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Abstract. Recent heatwaves such as the 2021 Pacific Northwest heatwave have shattered temperature records
across the globe. The likelihood of experiencing extreme temperature events today is already strongly increased
by anthropogenic climate change, but it remains challenging to determine to what degree prevalent atmospheric
and land surface conditions aggravated the intensity of a specific heatwave event. Quantifying the respective
contributions is therefore paramount for process understanding but also for attribution and future projection
statements conditional on the state of atmospheric circulation or land surface conditions. We here propose and
evaluate a statistical framework based on extreme value theory, which enables us to learn the respective statisti-
cal relationship between extreme temperature and process variables in initial-condition large ensemble climate
model simulations. Elements of statistical learning theory are implemented in order to integrate the effect of
the governing regional circulation pattern. The learned statistical models can be applied to reanalysis data to
quantify the relevance of physical process variables in observed heatwave events. The method also allows us
to make conditional attribution statements and answer “what if” questions. For instance, how much would a
heatwave intensify given the same dynamic conditions but at a different warming level? How much additional
warming is needed for the same heatwave intensity to occur under average circulation conditions? Changes in
the exceedance probability under varying large- and regional-scale conditions can also be assessed. We show
that each additional degree of global warming increases the 7 d maximum temperature for the Pacific Northwest
area by almost 2 ◦C, and likewise, we quantify the direct effect of anti-cyclonic conditions on heatwave intensity.
Based on this, we find that the combined global warming and circulation effect of at least 2.9 ◦C accounts for
60 %–80 % of the 2021 excess event intensity relative to average pre-industrial heatwave conditions.

1 Introduction

Heatwave events pose a substantial risk to ecosystems (Still-
man, 2019) and the economy (Jahn, 2015), but specifically to
human health and wellbeing (Vicedo-Cabrera et al., 2021),
especially in combination with compound perils: increased
air pollution (Fischer et al., 2004; Shaposhnikov et al., 2014)
or fire risk (Parente et al., 2018; Deb et al., 2020) and heat-
drought-induced crop failure (Ribeiro et al., 2020; Beillouin
et al., 2020). The adverse effects of temperature extremes,
which are especially destructive for developing countries
(Akhtar, 2020), should be expected to worsen as anthro-
pogenic climate change affects hot extremes almost globally

today already (IPCC, 2021). In the past decades, several heat-
wave events of unprecedented intensity, many exceeding pre-
vious records by large margins (Barriopedro et al., 2011; Fis-
cher et al., 2021), stimulated public interest and initiated aca-
demic efforts in extreme event attribution (Stott et al., 2004).
For the latter, isolating anthropogenic effects from natural
effects is necessary. By also quantifying the contributions of
thermodynamic and dynamic drivers, the mechanistic under-
standing, attribution and future projection of heatwave events
can be further improved (Vautard et al., 2016).
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1.1 Research objective

The objective of this study is to disentangle the effects of
different physical drivers on low-likelihood heatwave events.
It should provide estimates of how much prevalent dynamic
and thermodynamic configurations contributed to the inten-
sity of observed extreme heat events but also allow “what if”
questions to be answered, for example how much the inten-
sity of a specific event would be altered under different cli-
matic conditions. The focus on low-likelihood heat extremes
and the limited availability of observational data require one
to learn the statistical relationships of heat extreme inten-
sity and selected covariates from simulated heatwave data,
which are provided in single-model initial-condition large
ensemble climate simulations. The primary dataset used in
this study is an 84-member large ensemble of the Commu-
nity Earth System Model version 1.2 (CESM12), and non-
stationary extreme value modelling provides the method-
ological framework for the analysis. The main focus is on
the Pacific Northwest (PNW) area, but statistical models are
also retrieved for western Europe (WEU) and western Russia
(WRU), where well-studied record-breaking heat extremes
occurred in the past decades (area-of-interest definitions are
provided in Supplement Table S2).

