain, it
is natural to use a penalty that is based on Gaussian Markov
random fields (Rue and Held, 2005).
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Figure 3. Maximum-likelihood estimates of the GEV parameters, fitted to the TXx values (◦C) separately at each grid box.

Table 1. The various sub-regions of the domain that the models from Table 2 are separately fitted to.

Abbreviation Countries included

SWFR Portugal, Spain, Andorra, France and Monaco

CESC Germany, Netherlands, Luxembourg, Belgium,
Italy, Switzerland, Austria and Denmark

CE2 Poland, Czech Republic, Slovakia, Hungary and Slovenia

SE Croatia, Kosovo, Montenegro, Bosnia and Herzegovina,
Serbia, Macedonia, Albania, Greece and Moldova

EAST Ukraine, Belarus, Lithuania, Latvia and Estonia

NRSW Norway and Sweden

FIN Finland

UKRI United Kingdom and Republic of Ireland

The Gaussian Markov random field (GMRF) penalty al-
lows us to formalize the belief that grid boxes that are near
to each other are more likely to have parameter values that
are similar than those that are far apart. In order to define the
GMRF penalty, we are required to specify a neighbourhood
structure for our domain. Specifically, for each grid box i we
are required to specify the set of neighbours of i, which we
denote by N (i) and define as those grid boxes that share a
common (grid-box) edge with i. Thus, for most grid boxes,
N (i) will consist of four neighbours, but in some cases there
may be less than four, e.g. if i lies on the boundary of the do-
main. Now, if we define N (i) as the set of neighbours j of i
with j > i, then placing a GMRF penalty on the GEV shape
parameters ξ = (ξ1,ξ2, . . ., ξn)T, for example, amounts to the
penalty term

PGMRF(ξ )=
n∑
i=1

∑
j∈N (i)

(ξi − ξj )2
= ξT Sξ , (5)

where the penalty matrix S satisfies Sij =−1 if i ∈N (j )
and Sii = ni , where ni is the number of neighbouring
regions of i, not including i. PGMRF(ξ ) takes larger values

when there is more local variability in ξi , 1≤ i ≤ n. If
we also impose a GMRF penalty on each of the location
intercept, slope, scale and shape parameters, then, writing
µ0 = (µ(0)

1 ,µ
(0)
2 , . . .,µ

(0)
n )T,µ1 = (µ(1)

1 ,µ
(1)
2 , . . .,µ

(1)
n )T,σ =

(σ1,σ2, . . .,σn)T and ξ = (ξ1,ξ2, . . ., ξn)T, the objective func-
tion that we seek to maximize is the penalized log-likelihood

lpen(θ )=
n∑
i=1

li(θ i)−
(
λ1µ

T
0 Sµ0+ λ2µ

T
1 Sµ1

+ λ3σ
TSσ + λ4ξ

TSξ
)
, (6)

with li(θ i) as in Eq. (4) and λi > 0, 1≤ i ≤ 4 constants. The
constants λi , 1≤ i ≤ 4, are smoothing, or regularization, pa-
rameters that specify the relative priorities given to the com-
peting goals of smoothness and fitting a model that closely
matches the observed data. If, for example, λ4 is extremely
large, then we would obtain a fit with a low amount of vari-
ability in ξ . Rather than subjectively choosing a value for the
smoothing parameters, they may be selected in a more ob-
jective manner, by marginal-likelihood maximization as in
Wood et al. (2016), and this is the approach taken in R (R
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Core Team, 2021) package evgam (Youngman, 2022) that
we use for model fitting.

The objective function in Eq. (6) is the same as the log pos-
terior obtained from a Bayesian model specification where
the observations from grid boxes i and j , i 6= j , are condi-
tionally independent given (θ i,θ j ) and independent intrin-
sic Gaussian Markov random field priors (Rue and Held,
2005, chap. 3) are placed on each of the parameter vectors
µ0,µ1,σ and ξ . The conditional independence assumption
is standard in Bayesian spatial (Banerjee et al., 2004) and
latent Gaussian (Rue et al., 2009) modelling, but note that
this is not the same as assuming that the observations from
grid boxes i and j , i 6= j , are independent. The fact that the
smoothing parameters, which correspond to hyperparameters
in a Bayesian analysis, are found by maximizing a marginal
likelihood means that the fitting approach may be regarded
as empirical Bayes. However, this approach cannot be con-
sidered fully Bayesian, as this would require the smoothing
parameters to be given a prior distribution and inference on
all parameters to be performed using their posterior distribu-
tions. The parameter vector θ is estimated by θ̂ , which max-
imizes the penalized likelihood (Eq. 6). Confidence intervals
for any component of θ , or linear combination of compo-
nents, can be computed based on the asymptotic normality
of θ̂ (Wood et al., 2016, Sect. 2).

Although commonplace, the conditional independence as-
sumption implied by Eq. (6) is still something of an ideal-
ization that should not be expected to hold exactly. For ex-
ample, adjacent grid boxes may both be affected by the same
heatwave event leading to the annual maxima of these grid
boxes occurring on the same day. The consequence of basing
inference on Eq. (6) when the conditional independence as-
sumption is not satisfied is that confidence intervals of model
parameters will be narrower than those obtained from the true
model, as we essentially exaggerate the amount of informa-
tion contained in the data about the model parameters. In or-
der to counteract the likely misspecification of conditional
independence, in addition to basing inference on Eq. (6), we
also consider applying the magnitude adjustment of Ribatet
et al. (2012) (see also Chandler and Bate, 2007) to the like-
lihood, so that uncertainty in parameters is quantified in a
more realistic manner. The correction amounts to replacing
the term

∑n
i=1li(θ i) in Eq. (6) with k

∑n
i=1li(θ i) for some

k ∈ (0,1]. The constant k may be interpreted as the effec-
tive proportion of locations with independent data and may
be estimated from the data as the reciprocal of the mean of
the eigenvalues of the Godambe information matrix. In the
evgam (Youngman, 2022) package, the magnitude adjust-
ment is implemented via the sandwitch.args argument.
It is still assumed that observations from different years are
independent. Estimating k from the data requires inverting
and calculating the eigenvalues of very large matrices, and
for the largest regions, CESC, EAST and NORD defined in
Table 1, evgam was unable to perform these computations
in a numerically stable manner. In these cases we simply set

the value of k to 0.34, which is approximately the mean of
the estimated values in the other regions. In the other five re-
gions there is little variability in the estimates of k, with all
values being between 0.31 and 0.39.

