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Abstract. Many marine activities, such as designing ocean structures and planning marine operations, require
the characterization of sea-state climate. This study investigates the statistical relationship between wind and
sea states, considering its spatiotemporal behavior. A transfer function is established between wind fields over
the North Atlantic (predictors) and the significant wave height (predictand) at three locations: southwest of the
French coast (Gironde), the English Channel, and the Gulf of Maine. The developed method considers both
wind seas and swells by including local and global predictors. Using a fully data-driven approach, the global
predictors’ spatiotemporal structure is defined to account for the non-local and non-instantaneous relationship
between wind and waves. Weather types are constructed using a regression-guided clustering method, and the
resulting clusters correspond to different wave systems (swells and wind seas). Then, in each weather type, a
penalized linear regression model is fitted between the predictor and the predictand. The validation analysis
proves the models skill in predicting the significant wave height, with a root mean square error of approximately
0.3 m in the three considered locations. Additionally, the study discusses the physical insights underlying the
proposed method.

1 Introduction

A sea state is a statistical description of the sea surface waves
generated by wind at a given time and location. The sea state
is characterized by a superposition of wind seas and swells
(Ardhuin and Orfila, 2018). The local wind generates wind
seas, whereas swells are generated in distant areas. Signifi-
cant wave height (Hs), defined as 4 times the zeroth moment
of the wave power spectrum, is commonly used to describe
the sea state. Thus,Hs is an essential measure of wave height
and provides information about the wave energy of a given
sea state.

High-quality wave data are essential for many marine ap-
plications, such as designing coastal and offshore structures
and planning marine operations. Observational, numerical,
and statistical models are the methods used for sea-state char-
acterization. Traditional in situ measurements obtained from

buoys provide the most reliable data for sea-state parame-
ters; however, they are only available for the last decades and
are limited spatially (Ardhuin et al., 2019). Numerical mod-
els (Hasselmann et al., 1973; Tolman, 2009) provide simula-
tions of spectral wave models from which sea-state param-
eters are extracted. They are a valuable source of data and
provide decades of records, although they are computation-
ally expensive. Statistical models constitute an alternative to
numerical models for constructing the wind–waves relation-
ship. These models are not computationally expensive, and
once the statistical relationship is estimated, future predic-
tions can be made by assuming that this relationship is sta-
tionary, meaning that the statistical relationship between the
large-scale variables and the sea-state parameters does not
change between the present and the future (Mori et al., 2013;
Laugel et al., 2014).
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Various studies have compared statistical and numerical
models for ocean wave parameters and other climate vari-
ables. Wang et al. (2010) compared these methods in terms
of climatological characteristics of the present period using
ERA-40 wave data. They found that the statistical models
are better at reproducing the observed climate than the dy-
namical models. Laugel et al. (2014) analyzed these methods
for climate projections, and their study shows that statistical
downscaling (SD) approaches can reproduce the present cli-
matology and future projections. In addition, due to their low
computational complexity, SD models permit the considera-
tion of a wide range of global climate models (GCMs) and
climate scenarios, which allows us to estimate the uncertain-
ties. However, modeling the relationship between wind and
sea-state parameters using statistical methods still presents
some difficulties, which have been addressed by different
methods in the literature, namely:

– Waves depend on both local and global wind conditions.
The surface wind generates wind waves. However, it
is not only the local wind that defines local waves,
and wind from distant regions generates swells that
may reach the target point (Ardhuin and Orfila, 2018).
Therefore, SD models have to consider both wind sea
and swells, which is particularly challenging in swell-
dominated areas (Hemer et al., 2012). To address this
issue, we use a local and a global predictor to account
for wind sea and swells, respectively, as already done in
Casas-Prat et al. (2014) and Camus et al. (2014a).

– Wind conditions are multicollinear and multidimen-
sional. The wind conditions are characterized by two
components (zonal and meridional), which might be
challenging to consider directly in a statistical model.
To address the issue of multidimensionality in this
study, we introduce the wind projection, which consists
of retaining only the fraction of wind blowing towards
the target point. The proposed preprocessing step al-
lows the use of only one variable for each grid point,
reducing the dimension of the predictor by half. Further-
more, large-scale wind variables are high-dimensional
and multicollinear (strong correlations among vari-
ables) due to the strong spatiotemporal dependence of
wind fields, and using them as a predictor in a statistical
model might be challenging. Dimensionality-reduction
methods such as principal component analysis are typi-
cally used as a preprocessing step to reduce the dimen-
sion of the large-scale variables and deal with multi-
collinearity (Laugel et al., 2014; Camus et al., 2014a, b).
In this study, we use ridge regression (Hoerl and Ken-
nard, 1970), which has been proven to be beneficial for
dealing with multicollinearity in various studies (Maha-
jan et al., 1977; Hessami et al., 2008).