The intensity of extreme heatwave events at the mid-
latitudes is determined by a multitude of climatological fac-
tors across various spatio-temporal scales (Perkins, 2015;
Horton et al., 2016; Domeisen et al., 2022). For the purposes
of this study, we identify the three primary classes of (1)
global thermodynamic, (2) local land surface and (3) regional
tropospheric circulation conditions relevant for mid-latitude
heat extremes, acknowledging the fact that an objective sep-
aration into distinct categories is hardly possible given the
coupled nature of the climate system. Global-scale and multi-
decadal thermodynamic temperature trends and decadal re-
gional temperature variability driven by ocean circulation or
sea ice variability govern the long-term conditions affecting
heatwave intensity (Schär et al., 2004; Della-Marta et al.,
2007b; Fischer and Schär, 2009; Feudale and Shukla, 2011;
Kröner et al., 2017). Local, short-term (weekly to seasonal)
land surface conditions like soil moisture or snow cover de-
termine the surface energy budget prior to and during the
build-up of a heat extreme (Fischer et al., 2007; Vogel et al.,
2017). Finally, the necessary clear-sky conditions (diabatic
warming), subsidence (adiabatic warming) and advection of
warm air are determined by regional, short-term (days to
weeks) and anti-cyclonic circulation conditions (Rex, 1950;
Pfahl and Wernli, 2012; Horton et al., 2015; Bieli et al.,
2015).

Representing both dynamic and thermodynamic processes
across the spectrum of spatio-temporal scales in the same
model is required to accurately explain the intensity of heat
extremes (Della-Marta et al., 2007b) and to avoid overesti-
mating the independent statistical effect of a single process
variable (Suarez-Gutierrez et al., 2020). The selection of rel-

evant process variables is further affected by the following
constraints: the variables should have a (close-to) unidirec-
tional causal relationship with heatwave intensity, with little
potential for feedback effects, to avoid artefacts due to phe-
nomena like the “heat low” in surface pressure (Rácz and
Smith, 1999) or the temperature dependence of the evapora-
tive fraction. Furthermore, the separation of effects requires
minimal inter-dependency between process variables, avoid-
ing statistical artefacts of collinearity. Finally, the respective
data must be available and comparable amongst various cli-
mate model and observational or reanalysis datasets. Taking
these criteria into account, the following process variables
are selected as statistical predictors.

1. Smoothed global mean surface temperature (GMST) as
a proxy for long-term climatic changes and the respec-
tive thermodynamic forcing of local heat extremes

2. Soil moisture (SM) as a proxy for local land surface and
soil conditions

3. Geopotential height of the 500 hPa pressure surface
(Z500) as a proxy for the regional circulation field. By
including not just the local (grid-point-average) geopo-
tential height anomaly, but also the regional field, we
aim at also representing non-local dynamical effects,
such as advection, on heat extremes.

It is evident that the issue of collinearity has to be addressed,
since trends in both SM and Z500 are clearly driven by long-
term climatic change. Furthermore, differences in variables
across datasets (absolute values and variability) have to be
accounted for. Thus, the pre-processing of these variables
entails the removal of a climate change signal and a dataset-
specific standardisation. Given the importance of the under-
lying data quality and pre-processing, the respective evalua-
tion and processing steps are outlined in Sect. 2. Section 3
introduces the parameterisation and the strategy to evaluate
the merit of the statistical model. The estimated parameters,
which quantitatively describe the linear relationship between
process variables and heatwave intensity, are discussed in
Sect. 4. The respective GEV models are then applied to PNW
event data from ERA5 to study the effect sizes of the selected
process variables. Section 4 also contains a discussion of the
conditional PNW event intensity and likelihood changes un-
der varying levels of global warming and the contributing
circulation effect.