The model that has been described so far in this section
contains only a single covariate in the GEV location param-
eter, and we have seen how the effect of this covariate on the
annual maximum temperature can be modelled as smoothly
varying over space by using the GMRF penalty. The value,
xt , of the covariate in year t is taken to be the same at each
grid box in year t , so that the covariate is spatially homoge-
nous. We may also include spatially varying covariates in
our model, and for this purpose we will include elevation
(km) as a covariate in the GEV location parameter. From
Fig. 3, it is clear that larger values of elevation tend to be
associated with smaller values of the GEV location parame-
ter. The framework of Wood et al. (2016) allows us to model
covariates as having a generally smooth, rather than simply
linear, effect on the location parameter. However, based on
exploratory model fits, we find it adequate to specify eleva-
tion as having a linear effect on the GEV location term. We
also consider models that have trends in the GEV scale pa-
rameter. In total, we consider five different models that differ
from each other with regards to the inclusion of the covari-
ate xt = log(CO2,t/280). For each model, it is assumed that
Yit ∼ GEV(µit ,σit ,ξit ), where, as before, Yit corresponds to
the value of TXx in grid box i in year t . The differences be-
tween the models with regards to the inclusion of trends are
summarized in Table 2. Consistent with most of the litera-
ture, we assume that the shape parameters vary only in space
but not in time.

The most complex model is Mod4, which corresponds to
the following formulas for the GEV parameters:

µit = µ
(0)
i +µ

(1)
i xt +β elevationi,

logσit = σ
(0)
i + σ

(1)
i xt ,

ξit = ξit ,

where xt = log(CO2t/280), elevationi corresponds to the
elevation (km) of grid box i minus the mean eleva-
tion across all grid boxes, and independent GMRF penal-
ties are placed on µ0,µ1,σ 0 = (σ (0)

1 ,σ
(0)
2 , . . .,σ

(0)
n )T,σ 1 =

(σ (1)
1 ,σ

(1)
2 , . . .,σ

(1)
n )T and ξ . The fixed-effect β gives the

change in the GEV location parameter for a 1 km increase in
elevation. The trend in the scale parameter is modelled using
the log link to ensure that the scale remains positive. Mod1,
Mod2 and Mod3 are each special, simpler, cases of Mod4.
In particular, Mod1 has µ1 = 0 and σ 1 = 0, corresponding
to the situation where there is no climate change signal de-
tectable in TXx, whereas Mod2 and Mod3 correspond to the
cases σ 1 = 0 and µ1 = 0 respectively. Mod5 has only a trend
in the GEV location parameter, but this is modelled as a fixed
effect; i.e. the same trend is assumed at each geographic loca-
tion, corresponding to µit = µ

(0)
i +µ1xt +β elevationi, and

note that the trend µ1 does not depend on i.
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Table 2. Comparison of Mod1–Mod5 according to the inclusion of
a trend in xt = log(CO2t/280) in the GEV location (µ) and log-
scale (log σ ) parameters and whether these trends are assumed to
vary over space, i.e. are spatially varying (SV), or the same trend is
assumed at each grid box, i.e. are spatially homogenous (SH). All
the models include elevation (altitude) as a covariate.

Model Trend in µ Trend in log σ

Mod1 No No
Mod2 Yes (SV) No
Mod3 No Yes (SV)
Mod4 Yes (SV) Yes (SV)
Mod5 Yes (SH) No

To illustrate the effect and benefit of using the GMRF
smoothing penalty, we compare, for region UKRI, the inde-
pendent grid-box fits based on maximizing Eq. (4) separately
for each i, using R package ismev, with joint maximiza-
tion of the penalized log-likelihood (Eq. 6), with magnitude-
adjusted likelihood, for the smooth model using evgam.
The value of the constant k for the magnitude adjustment
of the conditional independence likelihood was estimated to
be 0.35. Figure 4a and b show the fitted values of the GEV
shape parameters, ξ , for the independent grid box and smooth
model fits respectively. Although the broad spatial pattern of
fitted shapes is similar in both cases, the fitted shapes for the
smooth model encompass the more plausible range of −0.44
to −0.07 compared to the independent grid-box fits, which
range from the extremely short tail of −0.71 to the heavy-
tailed case of 0.16. The reduction in uncertainty that occurs
by including neighbouring information in the model-fitting
procedure is also illustrated in Fig. 4c. This shows the ratio
in parameter uncertainty, as measured by the standard error,
for the independent grid-box model fits relative to the smooth
model. For the independent grid-box model fits, the standard
errors were computed based on asymptotic normality of the
maximum-likelihood estimators, and for the smooth model,
standard errors were also computed based on asymptotic nor-
mality using the results of Wood et al. (2016, Sect. 2). The
mean ratio is equal to approximately 3.7, which represents
the average reduction in uncertainty achieved by including
neighbouring information in the model fitting.