– The relationship between wind and waves is not instan-
taneous. Wind from distant regions generates waves that

may take days to reach the target point. Thus, the rela-
tionship between wind and waves is not instantaneous.
Therefore, it is necessary to consider lagged wind con-
ditions to understand the wave dynamics at a particu-
lar target location. The optimal lag at each grid point is
interpreted as the travel time required for the waves to
reach the target point (Camus et al., 2014a). ESTELA
(Evaluation of Source and Travel-time of wave Energy
reaching a Local Area) (Pérez et al., 2014) is a method
that defines the wave generation area and wave travel
time at any ocean location worldwide. Using its spec-
tral information, the method selects the fraction of en-
ergy that travels to the target point from selected source
points. The ESTELA method was used in various stud-
ies to define the temporal coverage of predictors used
in SD (Camus et al., 2014a, 2016; Hegermiller et al.,
2017; Anderson et al., 2019; Cagigal et al., 2020; Costa
et al., 2020). The present study uses a statistical ap-
proach to define the wave generation area. It is based
on estimating waves’ travel time from each source to
the target point (optimal lag) using the maximum cor-
relation between the significant wave height and wind
conditions. Therefore, this method is not computation-
ally expensive, and only wind and Hs data at the target
point are required, and unlike ESTELA, no spectral data
are needed.

This study presents a statistical approach for estimat-
ing the relationship between wind conditions and ocean
waves. The approach is based on weather types, which are
constructed using a regression-guided clustering algorithm.
These weather types are then used to link the space–time
wind fields over the North Atlantic (predictors) and the sig-
nificant wave height (predictand) at three locations: north-
west and southwest of the French coast and the English
Channel. Then, regression with ridge regularization is used to
fit the relationship between wind conditions and significant
wave height at each weather type. The proposed methodol-
ogy considers wind sea and swells and provides additional
information about the spatiotemporal relationship between
wind and waves. The main contribution of this work is that it
provides an entirely data-driven approach for estimating the
travel time of waves from any source point to a target point,
which is essential for the definition of predictors. To the best
of our knowledge, the only other approach in the literature
that can be used for this purpose is ESTELA (Pérez et al.,
2014), which relies on directional spectra over the spatial do-
main of the wave generation. These spectra are not always
accessible and can be computationally costly and demand
high storage capacity. Our proposed approach, however, uti-
lizes wind fields and significant wave height at the point of
interest, which are more accessible and less computationally
costly. Additionally, it allows for the processing of buoy data
or data from models with limited spatial coverage, as it does
not require the directional spectra over the wave generation
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domain. Furthermore, this study proposes a relatively inter-
pretable model with a limited number of weather types and
uses ridge regularization (van Wieringen, 2015). The regular-
ization is used to make the parameters of the regression more
interpretable and to improve the generalization capability of
the model.

This paper is structured as follows. After describing the
data in Sect. 2, the local predictors are defined in Sect. 3.
Then, Sect. 4 describes the construction of the global pre-
dictors. Next, Sect. 5 presents the statistical model that com-
bines the local and global predictors. Then, Sect. 6 presents
the results of the SD model. Finally, the study is concluded
in Sect. 7.

2 Data

The atmospheric data used in this work to construct predic-
tors are extracted from the Climate Forecast System Reanal-
ysis (CFSR) (Saha et al., 2010). CFSR is a global reanalysis
developed at the National Centers for Environmental Predic-
tion (NCEP) that covers the period from 1979 to the present
with an hourly time step and spatial resolution of 0.5◦ by
0.5◦. Extracted data consist of hourly 10 m zonal and merid-
ional wind components in the North Atlantic (Fig. 1).

To comprehensively evaluate the method across a range
of observed sea states, we consider three different locations:
Gironde (45.2◦ N, 1.6◦W), the English Channel (49◦ N,
4.4◦W), and the Gulf of Maine (43◦ N, 69◦W). The Gironde
location is nearshore, with the highest Hs observed at the
considered period being 10.5 m, whereas in the English
Channel location, which is offshore, the highest Hs observed
is 11.8 m. In addition to the two eastern Atlantic locations, a
location in the Gulf of Maine is situated in the western part
of the Atlantic, where the maximum Hs reached 9 m. The
bathymetry of the Gulf of Maine is highly complex, with
a coastline dotted with numerous bays, islands, and coves
(Panchang et al., 2008).