2 Data

The statistical analysis of extreme climate events requires
careful curation of data and application of methods, as re-
sults may depend heavily on seemingly negligible processing
steps. The need for timely and robust extreme event attribu-
tion statements gave rise to a set of best-practice protocols,
such as Ghil et al. (2011), Yiou et al. (2017), Philip et al.
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(2020), or Naveau et al. (2020). Many processing steps out-
lined in this and the following section are inspired by these
protocols and contain specific elements thereof. This section
provides background information on the data sources and
outlines the pre-processing strategy. Detailed technical infor-
mation is provided in Supplement Sect. S1.

2.1 Climate model and reanalysis datasets

For the training of the statistical model, we rely on Earth
system model simulations, as only this data source provides
the required number of extreme heatwave samples where the
respective processes are represented at an adequate degree
in past, present and future global climate states. The fol-
lowing analysis is primarily based on an exhaustive simula-
tion set of the initial-condition large ensemble of CESM12,
and additional simulations of the Coupled Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016) are
also considered for validation purposes: see Table 1. These
multiple single-model initial-condition large ensembles al-
low the implicit assessment of the uncertainty induced by in-
ternal climate variability (Deser et al., 2016; Lehner et al.,
2020). Statistical models are estimated for each climate
model dataset separately (i.e. there is no pooling of data
across climate models) to fully characterise the inter-model
uncertainty. These statistical models are later applied to past
heatwave events in ERA5 and ERA5-Land reanalysis data
(1950–2021) provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Hersbach et al., 2020;
Muñoz-Sabater et al., 2021).

Simulations of the CESM12 model (Hurrell et al., 2013)
– consisting of and fully coupling the Community Atmo-
sphere Model CAM version 5 (CAM5; Neale et al., 2012),
the Community Land Model version 4 (CLM4; Lawrence
et al., 2011), the Parallel Ocean Program version 2 (POP2;
Smith et al., 2010) and further model components – con-
stitute the primary basis of the training data. The simula-
tions are comprised of a pre-industrial control simulation
of 4780 years with constant forcing (not including an ini-
tial 500 year spin-up period to reach a steady-state equilib-
rium) and a total of 84 transient simulations; an ensemble
of 21 members is initiated at various time points (and thus
different oceanic states) of the pre-industrial control simu-
lation, of which an additional three simulations per mem-
ber are branched off in 1940 with a random perturbation of
10−14 K of the atmospheric temperature field. After 2006,
these transient simulations follow the Representative Con-
centration Pathway (RCP)-8.5 forcing scenario until the end
of the century. These data have been used for previous stud-
ies on the upper limit of heatwave intensity (Gessner et al.,
2021) and the changing likelihood of heat extreme records
(Fischer et al., 2021), as the respective processes are found
to be adequately represented in the CESM1 climate model
(see Supplement Sect. S1.1).

CMIP6 data were selected upon availability from the
archive (Brunner et al., 2020), requiring at least 1000 years
of pre-industrial simulations and at least 10 transient en-
semble members with historical scenario forcings (1850–
2014) and at least one tier-1 future (2015–2100) scenario
forcing (Shared Socioeconomic Pathway (SSP) and end-of-
century forcing combinations SSP1-2.6, SSP2-4.5, SSP3-7.0
and SSP5-8.5; O’Neill et al., 2016). Additionally, CESM
version 2 (CESM2) data were included for the long pre-
industrial control run (1200 years) and in order to compare
results with the earlier model version CESM12. Furthermore,
daily mean temperature and geopotential height data were re-
quired at daily and soil moisture data at monthly temporal
resolution. An overview of the model–forcing combinations
is provided in Table 1.

2.2 Data pre-processing

We here define the heatwave predictant variable as the 5-
year maxima of 7 d running mean temperature (Tx7d), aver-
aged over a spatial domain of interest (e.g. the PNW region
shown in the yellow box in Fig. 2a). The 5-year block size is
motivated by statistical considerations outlined in Sect. 3.2,
and the 7 d averaging ensures that extreme events are anal-
ysed which persist for several days and are not just short-
term temperature excursions. Tx7d data were not further pre-
processed, in contrast to the physical process variables used
as predictors.