3.3 Changes in return levels and risk ratios

In Sect. 3.1 we defined the return level with a return period
1/p to be the temperature that, in a stationary climate, is ex-
ceeded in a given year with probability p. In a non-stationary
climate, this quantity will typically vary from year to year.
For grid box i in year t , 1≤ t ≤ 69, we modify Eq. (3) and
define yit (p) by

Figure 4. Plots (a) and (b) show the fitted GEV shape parameters,
ξ , for independent, i.e. separate, grid-box fits compared to a smooth
model fit using the GMRF penalty. Plot (c) shows the ratio of the
parameter uncertainty, as measured by the standard error, for the
independent grid-box fits relative to the smooth model fit which uses
information from neighbouring grid boxes.

yit (p)=
{
µit −

σit
ξit
[1−{−log(1−p)}−ξit ], ξit 6= 0,

µit − σit log{−log(1−p)}, ξit = 0.
(7)

The quantity yit (p) may be interpreted as the return level
with return period 1/p if the climate were stationary in the
same state as in year t . We consider for each grid box i the
difference yi69(0.01)−yi1(0.01), which tells us the difference
in the 100-year return levels in grid box i based on the 2018
and 1950 climates. We quantify the uncertainty in the return-
level differences via Monte Carlo simulation. In particular, at
each grid box, we sample 2000 values of µit ,σit and ξit for
t = 1 and t = 69 from their sampling distributions and calcu-
late the corresponding differences yi69(0.01)−yi1(0.01). We
then calculate the 0.025 and 0.975 quantiles of these 2000
values to give us an approximate 95 % confidence interval
for the return-level differences. An example of how to per-
form these steps using the evgam package can be found in
Sect. 4.3 of Youngman (2022).

Another way that we quantify changes in the distribution
of the annual maximum temperatures is via risk ratios (Titley
et al., 2016). If Yit denotes a random variable with the same
distribution as the annual maximum temperature in grid box i
in year t , i.e. GEV with parameter vector9it = (µit ,σit ,ξit ),
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Table 3. Comparison of model scores, defined in Appendix A, by regions as defined in Table 1. The smallest, i.e. best, scores for each region
are in bold. The scoring rules used are squared error (SE), Dawid–Sebastiani (DS), continuous ranked probability (CRP) and weighted
continuous ranked probability (WCRP). AIC is the Akaike information criterion.

Region Model SE DS CRP WCRP AIC

Mod1 3.8357 2.2769 1.0868 0.3358 559 915.2
Mod2 3.0011 2.0374 0.9582 0.3005 525 032.2

SWFR Mod3 3.7451 2.2538 1.0722 0.3231 556 665.9
Mod4 2.9925 2.0257 0.9557 0.2995 523 671.7
Mod5 3.0612 2.0583 0.9696 0.3032 529017.3

Mod1 3.9895 2.3430 1.1231 0.3470 455 694.1
Mod2 3.1275 2.1097 0.9876 0.3090 429 074.8

CESC Mod3 3.8982 2.3157 1.1061 0.3341 452 628.2
Mod4 3.1284 2.0959 0.9868 0.3081 427 694.2
Mod5 3.2606 2.1510 1.0101 0.3146 433 790.1

Mod1 3.9107 2.3593 1.1163 0.3504 323 433.1
Mod2 3.1112 2.1293 0.9865 0.3138 304 560.4

CE2 Mod3 3.8199 2.3348 1.1025 0.3396 322 131
Mod4 3.1084 2.1196 0.9858 0.3133 303 760.9
Mod5 3.1197 2.1321 0.9877 0.3142 304 705.4

Mod1 4.3495 2.4603 1.1690 0.3660 390 091.8
Mod2 3.8561 2.3336 1.1028 0.3446 377 784.1

SE Mod3 4.2567 2.4290 1.1555 0.3542 387 405.2
Mod4 3.8560 2.3299 1.1025 0.3445 377 420.2
Mod5 3.9081 2.3470 1.1109 0.3473 379 074.1

Mod1 4.0814 2.4005 1.1429 0.3521 568 594.9
Mod2 3.4370 2.2228 1.0502 0.3189 544 041.1

EAST Mod3 3.9377 2.3404 1.1142 0.3305 557 883.2
Mod4 3.4310 2.2140 1.0475 0.3179 542 028.1
Mod5 3.4499 2.2269 1.0527 0.3195 544577.9

Mod1 4.3202 2.4486 1.1719 0.3555 620 146
Mod2 4.1793 2.4148 1.1525 0.3492 615 169.8

NRSW Mod3 4.3163 2.4436 1.1707 0.3546 619 132.8
Mod4 4.1789 2.4111 1.1520 0.3491 614 354.3
Mod5 4.2745 2.4369 1.1664 0.3532 618 132.7

Mod1 4.2185 2.4237 1.1524 0.3488 287 681.3
Mod2 3.8567 2.3377 1.1060 0.3337 281 865.8

FIN Mod3 4.1635 2.4116 1.1435 0.3404 286 201.7
Mod4 3.8564 2.3226 1.1035 0.3331 280 744
Mod5 3.9453 2.3589 1.1175 0.3353 283 438.9

Mod1 4.8823 2.5763 1.2464 0.3862 186 346.2
Mod2 4.0867 2.3989 1.1400 0.3599 178 130.3

UKRI Mod3 4.8413 2.5652 1.2399 0.3816 185 814.7
Mod4 4.0813 2.3827 1.1353 0.3580 177 302.5
Mod5 4.1584 2.4141 1.1479 0.3595 179 283

we consider the risk ratio

P{Yi69 > yi1(0.01)}
P{Yi1 > yi1(0.01)}

=
P{Yi69 > yi1(0.01)}

0.01
. (8)

The value of the ratio (Eq. 8) then tells us, in grid box i,
how many times more likely the 100-year return level based
on the 1950 climate is to be exceeded in the 2018 climate.

We quantify the uncertainty in the estimated risk ratio in the
same way as the return-level difference, via simulation.