The historical wave data used in this work for the Gironde
and English Channel locations are the sea-state hindcast
database HOMERE (Boudière et al., 2013) based on the
WAVEWATCH III® model forced by CFSR wind. The
database covers the English Channel and the Bay of Biscay
with unstructured computational mesh. It contains 37 param-
eters and the frequency spectra on high spatial resolution,
ranging from 200 to 10 km, with a 1 h time step. For the
Gulf of Maine location, we consider the IOWAGA database
(Ardhuin et al., 2011), which is also based on the WAVE-
WATCH III® model forced by CFSR and ECMWF wind. To
validate and interpret the results of the SD method, we con-
sider the energy spectral partitioning, which identifies differ-
ent wave systems. HOMERE uses the watershed algorithm
(Tracy et al., 2007) to separate wind sea and different swells.

The temporal resolution of both predictors and predic-
tand is upscaled from hourly to 3 h resolutions to facilitate

the analysis. Both datasets comprise a common period of
26 years, from 1994 to 2019. The 1994–2013 period is used
as the calibration period, while the 2014–2019 period is used
as a validation period.

3 Local predictor

Wind speed, duration, and the fetch impact the characteristics
of the wind sea (Ardhuin and Orfila, 2018). Hereafter, at time
t , the variables U (t), F (t), U (t−1), and F (t−1) are consid-
ered to construct the local predictors. U (t) is the wind speed
at the target point, and F (t) is the fetch length at time t , cal-
culated as the minimum of the distance from the target point
to shore in the direction from which the wind is blowing and
500 km. A minimum distance of 500 km is fixed because it is
computationally expensive to calculate the distance between
the target point and far away shores such as eastern American
shores. Note that F (t) is not but is related to the fetch in the
literature, which is defined as the distance over which waves
develop (Ardhuin and Orfila, 2018). Lagged wind conditions
are considered because they may provide information about
the temporal variability of the wind and thus the duration of
wind conditions.

To investigate the capability of local variables to explain
Hs, the polynomial regression model,

Hs(t)= β
(`)
0 +X

(`)(t)β(`)
+ ε(`)(t), (1)

is considered. Where X(`) is the local predictor,

X(`)(t)= {U (t),U2(t),U3(t),U2(t)F (t),U (t − 1),

U2(t − 1),U3(t − 1),U2(t − 1)F (t − 1)}, (2)

β
(`)
0 and β(`) are model coefficients, and ε(`)(t) is the model

error. Model (1) contains polynomial terms and interactions
between the fetch and squared wind to consider nonlinear re-
lationships betweenHs and predictors. We considered taking
into account the lagged local wind conditions up to t − 4;
however, the performance of the model does not change as
much as taking into account only the t and t −1 wind condi-
tions.

The model is fitted using data from 1994 to 2013 and is
assessed in a validation period from 2014 to 2019 using the
Pearson correlation r , root mean square error (RMSE), and
bias:

r =

∑n
t=1(Ĥs(t)− Ĥs)(Hs(t)−Hs)

σ
Ĥs
σHs

(3)

RMSE=

√∑n
t=1(Ĥs(t)−Hs(t))2

n
(4)

BIAS=
∑n
t=1(Ĥs(t)−Hs(t))

n
, (5)

where Ĥs(t) is the predicted Hs at time t ; Ĥs and Hs are the
mean of observed and predicted Hs, respectively; σ

Ĥs
and
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Figure 1. Mean Climate Forecast System Reanalysis (CFSR) zonal and meridional wind components over the period 2014–2019.

Figure 2. Local model results (Eq. 1) in the validation period at the three considered locations as a function of the peak period (Tp).

σHs are the standard deviation of predicted and observed Hs,
respectively; and n is the number of observations considered
(58 440 for the calibration period and 17 528 for the valida-
tion period).

Results of the local model as a function of the peak period
of the three considered locations are shown in Fig. 2. The
model strongly underestimates high-period waves in all three
locations and better predicts small-period waves. The high-
period waves could correspond to swells that are generated
far from the target point. Therefore, in order to predict Hs
at these locations, it is important to consider the large-scale
wind conditions that cover the swell generation as well as the
local-scale wind conditions.

4 Global predictor

In order to take swells into account, a global predictor which
describes wind conditions over the North Atlantic has to
be considered. Wind data have two components, the zonal
and meridional components. Each of the two components in
space and time carries more or less information about the
waves observed at the target point at a given date. However,
using all of them as inputs to a statistical model is compu-
tationally challenging, given the high dimensionality of the
data and may lead to hardly interpretable results due to the

strong correlation between wind conditions at closed loca-
tions in space and time. This section defines the global pre-
dictor related to the spatiotemporal domain of the wave gen-
eration area.