In order to compare effect sizes and apply the statisti-
cal models to reanalysis data, the predictor variables should
have comparable statistical metrics across datasets, i.e. a sim-
ilar mean and variance. The predictor variables should also
be close to orthogonal in order to reliably quantify the re-
spective effect sizes and avoid collinearity artefacts. How-
ever, geopotential height and soil moisture both correlate
with global mean temperature change. Absolute values of
SM further show large differences across datasets (in both
mean and variability; see Fig. 1a), and thus Koster et al.
(2009) advocate normalising the data with a dataset-specific
mean and variance. The agreement in absolute Z500 data
across datasets is larger, but the forced trends differ (lines in
Fig. 1c). For these reasons, both the SM and Z500 predictors
are detrended (removing the thermodynamic climate change
signal by subtracting the long-term forced trend in summer
mean SM and Z500) and scaled (dividing the residuals after
detrending by the respective summer standard deviation). Re-
analysis data are pre-processed analogously to climate model
data. The following paragraphs briefly outline the predictor-
specific pre-processing steps (technical details and algorith-
mic procedures are provided in Supplement Sect. S1.2).

– First predictor: global mean surface temperature xGMST
(◦C). Annual mean low-frequency GMST trend data are
obtained by averaging GMST across climate model en-
semble members (ensemble mean) and further applying
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Table 1. Length of the pre-industrial control run, the number of historical and transient future ensemble members per model and forcing
scenario, and the resulting combined number of model years.

Model (in-text abbreviation) piControl Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 Model years

CESM v1.2 (CESM12) 4780 years 21 (1850–2005) and – – – 84 (RCP 8.5) 20 110 years
63 (1940–2005)

CanESM5 (CanESM) 1000 years 10 10 10 10 10 6090 years

CESM v2 (CESM2) 1200 years 5 5 – 5 5 3315 years

MPI-ESM1-2-LR (MPIESM) 1000 years 10 10 10 10 10 6090 years

UKESM1-0-LL (UKESM) 1100 years 10 – – 10 – 3610 years

a “loess” time-series-smoothing algorithm (Cleveland
et al., 1990). Since there is no ensemble mean informa-
tion available for reanalysis data, the respective GMST
series are smoothed more strongly in order to suppress
unforced internal variability in the predictor.

– Second predictor: soil moisture xSM (standard devia-
tions). Soil water content is spatially averaged for the
area of interest, and the monthly values of the current
and previous months are combined as a weighted mean,
depending on the middle date of the heatwave within
the current month (e.g. if the middle date is on day 10
of a 30 d month, the SM values of the current and pre-
vious months have weights 1/3 and 2/3, respectively).
The thermodynamically forced trend is determined by
regressing summer mean SM with GMST (trend line in
Fig. 1a) and subtracting from the SM event data. Vari-
ability differences are corrected for by scaling the resid-
uals with summer SM variance (dividing the residuals
by the monthly summer SM standard deviation). De-
trended and scaled xSM data are shown in Fig. 1b.

– Third predictor: geopotential height Z500 field x̃Z (in
standard deviations). Daily Z500 data across a region
extending over ±40◦ in longitude and ±20◦ in latitude
from the central location of the area of interest (the
map extent in Fig. 2a) are temporally averaged over
the 7 d period of the Tx7d event. The extent of the do-
main is slightly smaller than in comparable studies (e.g.
Jézéquel et al., 2018; Terray, 2021), but since it deter-
mines the number of coefficients to be estimated, there
are limitations to the size of the domain. The field is de-
trended and scaled, analogous to the SM predictor, and
it is also standardised – i.e. the average Z500 field asso-
ciated with Tx7d heat extremes, as shown in Fig. 2a, is
subtracted, and values are further divided by the associ-
ated standard deviation – to improve numerical stability
in the likelihood optimisation process. Due to the nor-
malisation, the average Z500 field across Tx7d events
(shown in Fig. 2a) is therefore associated with a zero
Z500 effect. The tilde notation is used for x̃Z as this

specific pre-processing step is only applied to Z500
field predictor data.