4 Results

All the models were fitted using the R (R Core Team, 2021)
package evgam (Youngman, 2022) on a Dell PowerEdge
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Table 4. Approximate 95 % confidence intervals for the spatially averaged 100-year return-level differences (◦C), based on 2018 and 1950
climates (2018 return level subtract 1950 return level) and risk ratios for each region defined in Table 1. The results are based on Mod4,
which includes a trend in the GEV location and log-scale parameters using the covariate log(CO2,t/280). The endpoints of the intervals were
calculated using Monte Carlo simulation. We simulated values of the GEV parameters from their sampling distributions at each grid box
based on the 2018 and 1950 climates. We then calculated the return-level differences and risk ratios at each grid box and calculated the mean
across the region. This procedure was repeated 2000 times. The α/(2× 8) and 1−α/(2× 8), with α = 0.05, empirical quantiles of the 2000
estimated means give the left and right endpoints respectively of the intervals shown, where we have corrected for multiple comparisons
using the Bonferroni correction. The more conservative (adjusted) intervals are based on the magnitude correction to the likelihood as in
Ribatet et al. (2012).

Spatially averaged Spatially averaged Spatially averaged Spatially averaged
Region return-level return-level risk ratio risk ratio

difference difference (adjusted)
(adjusted)

SWFR [2.25, 2.41] [2.20, 2.50] [20.57, 22.36] [17.80, 21.12]
CESC [1.88, 2.08] [1.85, 2.18] [17.63, 19.48] [15.85, 19.00]
CE2 [2.15, 2.39] [2.01, 2.43] [14.73, 17.21] [13.10, 17.06]
SE [2.32, 2.56] [2.28, 2.72] [15.22, 16.85] [12.96, 15.80]
EAST [2.72, 2.85] [2.65, 2.88] [25.61, 27.31] [24.64, 27.77]
NRSW [0.51, 0.66] [0.48, 0.72] [4.20, 4.91] [3.63, 4.69]
FIN [2.39, 2.59] [2.27, 2.64] [18.81, 20.73] [17.22, 20.55]
UKRI [2.25, 2.69] [2.09, 2.83] [11.48, 14.10] [10.49, 14.79]

Figure 5. The difference (◦C) in the 100-year return levels based on 2018 and 1950 climates (2018 return level subtract 1950 return level)
and approximate 95 % confidence interval limits, calculated by Monte Carlo simulation as described in Sect. 3.3, for Mod4 (a, b, c) and
Mod2 (d, e, f). Mod4 includes a trend in the GEV location and log-scale parameters using the covariate log(CO2,t/280), whereas Mod2 only
includes a trend in the GEV location parameter.

R430 computer running Scientific Linux 7 with four Intel
Xeon E5-2680 v3 processors. As this is a shared departmen-
tal cluster, our access was restricted to 10 cores. For a given
fixed sub-region in Table 1, we assess the performance of
each of the five models in Table 2 using several scoring rules

(Gneiting and Raftery, 2007) in a 5-fold cross-validation
(Stone, 1974; Hastie et al., 2009). The scoring rules con-
sidered are the squared error (SE), Dawid–Sebastiani (DS),
continuous ranked probability (CRP) and the weighted con-
tinuous ranked probability (WCRP) scores. All the scoring
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Figure 6. Risk ratios and approximate 95 % confidence interval limits, calculated by Monte Carlo simulation as described in Sect. 3.3, for
Mod4 (a, b, c) and Mod2 (d, e, f). Light blue corresponds to a risk ratio of less than one. Mod4 includes a trend in the GEV location and
log-scale parameters using the covariate log(CO2,t/280), whereas Mod2 only includes a trend in the GEV location parameter.

Figure 7. Changes in the GEV location and scale parameters over the period 1950–2018 (2018 parameter values subtract 1950 values) and
approximate 95 % confidence interval limits, calculated by Monte Carlo simulation as described in Sect. 3.3 for Mod4. Mod4 includes a
trend in the GEV location and log-scale parameters using the covariate log(CO2,t/280).
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Figure 8. Plots showing the distribution (density function) of TXx based on spatially averaged values of the fitted GEV parameters in
1950 (solid black curve) and 2018 (dashed curve) for each region defined in Table 1 and all regions together (bottom right plot). The GEV
parameters in 1950 and 2018 are calculated using Mod4, which has trends in GEV location and log-scale parameters using the covariate
log(CO2,t/280).

Table 5. P values from a test of pair-wise exchangeability of CR-
P/WCRP scores for the two best models, Mod4 and Mod2, by re-
gion.

Region CRP p value WCRP p value

SWFR < 10−6 < 10−6

CESC < 10−6 < 10−6

CE2 < 10−6 < 10−6

SE 3× 10−6 8.4× 10−5

EAST < 10−6 < 10−6

NRSW < 10−6 4.3× 10−5

FIN < 10−6 < 10−6

UKRI < 10−6 < 10−6

rules we consider are negatively oriented, so that a smaller
score indicates better performance. Further information on
the scoring rules and the cross-validation procedure can be
found in Appendices A and B respectively. For a given sub-
region in Table 1 the cross-validation was performed in paral-
lel using the R package parallel. The total compute time
for the full cross-validation in all sub-regions was between 2
and 3 weeks. A version of the Akaike information criterion
(AIC) that is appropriate for the class of general smooth mod-

els we fit was developed in Wood et al. (2016), and we also
report this value for each model. As with the scoring rules
we consider, models with smaller AIC values are preferred.
Within the main text and figures, all reported confidence in-
tervals are based on the magnitude-adjusted likelihood of Ri-
batet et al. (2012) as described in Sect. 3.2.