4.1 Spatial coverage

Following Pérez et al. (2014), the spatial coverage of the
global predictor is based on the assumption that deep-water
waves travel along a great circle path. Therefore, the wave
generation area is limited by neglecting grid points whose
paths are blocked by land. Furthermore, small islands are not
taken into consideration.

4.2 Wind projection

To reduce the dimension of the atmospheric variables and to
create a more interpretable model, wind components at each
grid point are projected into the bearing of the target point in
a great circle path (Fig. 3) using the following equation:

W = U cos2s
(

1
2

(b− θ )
)
, (6)

where W is the target-projected wind, U is the wind speed,
s is the spread parameter (Young, 1999), b is the great circle
bearing, and θ is the wind direction.
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Figure 3. Wind projection representation. The initial wind vec-
tor (V) at each source point is transformed into a component (B)
aligned with the bearing (b) of the target point, as determined by a
great circle path (dashed blue line).

Figure 4. Relationship between the target-projected wind and the
spread parameter at varying values of the angle difference b− θ ,
with a constant wind speed (U = 10 m s−1).

The parameter s ≥ 0 controls the amount of wave energy
being transferred by the wind blowing from different direc-
tions. In Fig. 4, the relationship between the target-projected
wind and the spread parameter is examined at varying val-
ues of the angle difference b− θ , with a constant wind speed
(U = 10 m s−1). When the wind blows to the target point
(i.e., θ ≈ b), the target-projected wind is near its maximum,
which is the wind speed U . As the deviation of θ from b

increases, the target-projected wind decreases, with the rate
of decrease dependent on the value of the spread parameter.

Therefore, a larger-spread parameter corresponds to less en-
ergy spreading. Ideally, s has to be smaller for locations near
the target point and vice versa, and one can use an optimiza-
tion method to select the optimal value for each location. To
simplify the analysis and avoid the computation burden of
such a method, we choose a common value of s for all loca-
tions. In order to evaluate the impact of the parameter s on the
prediction of Hs, we tested a range of values for s between
0 and 7 using a simple linear regression model. The optimal
value of s in terms of prediction accuracy was found to be
1 (not shown). Figure 5 illustrates the mean of the target-
projected wind in the four seasons. Strong winds that blow
towards the direction of the target point are observed in win-
ter and mostly in the area around 50◦ N, 40◦W.

4.3 Temporal coverage

According to the dispersion relation, the group velocity of
waves is expressed as

Cg =
gT

4π
, (7)

where g is the gravitational velocity and T is the period. For
example, swells whose period is around 15 s have a group ve-
locity of 11.73 m s−1, traveling 50% faster than a 10 s ocean
wave, and it takes them about 5 d to cross the Atlantic from
Cape Hatteras to the Bay of Biscay (Ardhuin and Orfila,
2018). Therefore, waves generated at a location j and time t
might take time tj to arrive at the target point.

At each location j and time t , the predictor is defined as
the mean of the squared lagged target-projected wind in a
time window so that

X
(g)
j (t; tj ,αj )=

1
2αj + 1

∑t−tj+αj

i=t−tj−αj
W 2
j (i),

tj +αj + 1≤ t ≤ tj −αj + n , (8)

where αj controls the length of the time window, tj is the
mean travel time of waves,Wj is the target-projected wind at
location j , and n is the total number of observations. Hence-
forth, the parameter αj is called the temporal width, even
though the length of the temporal wind is equal to 2αj + 1.
Note that the relationship between the target-projected wind
and Hs seems to be a square relationship (Fig. 6) so that, in
Eq. (8), the squared target-projected wind is considered.

The parameters tj and αj can be simultaneously deter-
mined for all locations by minimizing an objective function,
such as least squares. However, this method is computation-
ally infeasible due to its non-polynomial and combinatorial
nature. As an alternative, tj and αj are independently esti-
mated for each location over the entire period using the max-
imum Pearson correlation between the global predictor and
Hs. At first, at each location j , the travel time tj is estimated
by setting αj = 0, then the temporal width is estimated using
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Figure 5. Mean target-projected wind for Gironde in the winter (DJF), spring (MAM), summer (JJA), and autumn (SNO) over the period
2014–2019.