Figure 1b and d demonstrate good agreement in the dis-
tribution of pre-processed SM and Z500 predictors across
climate model and ERA5 reanalysis data, with a similar
mean and variance. Figure 2a further confirms that the aver-
age geopotential height anomaly fields of the CESM12 and
ERA5 datasets compare well, and there is also good agree-
ment between the six leading principal component patterns
(eigenvectors) at the PNW location (Fig. 2b). An extended
evaluation of predictand and predictor variables with respect
to seasonality and the stationarity in variable means and vari-
ance over time is provided in Supplement Sect. S1.3.

3 The statistical model

Statistical theory provides various concepts which are specif-
ically tailored to the analysis of extreme values in a larger
dataset, following the philosophy of “letting the tail speak for
itself” (Cooley et al., 2019, p. 153). Two prominent methods
in climate science are the block-maximum and peak-over-
threshold approaches, both closely related within the frame-
work of extreme value theory (Coles, 2001; de Haan and
Ferreira, 2006). The former is often applied in the context
of heatwave research, the primary reason being that temper-
ature extremes are subject to seasonality, which is implic-
itly accounted for when analysing maxima of (multi-)annual
blocks. The statistical distribution used to model block max-
ima is the generalised extreme value (GEV) distribution, a
max-stable distribution with a similar theoretical justification
to the Gaussian distribution for average values. Furthermore,
the flexibility of the GEV allows for a natural treatment of
non-stationarity in heat extremes, as GEV parameters can
be formulated as functions of covariates, which are repre-
sentative of heatwave drivers. Non-stationary GEV formula-
tions based on global temperature or greenhouse gas forc-
ing proxies were adopted for climate model evaluation (e.g.
Wehner, 2020), analyses of return period changes in heat ex-
tremes (e.g. Zwiers et al., 2011; Huang et al., 2016), or ex-
treme event attribution (e.g. Vautard et al., 2020; Philip et al.,
2022). Considering its applicability to block maxima and the
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Figure 1. Unprocessed SM (a) and Z500 (c) values (points) during Tx7d events in the PNW area for CESM12, CanESM (ensemble
members 1 to 3, omitting other models and ensemble members for visibility) and ERA5. Estimated summer mean SM (a) andZ500 (c) GMST
forced trends (solid lines: historical and reanalysis forcing, dashed lines: trend in a future RCP-8.5 or SSP5-8.5 climate scenario). Predictor
data distributions of xSM (b) and x̃Z (d) after pre-processing (detrending and scaling) across all datasets (violin plot) and individual event
data (points) shown in panels (a) and (c). No violin distribution is shown for ERA5 due to the limited sample size.

Figure 2. (a) Average detrended and scaled Z500 anomaly fields in CESM12 (upper panel) and ERA5 (lower panel) during 5-year maximum
temperature events relative to average summer Z500 conditions expressed in standard deviations. (b) The leading six principal component
loading patterns of the detrended and scaled Z500 anomaly fields in CESM12 and ERA5. The area of interest is marked with a yellow box.

ability to account for non-stationarity in maxima driven by
external covariates, the GEV provides the necessary capabil-
ities to statistically quantify the effect of the selected phys-
ical process variables GMST (xGMST), SM (xSM) and the
Z500 field (x̃Z) on the intensity of 5-year temperature max-
ima (yTx7d). Similar applications of non-stationary extreme
value modelling with event-specific covariates are found in
the literature, e.g. to investigate drivers of wind gust inten-

sity (Friederichs et al., 2009) and surface level ozone (Eastoe
and Tawn, 2009; Russell et al., 2016).