Table 3 shows the mean scores of each model by re-
gion from 5-fold cross-validation. These scores are based
on the conditional independence likelihood model fits us-
ing Eq. (6). The corresponding model scores (not shown)
when performing the magnitude adjustment to the likelihood
are very similar, leading to the same conclusions. For all
regions, Mod4, which includes a spatially varying trend in
both the GEV location and log-scale parameters, is the best-
performing model, closely followed by Mod2, which only
contains the spatially varying trend in the GEV location pa-
rameter. Mod5, which has a fixed effect of the covariate
xt = log (CO2,t/280) in the location parameter, i.e. a con-
stant trend at all grid boxes in a given sub-region, is gen-
erally the next best-performing model. Mod1, which has all
of the GEV parameters fixed in time, is the worst-performing
model in all regions according to all the scores, followed by
Mod3, which has only a spatially varying trend in the GEV
log-scale parameter.
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Table 6. Approximate 95 % confidence intervals for the spatially averaged changes in the GEV location and scale parameters (2018 parameter
value subtract 1950 parameter value) for each region defined in Table 1. Calculations are based on Mod4, which has trends in GEV location
and log-scale parameters using the covariate log(CO2,t/280). The endpoints of the intervals are calculated by Monte Carlo simulation as
described in the caption to Table 4. The more conservative (adjusted) intervals are based on the magnitude correction to the likelihood as in
Ribatet et al. (2012).

Spatially averaged Spatially averaged Spatially averaged Spatially averaged
Region change in change in change in change in

location location scale scale
(adjusted) (adjusted)

SWFR [2.95, 3.02] [2.86, 3.00] [−0.24, −0.19] [−0.23, −0.15]
CESC [2.93, 3.00] [2.89, 3.03] [−0.34, −0.29] [−0.35, −0.26]
CE2 [3.03, 3.12] [2.99, 3.15] [−0.28, −0.22] [−0.31, −0.21]
SE [2.11, 2.21] [2.12, 2.29] [0.07, 0.14] [0.03, 0.15]
EAST [2.54, 2.65] [2.57, 2.73] [0.10, 0.17] [0.03, 0.14]
NRSW [0.69, 0.77] [0.66, 0.80] [−0.07, −0.02] [−0.09, 0.01]
FIN [1.58, 1.70] [1.51, 1.72] [0.28, 0.35] [0.25, 0.39]
UKRI [2.76, 2.89] [2.71, 2.92] [−0.20, −0.10] [−0.23, −0.06]

Table 5 shows the p values, by region, of the hypoth-
esis test that the CRP scores shown in Table 3 for Mod4
and Mod2 (the two best-performing models) are pair-wise
exchangeable. The testing procedure is described in Ap-
pendix B. Failure to reject the null hypothesis would, infor-
mally, mean that the performances of Mod4 and Mod2 are
statistically indistinguishable. In all regions, the null hypoth-
esis of pair-wise exchangeability is rejected at the 0.05 and
0.01 levels of significance after adjusting the raw p values
in Table 5 using the Bonferroni correction for multiple com-
parisons, giving evidence in favour of the better-performing
Mod4. We also perform the same test for the WCRP scores
of Mod4 and Mod2. For all regions the null hypothesis of
pair-wise exchangeability of WCRP scores is rejected at the
0.05 and 0.01 level of significance, giving evidence in favour
of Mod4. Thus, we find strong evidence in favour of both
changes in location and scale of the distributions of TXx
since 1950.

Figure 5 shows the difference in 100-year return levels
based on the 2018 and 1950 climates, for both Mod4 and
Mod2, along with approximate 95 % confidence intervals,
calculated using Monte Carlo simulation, as described in
Sect. 3.3. The corresponding risk ratio plots are shown in
Fig. 6. Mod2, which only has a trend in the GEV location
parameter, tends to find slightly larger increases in the 100-
year return levels based on the 2018 climate compared to
1950, but the spatial pattern broadly agrees with that pro-
duced by Mod4, and similar comments apply for the risk ra-
tios. All the regions show, on average, significant increases
in return levels and risk ratios greater than one, as shown in
Table 4. Region NRSW, comprising Norway and Sweden,
stands out as having relatively moderate changes compared
to the other regions, with the mean increase over the region
in the 100-year return level being around 0.6 ◦C. There are
several locations within this region where negative changes

are detected, although upon inspecting the approximate 95 %
confidence intervals in Figs. 5 and 6, most of these changes
do not appear to be significant. Even in this region of rela-
tively modest changes, the 100-year return level based on the
1950 climate is estimated to be, on average, approximately 4
times more likely to be exceeded in the 2018 climate. The re-
gion EAST comprising eastern European countries shows the
most dramatic increases, with a mean 100-year return-level
difference of around 2.8 ◦C and a mean risk ratio in excess
of 26. Averaging over the entire spatial domain, we find that,
under Mod4 (change in location and scale), the mean differ-
ence between the 100-year return levels based on the 2018
and 1950 climates is 2.08 ◦C, with a 95 % confidence inter-
val of [2.03,2.12]. For Mod2 (change in location only), the
mean difference is 2.29 ◦C, with a 95 % confidence interval
of [2.26,2.33]. Similarly, under Mod4, the mean risk ratio
over the entire spatial domain is 16.12, with a 95 % confi-
dence interval of [15.74,16.53], so that on average a 100-
year return level in the 1950 climate corresponds approxi-
mately to a 6-year return level in the 2018 climate. For Mod2,
the mean risk ratio is increased to 18.00, with a 95 % confi-
dence interval of [17.65,18.34].