Figure 6. Target-projected wind at point located in (45.5◦ N,
3.5◦W) versus Hs and the estimated curve line using the model
Hs = aW

2
+ b in Gironde.

the estimated value of tj so that,

t̂j = argmax
tj

(
corr(Hs,X

(g)
j (tj ,αj = 0))

)
α̂j = argmax

αj

(
corr(Hs,X

(g)
j (t̂j ,αj ))

)
(9)

Figure 7 shows the estimated travel time of waves and the
temporal width in the three locations. Globally, the two pa-
rameters are spatially smooth and interpretable, and as ex-
pected, the two parameters increase as the distance between
the source and target point increases. For example, under the
assumption of constant group wave velocity from the source
to the target point, waves generated at a source point situ-
ated at 37.5◦ N, 70.5◦W, which is 5642 km from the target
point in Gironde, can take on average 180 h (about 7.5 d)
to reach this target point. These waves travel at a velocity
of 8.7 m s−1; thus, according to the dispersion Eq. (7), they
have an average period of 11.1 s. On the one hand, consider-
ing t̂j + α̂j as the maximum travel time of the waves, at the
same source point, waves can also take 225 h (about 9 d) to
reach this target point, with a velocity of 7 m s−1 and a pe-
riod of 9 s. On the other hand, the minimum wave travel time
(t̂j − α̂j ) at the same source point is 135 h (about 5.5 d) with
a velocity of 11.6 m s−1 and a period of 14.8 s. Therefore,
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Figure 7. Estimated travel time of waves (top panel) and the temporal width (bottom panel) using Eq. (9) in the three locations.

Figure 8. Results of cross-validation using two weather types:
RMSE (green line) and classification accuracy (purple line) versus
the logarithm of λ. The red and blue dots correspond to the mini-
mum RMSE and maximum accuracy, respectively. The interval for
each criterion is defined as its minimum and maximum.

tj−αj and tj+αj can be interpreted as the propagation time
of long-period and short-period waves, respectively.

Regions located 35◦ S latitude exhibit inconsistent values
of travel time. This may be attributed to the weak correla-
tions between target-projected wind andHs at the target loca-
tions. In such a situation, the optimal travel time value given
by Eq. (9) may be very sensitive to the sampling error. Note
that due to computational constraints, a maximum temporal

width of 45 h was imposed in Eq. (9), and this constraint is
visible on the bottom plots of Fig. 7.

5 Wind–waves model

5.1 Linear regression model

After defining the predictors, this section presents the statis-
tical downscaling model. Firstly, the linear model that com-
bines the local and the global predictor is considered:

Hs(t)=X(`)(t)β(`)
+X(g)(t)β(g)

+ ε(t), (10)

where β(`) and β(g) are local coefficients and global coeffi-
cients, respectively. Here β(`) is not necessarily the same as
in Eq. (1).X(`)

t is the local predictor defined in Eq. (2),X(g)
t is

the global predictor defined in Eq. (8), and ε(t) is the model
error.

5.2 Model fitting

Model (10) can be fitted using the least squares method;
given by

(β̂)= (XTX)−1XTHs, (11)

where X = (X(`),X(g)) and β̂ = (β̂(`)T , β̂(g)T )T . The least
squares estimates in Eq. (11) are the best linear unbiased esti-
mates of the parameters. However, since the global predictor
is high dimensional (e.g., 67108× 5651 matrix for Gironde)
and its variables are highly correlated, the matrix XTX may
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Figure 9. Estimated global coefficients β(g) using ridge regression with λ that gives the maximum accuracy (a) and minimum RMSE (b).

Figure 10. Time series of Hs depending on the clusters (a) and empirical density (b) in the calibration period.

be ill-conditioned. Thus, the least squares estimates become
highly sensitive to Hs variations. To address this issue, ridge
regression (Hoerl and Kennard, 1970) minimizes the penal-
ized residual sum of squares:

argmin
β

∥∥∥X(g)β(`)
+X(g)β(g)

−Hs

∥∥∥2
+ λ ‖ β(g)

‖
2, (12)

where λ≥ 0 is the regularization parameter. Note that the
regularization is not applied to the parameters associated
with the local predictor. The parameter λ allows us to take
into consideration the bias–variance tradeoff.

5.3 Regression-guided clustering

Using the global predictor to construct weather types leads
to clusters that only account for the global atmospheric cir-
culation and not for the local environment (not shown). This
subsection describes a regression-guided clustering method
that considers both the global predictor and the predictand.