3.1 The non-stationary GEV model

The non-stationary GEV distribution in Eq. (1) is charac-
terised by its three parameters: the non-stationary location
parameter µ(t) ∈ R (controlling the location of the distribu-
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tion), the non-stationary scale parameter σ (t) ∈ R+ (control-
ling the width of the distribution) and the shape parameter
ξ ∈ R (controlling the tail characteristics of the distribution):

YTx7d(t)∼FY
(
yTx7d(t);µ(t),σ (t),ξ

)
=

exp
(
−
(
1+ ξ ỹTx7d

)−1/ξ
)
, for ξ 6= 0,

exp
(

exp
(
− ỹTx7d

))
, for ξ = 0,

(1)

where ỹTx7d =
yTx7d(t)−µ(t)

σ (t) . The location and scale parame-
ters are functions of the covariates which represent the pro-
cess variables prevalent in a specific event t . As a conse-
quence, the distribution and corresponding metrics like quan-
tiles or exceedance probabilities are always conditional on
the state of the covariate set, which enters the location pa-
rameter µ(t) as follows:

µ(t)= µ0+µ
∗(t) (2)

= µ0+µ
∗

GMST(t)+µ∗SM(t)+µ∗Z(t),

where


µ∗GMST(t) = µGMSTxGMST(t),

µ∗SM(t) = µSMxSM(t),
µ∗Z(t) = µT

Zx̃Z(t),

log
(
σ (t)

)
= σ0+ σ1µ

∗(t). (3)

We model the location parameter µ(t) in Eq. (2) as the
sum of a constant intercept µ0 and a time-varying effect
µ∗(t), which is the sum of µ∗GMST(t), µ∗SM(t) and µ∗Z(t),
all in unit degrees Celsius. The effect terms are linear func-
tions of time-varying predictor variables GMST (xGMST),
SM (xSM) and the Z500 field (x̃Z), analogous to standard
multivariate linear regression. For example, assuming a co-
efficient value µGMST = 1.5 ◦C ◦C−1, a GMST anomaly of
xGMST(t)= 2 ◦C results in a GMST effect of µ∗GMST(t)=
3 ◦C, shifting the location parameter µ(t) and therefore the
overall GEV distribution by +3 ◦C. In the following sections,
changes in heatwave intensity refer to changes in the loca-
tion parameter as a function of the predictors GMST, SM and
the Z500 field, i.e. the combined effect µ∗(t) of the physical
process variables. The baseline value for the location param-
eter corresponds to average pre-industrial conditions, where
the GMST, Z500 and SM effects are all zero (µ∗(t)= 0, i.e.
µ(t)= µ0). It should be noted that this does not correspond
to average summer conditions but to average conditions in 5-
year summer temperature maxima associated with a distinct
anti-cyclonic circulation pattern (shown in Fig. 2a). The co-
efficients estimated from data are therefore the intercept µ0
(◦C), µGMST (◦C ◦C−1), µSM and the coefficient vector µZ
(◦C SD−1). The latter relates the standardised Z500 anomaly
value at each grid point to the overall Z500 effect µ∗Z(t) as
a scalar product of the two vectors. Other methods quantify
the Z500 or sea level pressure anomaly pattern effect on ex-
treme temperature using weather classifications and circu-
lation indices (Schaller et al., 2018), circulation analogues

(Jézéquel et al., 2018; Terray, 2021), canonical correlation
analysis (Della-Marta et al., 2007a), ridge regression (Sip-
pel et al., 2019) or quantile regression forest (Vignotto et al.,
2020).

The scale parameter σ (t) in Eq. (3) is modelled as a func-
tion of the non-stationary location parameter µ∗(t), where a
natural-logarithm link function ensures that the scale param-
eter stays strictly positive. This formulation allows the distri-
bution to account for variability differences (heteroscedas-
ticity) of temperature maxima yTx7d under varying condi-
tions (Risser and Wehner, 2017; Robin and Ribes, 2020). As
the variation in the location parameter is primarily governed
by the changes in GMST, the scale parameter also primar-
ily adjusts to different warming levels. Under average pre-
industrial conditions (i.e. µ(t)= µ0), the scale parameter has
the value σ (t)= exp(σ0).