Changes in the GEV location and scale parameters over
the period 1950 to 2018 calculated using Mod4 are shown
in Fig. 7. Approximately 96 % of the grid boxes show an in-
crease in the location parameter over the study period, and
after calculating approximate 95 % confidence intervals for
each change in location, 88 % of these have a lower limit
greater than zero. We cannot however conclude that warm-
ing is detected in TXx in 88 % of grid boxes as we make no
attempt to correct for multiple comparisons. The changes in
the GEV scale show rather more variability, with 37 % pos-
itive and 63 % negative fitted values. After calculating ap-
proximate 95 % confidence intervals for the scale changes,
approximately 50 % of these slopes contain 0. The spatially
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averaged changes in the GEV location and scale parameters
for each sub-region in Table 1 are shown in Table 6, and the
spatially averaged distributions of TXx in 1950 and 2018 are
shown for each sub-region in Fig. 8. All the regions show, on
average, significant increases in the GEV location parameter,
indicating a tendency for TXx to shift towards hotter tem-
peratures. There is a mixture of both increases and decreases
in the spatially averaged GEV scale parameter differences
corresponding to increasing and decreasing variabilities of
TXx respectively. The regions with an average increase in
the GEV scale parameter occur in the east and in Ireland. We
find that, under Mod4, a 95 % confidence interval for the spa-
tially averaged change in the GEV location parameter over
all regions is [2.28,2.32], whereas the corresponding inter-
val for the change in scale is [−0.08,−0.05]. Thus, although
there is a strong signal for shifts of the TXx distributions
in all regions towards hotter temperatures, as indicated by
the positive changes in the GEV location, the mixtures of
increases and decreases in the GEV scale parameter approx-
imately cancel each other out when spatially averaged across
our study region. The changes in the GEV location parameter
for Mod2 are the same as the return-level differences shown
in the bottom row of Fig. 5.

In the same notation as Sect. 3.2, for Mod4, a test of the
null hypothesis µ1 = 0, i.e. all location slopes are zero, using
the asymptotic distributional results of Wood et al. (2016),
has for each region a p value of less than 2× 10−16, giv-
ing strong evidence against the null hypothesis. The same re-
sult is found for the location slopes from Mod2 and log-scale
slopes for Mod4. Together with the results in Table 3, the hy-
pothesis of no temporal variation in the GEV parameters is
strongly rejected in all regions, supporting robust detection
of changing TXx distributions over time.

5 Conclusions

We have considered the problem of detecting and quantifying
large-scale changes in the distributions of the annual max-
imum daily maximum temperature (TXx) in a large subset
of Europe during the years 1950–2018. Our approach was
to divide the full domain into eight sub-regions over which
several statistical models were fitted. In each of the models
considered, TXx at each grid box was modelled using a gen-
eralized extreme-value (GEV) distribution with the GEV lo-
cation and scale parameters allowed to vary in time using
atmospheric CO2 as a covariate. We modelled the GEV pa-
rameters as varying smoothly over space, where the appro-
priate degree of smoothness was determined objectively us-
ing the methods of Wood et al. (2016). Changes were de-
tected most strongly in the GEV location parameter, with
the distributions of TXx shifting towards hotter temperatures
at most grid boxes. Although the best-performing model in
all regions has both the GEV location and scale parameters
changing in time, the signal for changes in the scale param-

eters is noisier than that for the location parameters, with
some regions showing a tendency to increases in scale and
others a decrease. The regions that show a tendency to an in-
crease in scale, corresponding to an increase in the variabil-
ity in TXx, are in eastern Europe and Ireland. The second-
best-performing model in all regions has only the GEV lo-
cation parameter changing in time. Regardless of whether
our best or second-best models were used, our main find-
ings regarding changes in return levels based on the 2018
and 1950 climates and risk ratios broadly agree. Using our
best-performing model and averaging across our entire spa-
tial domain, the 100-year return level of TXx based on the
2018 climate is approximately 2 ◦C hotter than that based
on the 1950 climate. Also averaging across our spatial do-
main, the 100-year return level of TXx based on the 1950
climate corresponds approximately to a 6-year return level
in the 2018 climate. Our findings are most robust in central
Europe, where the underlying network of weather stations
used to construct the gridded data set has the highest den-
sity. Finally, although we made an effort to mitigate against
well-known deficiencies of gridded station data, namely in-
homogeneities and low station density regions, the data we
used will nonetheless be imperfect. It would therefore be of
great interest to see how well our findings may be replicated
using different data sources in future studies.

Appendix A: Model scoring

We use several scoring rules that evaluate the performance
of models based on their ability to predict unseen data, i.e.
data that were held out from the model-fitting procedure. A
scoring rule is a function, S, that assigns a real number value
S(F,y) to the pair (F,y), where F is a distribution function
and y is an observed value. In our case F will be the cumu-
lative distribution function of a fitted GEV distribution and
y will be some observation, held out from the model-fitting
procedure, that under our model is assumed to be drawn from
F . Intuitively, the value of S(F,y) can be thought of as mea-
suring the extent to which the distribution F and observation
y are compatible. All of the scoring rules that we consider
are negatively oriented, so that smaller scores correspond to
better predictions.

A negatively oriented scoring rule S is called proper
(Gneiting and Raftery, 2007) if

E{S(G,Y )} ≤ E{S(F,Y )} when Y ∼G, (A1)

where E denotes expectation; i.e. on average, the true dis-
tribution G will not give a worse score than any other dis-
tribution F , so that forecasters are incentivized to report the
truth. All the scores that we consider are proper. If equality in
Eq. (A1) holds only if F =G, then S is called strictly proper.

One of the simplest and most common scoring rules is the
squared error score SSE defined by

SSE(F,y)= (y−µF )2, (A2)

Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, 2023 https://doi.org/10.5194/ascmo-9-45-2023



G. Auld et al.: Changes in the distribution of annual maximum temperatures in Europe 59

Figure A1. Histograms of probability integral transform (PIT) values by region for Mod4. If the model is correct, the PIT values are
uniformly distributed.

where µF is the expected value of a random variable with
distribution F . The squared error score gives higher penalties
the further an observation is from the mean of the distribu-
tion but may be regarded as rather simplistic in that the dis-
tribution F is represented in the score only through its mean
µF . When the variance of F is large, we may wish to give a
smaller penalty to observations y that are far from the mean
µF . One score that does this is the Dawid–Sebastiani score,
SDS, defined by

SDS(F,y)=
(
y−µF

σF

)2

+ logσ 2
F , (A3)

where σ 2
F is the variance of F .