After estimating the coefficients, the contribution of a
source point j at time t to Hs at the target point is defined
as X(g)

j (t)β̂(g)
j . The matrix of contributions Xβ(g) is defined

as

Xβ(g) (t, j )=X(g)
j (t)β̂(g)

j . (13)

We expect swell systems coming from contributions from
distant areas, whereas wind sea will be associated with lo-
cal contributions. A natural question that arises is whether
we can identify these wave systems by using Xβ(g) . Subse-
quently, the k-means clustering algorithm is used on X

β̂(g)

to obtain the weather types (WTs). Finally, the link function
can be constructed by fitting each class’s linear regression
model (10). Therefore, model (10) now becomes

Hs(t)=X(`)(t)β(`)
k +X

(g)(t)β(g)
k + εk(t),

∀t ∈ Ik k = 1, . . .,K, (14)

where β(`)
k and β(g)

k are local and global coefficients for the
class k. Ik denotes all time indices that are in class k, and K
is the total number of WTs.

5.4 The case of two weather types

The statistical downscaling model described in the previ-
ous section has K + 2 hyperparameters, which include the
ridge regularization parameter λ (as defined in Eq. 12), theK
associated ridge regularization parameters for each weather
type (as defined in Eq. 14), and the number of weather types
(K). Due to the large number of possible combinations, it is
not computationally feasible to optimize all of these hyper-
parameters simultaneously using traditional cross-validation

Adv. Stat. Clim. Meteorol. Oceanogr., 9, 67–81, 2023 https://doi.org/10.5194/ascmo-9-67-2023



S. Obakrim et al.: Statistical modeling of the space–time relation 75

Figure 11. Mean of Xβ(g) minus the global mean for the cluster 1 (a) and cluster 2 (b).

Figure 12. RMSE versus the number of WTs for the validation
period.

methods. As an alternative, we propose a simpler approach.
We first select λ by considering only two weather types.
Next, we determine the optimal number of weather types for
this fixed value of λ. Finally, we choose a common value for
ridge regularization for all weather types.

The most usual approach to choosing the regularization
parameter λ of the ridge regression consists of performing
cross-validation and taking the value of λ, which minimizes a
prediction error, typically the RMSE. In the current work, we
also intend to obtain a physically interpretable model in ad-
dition to forecast accuracy. Interpretability will be quantified
as follows. First, the k-means clustering algorithm is used on
the contributions Xβ(g) to identify the leading two clusters.
The resulting clusters are then compared with the sea-state
classification obtained using the energy spectrum partition-
ing in HOMERE. The sea states chosen for the comparison
are wind sea and swell, and the agreement between the two
clusterings is measured using the classification accuracy

accuracy = correct predictions/sample size, (15)

Table 1. Contingency table of k-mean clusters (1 and 2) and
HOMERE sea-state classes (swell and sea state) in the calibration
period.

Classes 1 2

Swell 47 074 6388
Wind sea 974 3904

where “correct predictions” denotes the number of observa-
tions that are well classified by the model, meaning the num-
ber of observations that are classified as swell (wind sea) by
the energy spectrum partitioning algorithm and as class “1”
(“2”) by the regression-guided clustering algorithm.

For the purpose of brevity, we only present the results of
the weather types in Gironde, as they were found to be con-
sistent in the other two locations. Figure 8 shows that the
value of λ that gives the optimal classification accuracy is
greater than that of the optimal RMSE. Figure 9 shows the es-
timated global coefficients β(g) using the two different opti-
mal values of the regularization parameter λ. The coefficients
obtained using λ that gives the maximum classification accu-
racy are smoother than the ones obtained when minimizing
the RMSE and generally decrease as the distance between the
source and target points increases. In this study, the optimal
value of the regularization parameter, λ, is chosen based on
its ability to produce interpretable coefficients and weather
types. The primary focus is on the interpretability, and as
such, the selected λ that yields the highest classification ac-
curacy is prioritized, even if it results in a non-significant in-
crease in RMSE compared to the value that yields the mini-
mum RMSE. The optimization of RMSE will be considered
in the next steps.

Figure 10 shows the times series ofHs and the correspond-
ing empirical density with respect to the clusters in the cal-
ibration period. The most probable cluster is the first one
(82%), which corresponds mostly to swells, and the second
cluster corresponds to wind seas (Table 1). To understand the
difference between the two clusters, we define the anomaly
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Figure 13. (a) Time series of Hs as a function of WTs. (b) Empirical density of Hs as a function of WTs. (c) Transition matrix of WTs.
(d) Frequency of occurrence of WTs. All figures correspond to the calibration period.