Another commonly used scoring rule is the continuous
ranked probability score (CRPS) defined by

SCRP(F,y)=

∞∫
−∞

(
F (x)− 1[y ≤ x]

)2dx. (A4)

Unlike the squared error and Dawid–Sebastiani scores, the
CRPS takes into account the full distribution F and compares
it with the empirical distribution based on the single obser-
vation y. A closed-form expression for the CRPS when F is
the distribution function of a GEV random variable is given
in Friederichs and Thorarinsdottir (2012) and implemented
in the R package scoringRules (Jordan et al., 2019).

For an extreme-value analysis, it may be desirable to con-
sider a scoring rule that gives a higher penalty for poor pre-
diction in the tails of the distribution. One way to do this is
to use a weighted version of the CRPS (Gneiting and Ranjan,
2011). First, we note that an alternative representation of the
CRPS in terms of quantiles is

SCRP(F,y)= 2

1∫
0

(
1[y ≤ F−1(p)] −p

)(
F−1(p)− y

)
dp. (A5)

The equality of Eqs. (A4) and (A5) is shown in Laio and
Tamea (2006). The weighted continuous ranked probability
score (WCRPS) is obtained from Eq. (A5) by adding an extra
factor, w(p), to the integrand, which determines the weight
given to the pth quantile giving

SWCRP(F,Y )= 2

1∫
0

(
1[y ≤ F−1(p)] −p

)
(
F−1(p)− y

)
w(p)dp. (A6)

In our application we use the weighting function w(p)= p2.
As the integral Eq. (A6) does not have a closed-form solu-
tion when F is the distribution function of a GEV random
variable, we approximate it with the summation

2
N

N∑
i=1

(
1[y ≤ F−1(pi)] −pi

)(
F−1(pi)− y

)
w(pi) (A7)
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for largeN and 0≤ p1 < p2 < .. . < pn ≤ 1 a partition of the
interval [0,1]. In our case we take the evenly spaced partition
pi = i/N with N = 1000 and i = 1,2,3, . . .,999.

We use each of the scoring rules described above as part of
a cross-validation scheme to evaluate a model’s performance.
This is described in Appendix B.

Appendix B: Cross-validation and score
comparisons

For each of the regions in Table 1, we evaluate the perfor-
mance of each of the models in Table 2 using 5-fold cross-
validation. Specifically, for a fixed region, we randomly as-
sign each observation of the region to one of five subsets, or
splits, of approximately equal size. The same splits are used
in each model evaluation. Suppose there are Nj observations
in split j,1≤ j ≤ 5, which we denote by y(j )

1 ,y
(j )
2 , . . .,y

(j )
Nj

.
We fix one of the splits, k say, 1≤ k ≤ 5, to be used as test
data and fit the model of interest to the data from the remain-
ing four splits. For each observation y(k)

i ,1≤ i ≤Nk , from
the test data, we evaluate S(F (k)

i ,y
(k)
i ) for each of the scores

defined in Appendix A, where F (k)
i is the GEV distribution

function that, under the fitted model, y(k)
i is assumed to be

drawn from. This procedure is carried out for each k,1≤ k ≤
5, so that each split gets used as test data. The mean score,
1
N

∑5
k=1

∑Nk
i=1S(F (k)

i ,y
(k)
i ), where N =

∑5
k=1Nk is the total

number of observations in the region, gives an overall mea-
sure of model performance according to score S. For the
scores defined in Appendix A, which are all negatively ori-
ented, models with lower mean scores are preferred.

Suppose that in the cross-validation procedure described
above, model B produces a lower mean score than another
model, A. If the observed difference in the mean scores is
very small, we may wish to test whether this really pro-
vides evidence that model B is better than model A. Suppose
that, for each model, we have the N scores S(FAi ,yi) and
S(FBi ,yi), 1≤ i ≤N , where FAi and FBi are the distribution
functions that, under models A and B respectively, obser-
vation yi is assumed to be drawn from. We will construct
a test for the null hypothesis that the scores S(FAi ,yi) and
S(FBi ,yi) are pair-wise exchangeable for 1≤ i ≤N . Two
random variables X1 and X2 are said to be exchangeable
if P(X1 ≤ x1,X2 ≤ x2)= P(X1 ≤ x2,X2 ≤ x1). In particu-
lar, this implies that X1 and X2 are identically distributed. If
the scores S(FAi ,yi) and S(FBi ,yi) are pair-wise exchange-
able, then the score S(FAi ,yi) would be equally likely to
have been produced by model B, and similarly, S(FBi ,yi) is
equally likely to have been produced by model A. Thus, for
the observed score difference S−i = S(FAi ,yi)− S(FBi ,yi),
we would have been equally likely to have observed −S−i
under the null hypothesis. This motivates the following ran-
domized test procedure defined in Algorithm B1 below.

The value of p computed in Algorithm B1 is an unbiased
estimate of the one-sided p value for the test with null hy-

Algorithm B1 Hypothesis testing procedure for testing pair-
wise exchangeability of model scores.

Input: positive integer J and model scores
S(FA

i
,yi ),S(FB

i
,yi ), 1≤ i ≤N .

Output: p, an estimate of the p value of the test.
for i← 1 to N do
S−
i
= S(FA

i
,yi )− S(FB

i
,yi ); (compute the score differ-

ence)
end for
Set Tobs =

1
N

∑N
i=1S

−

i
; (observed test statistic)

for j ← 1 to J do
for i← 1 to N do

Compute the randomized score difference;

S−
i

(j )=

{
S−
i

with probability 0.5

−S−
i

with probability 0.5

end for
end for
Return: p = 1

J

∑J
j=11[Tj ≥ Tobs].