of Xβ(g) in each cluster 1 and 2 as xβ(g) (1) and xβ(g) (2), re-
spectively,

xβ(g) (1)=Xβ(g) (1)−Xβ(g)

xβ(g) (2)=Xβ(g) (2)−Xβ(g) , (16)

where Xβ(g) (1) and Xβ(g) (2) are the mean of Xβ(g) at cluster
1 and 2, respectively; and Xβ(g) is the global mean of Xβ(g) .
For the first cluster, the local wind around the target point
contributes less than the global mean in Hs (Fig. 11). Grid
points far from the target point contribute more, which is ex-
pected when swell systems dominate. In contrast, in the sec-
ond cluster, generally associated with wind sea, local wind
contributes more than the global mean in Hs. The fluctua-
tions observed in Figs. 9 and 11 (also in Fig. 14 in the next
section) may be attributed to two factors: the loss of smooth-
ness in the data due to preprocessing steps such as travel time
and temporal width, and the inherent nature of least squares

estimates to alternate between positive and negative values
when dealing with highly correlated covariates. The use of
ridge regression, which smoothes the coefficients in compar-
ison to ordinary least squares, still exhibits oscillations. As
seen in Fig. 9, these oscillations are more significant when
the ridge penalty is lower.

6 Results

In this section, the methodology’s results are presented. As
for the last section, the results of the weather types were
found to be consistent across the three studied locations;
therefore, only the results for Gironde will be displayed. Sub-
sequently, the overall methodology results for all three loca-
tions will be provided (see Fig. 16).

The clusters obtained in the last section seem to be inter-
pretable and correspond to sea-state classes obtained from
the energy partitioning algorithm provided by HOMERE
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Figure 14. Mean of Xβ(g) minus the global mean for the five WTs.

Figure 15. Monthly and annual (in December–January–February) frequency occurrence of WTs in the calibration period. The continuous
black line corresponds to the mean annual winter (DJF) time series of the NAO (North Atlantic Oscillation) index, and the horizontal black
line indicates when NAO is less or greater than zero. When the continuous black line is below the horizontal line, the NAO is less than zero.

(Boudière et al., 2013) (accuracy= 0.87). However, the num-
ber of clusters K may be greater than 2; therefore, a valida-
tion analysis is done to select the optimal number of WTs. To
do that, for each number of WTs (from 1 to 8), model (14)
is fitted using the calibration period and evaluated using the
validation period. Figure 12 illustrates the RMSE of Hs as
a function of the number of WTs. The RMSE is stabilized
for a number of WTs greater or equal to 5, and the RMSE
decreases significantly from 1 to 5 WTs. We therefore chose
the number of WTs to be 5.

Figure 13 shows the time series of Hs and its empirical
density as a function of the five WTs. Note that the weather
types were manually arranged in ascending order according
to the magnitude of Hs. The resulting WTs depend on the
value of Hs; for example, the first WT corresponds to small

values of Hs, and the fifth corresponds to extremes. In in-
creasing order, the other clusters (2 to 4) correspond to in-
termediate values of Hs. The bottom right panel of Fig. 13
shows the frequency of occurrence of WTs. The first WT is
the most likely, and the fifth one has the smallest probabil-
ity of occurrence. The transition matrix in the bottom left
panel shows that the self-transition probabilities are greater
than 0.9 for all WTs, meaning that the WTs are consistent
in time. Note that some transition probabilities are precisely
zero; for example, the transition probabilities from the first
to the fourth and the fifth WT are equal to zero. This means
that the probability of being in extreme sea states after being
in the first WT is zero.

Figure 14 shows the mean of Xβ(g) at each WT where

xβ(g) (i)=Xβ(g) (i)−Xβ(g) , i = 1, ..,5, (17)
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Figure 16. Observed versus predicted values of Hs using the model (14) in the validation period at the three locations considered.

Figure 17. Time series of observed and predicted values of Hs in
the validation period in Gironde.

whereXβ(g) (i) is the mean ofXβ(g) at the ith WT, andXβ(g) is
the global mean ofXβ(g) . For the first and second WT, contri-
butions of source points far from the target points are greater
than the global mean. Therefore, these two classes may cor-
respond to swells. In the third WT, the local wind contributes
more, with moderate winds, in the variance ofHs. The fourth
one can be considered as a composition of wind sea and
swells given that local and far source points contribute to the
variance ofHs. Finally, the fifth WT corresponds to the wind
sea, where the local source points contribute with the highest
intensities of winds creating the highest waves.

The monthly variability of WTs is shown in the left panel
of Fig. 15. As expected, the fifth and fourth WTs occur pri-
marily in winter (December–January–February), and the first
WT, which corresponds mainly to swells, often occurs during
summer. The long-term winter variability of frequency of oc-
currence of WTs is shown in the right panel of Fig. 15. The
continuous black line corresponds to the mean annual win-
ter of NAO index (Barnston and Livezey, 1987) from 1994
to 2019. The horizontal black line indicates when NAO is
greater or less than zero. Figure 15 suggests that there is
a correlation between the long-term variability of weather
types and the North Atlantic Oscillation (NAO) index. For in-
stance, the winter of 2010 exhibited a lower frequency of ex-

treme waves and corresponded with a low NAO index, while
the most extreme sea states were observed in 2014, which
coincided with a high NAO index. This correlation is consis-
tent with previous research, such as in Charles et al. (2012),
which reported that winter waves tend to have larger signifi-
cant wave heights (Hs) during the positive phase of the NAO
and smaller Hs during the negative phase of the NAO.

The results of the model described in Eq. (14) during the
validation period for the three studied locations are presented
in Figs. 16 and 17 for Gironde. The model performs well
in predicting Hs at Gironde and the English Channel. How-
ever, it exhibits less accuracy in the Gulf of Maine, which
can be attributed to the complex wave climate in this area
due to factors such as bathymetry, islands, breaking waves,
and frequent storm activity (Panchang et al., 2008). Compar-
ing these results with those of the local model in Fig. 2, it
appears that considering the global predictor is essential to
explain the variability of Hs. Figure 18 illustrates the perfor-
mance of the downscaling model at each weather type in the
validation period. It can be seen that the model in WT 1, 2,
and 4 explains less of the variability of Hs compared with
the model in WT 3 and 5. This might be explained by the
fact that in these WTs (1, 2, and 4), the model has to con-
sider source points that cover the swell generation, as seen
in Fig. 14, which means that numerous source points con-
tributes to the variability of Hs. In contrast, in WT 3 and 5,
waves are mainly generated by local wind (Fig. 14); there-
fore, the model considers mainly local source points.

7 Conclusions

This study proposes a method that describes the spatiotempo-
ral relationship between wind and the significant wave height
(Hs). At first, the local model, based on a linear regression
between the local wind and Hs, is constructed. However, the
model poorly explains the variability of Hs given that the
model does not consider the swell generation. Therefore, the
global predictor was defined to account for both wind sea and
swells. The global predictor is based on the target-projected
wind, which is the wind that goes from source points to the
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Figure 18. Left panel: histogram of observed versus predicted Hs at each WT. Right panel: scatter plot of observed versus predicted Hs.
Both in the validation period.

target point in a great circle path. After wind projection, the
spatial coverage of the predictor is defined based on the as-
sumption that waves travel along a great circle path. Then its
temporal coverage is defined based on two parameters, the
travel time of waves and the temporal width. Both parameters
exhibit spatial structure and increase as the distance between
the source and target points increases.

The statistical downscaling model combines the local
and global predictors to predict Hs using a weather-types-
based model. The weather types were constructed using a
regression-guided clustering algorithm. The comparison be-
tween the HOMERE sea-state classes (wind sea and swell)
and two clusters obtained by the clustering algorithm shows
a significant resemblance. The predictive model consists of
fitting linear regression with ridge penalty between the pre-
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dictors and the predictand in each WT, and the validation
analysis shows that the optimal number of WTs is five. The
obtained weather types are interpretable and correspond to
different wave systems. The results of the downscaling model
show its skill in predicting Hs, even for large values, which
are often important for operational purposes. The proposed
method can be used for various operational applications de-
pending on the availability and quality of wind data. These
applications include hindcasting, short-term forecasting, and
climate projections. In the case of climate projections, the
method can use bias-corrected output from global climate
models (GCMs). The statistical method presented in this
study is validated at three locations, and its ability to accu-
rately predict Hs is demonstrated; the method may be there-
fore generalizable and can be extended to other locations.
For locations nearshore, it may be necessary to take into ac-
count other local characteristics such as bathymetry and cur-
rents, as these factors can significantly impact wave behavior.
In addition, the assumption of great circle wave propagation
may not be valid for these locations, and alternative wave
propagation models may be considered. Another limitation
of the proposed methodology is its limited scope in predict-
ing only significant wave height (Hs). To fully characterize
a sea state, other parameters such as wave period and direc-
tion should also be taken into account. Future research should
investigate the generalizability of the methodology to other
sea-state parameters.

In this paper, we introduced a methodology based on ob-
served weather types, constructed prior to the regression
problem using a clustering algorithm. For future research,
these weather types could be treated as latent variables within
a mixture regression framework, which can be estimated us-
ing the expectation maximization (EM) algorithm. This ap-
proach would evaluate variables according toHs predictions,
which can yield to statistically optimal estimates.
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