Figure B1. Probability plots by region for Mod4.

pothesis that the scores S(FAi ,yi) and S(FBi ,yi) are pair-
wise exchangeable, 1≤ i ≤N . The value of the observed test
statistic Tobs is strictly positive since it is assumed that model
B has the lower observed mean score. Small values of p give
evidence against the null hypothesis in favour of model B. In
our applications of Algorithm B1, we take J = 106.
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Appendix C: Diagnostic plots

In this Appendix we perform some visual checks for Mod4
to see whether this model provides a reasonable fit to the data
and is not merely the best of a bad bunch of models. As it is
not feasible to provide plots for every grid box, we consider
the performance as a whole over the sub-regions as defined
in Table 1.

One simple way to check for any systematic discrepancies
between a fitted model and the observed data is to use the
probability integral transform (PIT). The PIT states that, if
Y is a random variable with continuous distribution function
F , then the random variable F (Y ) is uniformly distributed
between 0 and 1. Suppose that, given a sample of size n with
observed response variables, yi , 1≤ i ≤ n, a statistical model
fits distribution function Fi to yi . Then, if the model is cor-
rect, the values Fi(yi), 1≤ i ≤ n are a sample of size n from
a uniform distribution on [0,1]. The plausibility of this may
be checked visually, e.g. by plotting a histogram of the n PIT
values Fi(yi), 1≤ i ≤ n. A U-shaped histogram would indi-
cate that the fitted model is underdispersive; i.e. it does not
adequately account for the variability in the data, whereas a
histogram that is too peaked in the middle indicates that the
model is overdispersive. Histograms of the PIT values, by
region, are shown for Mod4 in Fig. A1 and do not show any
serious cause for concern.

Another standard method for checking a non-stationary
extreme-value model fit is via probability or quantile plots
(Coles, 2001, Sect. 6.2.3). Both of these plots are based on
the fact that if Yit is a GEV random variable with parameters
9it = (µit ,σit ,ξit ), then the variable Zit defined by

Zit =
1
ξit

log
{

1+ ξit

(
Yit −µit

σit

)}
(C1)

has a standard Gumbel distribution with distribution function
F (z)= exp{−exp(−z)},z ∈ R. If we fix a specific region in
Table 1 and suppose that, as in Sect. 3.1, in grid box i we
have observed annual maxima, yitj ,1≤ j ≤ ni , then, from a
given fitted model, we may obtain the values zitj ,1≤ j ≤ ni
by applying the transformation Eq. (C1). If there are N grid
boxes in the region in total, then we may apply this trans-
formation to all grid boxes and obtain m=

∑N
i=1ni trans-

formed z values. If the model is correct, then the ordered val-
ues z(1),z(2), . . .z(m) where z(k) ≤ z(l) when k ≤ l would be a
sample from a standard Gumbel distribution. The probability
plot tests the plausibility of this by comparing empirical and
fitted-model probabilities and plots the pairs(

k

m+ 1
,exp{−exp(−z(k))}

)
, 1≤ k ≤m.

The quantile plot compares fitted-model and empirical
quantiles and plots the pairs(
z(k),−log

{
− log

(
k

m+ 1

)})
, 1≤ k ≤m.

Figure C1. Quantile–quantile plots by region for Mod4.

The further these plots deviate from a diagonal line, the
greater the discrepancy between the fitted model and the ob-
servations. Probability and quantile plots are shown by re-
gion in Figs. B1 and C1. The probability plots stay very
close to the diagonal line, indicating a good quality of fit for
each sub-region. The quantile plots show, to a varying extent
in each region, some discrepancy in the upper tail. For the
sake of reference, the values 5, 6, 7 and 8 correspond to the
0.9933, 0.9975, 0.9991 and 0.9997 theoretical quantiles of
the standard Gumbel distribution respectively. Thus we can
see that Mod4 gives a good fit in all regions at least up to the
0.9933 regional quantile and in several regions beyond this
but fails to explain approximately the largest 0.05 % of ob-
servations in each region. Given the very large quantities of
data in each region, this is of no great surprise or concern.

Finally, we inspect the spatial distribution of the Pearson
residuals obtained from a model fit. For grid box i we obtain
the ni residuals rij ,1≤ j ≤ ni defined by

rij =
yitj − Ê(yitj )

{V̂ar(yitj )}1/2
, (C2)

where Ê(yitj ) and {V̂ar(yitj )}1/2 denote the model-fitted
expected value and standard deviation respectively. When
the fitted distribution is GEV with parameter vector 9it =
(µit ,σit ,ξit ), then these expressions become

Ê(yitj )=


µit +

σit
ξit
{0 (1− ξit )− 1}, 0< ξit < 1,

µit + σit γ, ξit = 0,
∞, ξit ≥ 1,

(C3)
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and

V̂ar(yitj )=

σ 2
it

ξ2
it

{0 (1− 2ξit )−02(1− ξit )}, 0< ξit < 1/2,

π2σ 2
it

6 , ξit = 0,

∞, ξit ≥ 1/2,

(C4)

where γ ≈ 0.5772 is Euler’s constant and 0(t)=∫
∞

0 xt−1e−xdx. If the fitted model were correct, then
the Pearson residuals are realizations of a random variable
with mean 0 and standard deviation 1. The mean and
standard deviation of the Pearson residuals for each grid box
for both Mod4 and Mod2 are shown in Fig. D1. The spatial
distributions look similar for both models and do not display
any worryingly large deviations from the zero mean, unit
standard deviation assumption.

Appendix D

Figure D1. Mean values (a, b) and standard deviations (c, d) of Pearson residuals for Mod4 and Mod2.
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