The shape parameter ξ is constant and not a function of
any process variables, which is general practice in similar
studies (e.g. Philip et al., 2020). A non-stationary shape pa-
rameter would increase the variance in all estimates, consid-
ering that shape parameter estimates are associated with large
uncertainties (Friederichs, 2010; Cooley, 2013).

3.2 Parameter estimation and regularisation

In order to adequately sample the upper tail of the temper-
ature distribution, a 5-year block size was found to be re-
quired, considering the extensive autocorrelation in temper-
ature data and the short summer period when temperatures
peak (an extended discussion of the block size is provided
in Supplement Sect. S2.1). Five-year block-maximum events
were extracted from the period 1980–2089 as training data of
the GEV models, events from stationary simulation periods
(pre-industrial and historical 1850–1900) were used to obtain
optimal starting values for theZ500 coefficientsµZ (Supple-
ment Sect. S2.2), and the last decade (2090–2100) was held
out for validation purposes (see Sect. 3.3). This amounts to
3155 heatwave events available for parameter estimation in
the largest dataset (CESM12; cf. Table 1) and 527 events in
the smallest dataset (CESM2).

For the GEV model in Eq. (1) – with the full Z500
anomaly field as input – the number of parameters to be esti-
mated is large (534 in total, thereof 528 in the coefficient vec-
tor µZ for the Z500 predictor field), and Z500 information
across neighbouring grid points is significantly correlated,
having adverse effects in the estimation procedure. The large
number of highly correlated predictors can be accounted
for by regularising the negative log-likelihood, specifically
by adding a penalty term which increases with the sum of
squaredZ500 coefficients, i.e. the squared elements of vector
µZ. This procedure is analogous to so-called ridge regression
in statistical learning (e.g. Hastie et al., 2009) but explicitly
accounts for the spatial structure of the Z500 grid. Confi-
dence intervals (CIs) of parameter estimates are derived with
parametric bootstrapping, drawing 600 percentile bootstrap
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samples of GEV parameters (Gilleland, 2020) also incorpo-
rating the uncertainty related to optimising the regularisa-
tion hyperparameter λ. More information on the implemen-
tation of the regularisation, selection of the optimal hyper-
parameter λ and retrieval of CIs is provided in Supplement
Sect. S2.2. Given the advantages under non-stationary con-
ditions (Katz, 2013), the regularised likelihood is optimised
with numerical procedures implemented in the R software
library extRemes (Gilleland and Katz, 2016).

3.3 Model evaluation

The GEV model with a location parameter as in Eq. (2) con-
stitutes the full model, with all relevant process variables con-
sidered. The marginal improvement in predictive skill rela-
tive to models with fewer predictor variables is tested by also
fitting the following two nested sub-models (with analogous
parameterisation regarding the scale and shape parameter):
the first still considers all three physical process variables but
is only provided with the local Z500 information in the area
of interest x̃Z,loc, analogous to the local SM information. The
sub-model with parameterisation as in Eq. (4) is referred to
as the local Z500 model:

µ(t)= µ0+µ
∗

GMST(t)+µ∗SM(t)+µ∗Z(t), (4)

where

{
µ∗GMST(t) and µ∗SM(t) as in Eq. (2),

µ∗Z(t)= µZ,locx̃Z,loc(t).

Second, a further sub-model with only GMST as a covariate
is estimated, which is referred to as the GMST-only model.
The model formulation in Eq. (5) is representative of the
standard non-stationary GEV model used in recent heatwave
attribution studies (Kew et al., 2019; Vautard et al., 2020;
Philip et al., 2022):

µ(t)= µ0+µGMSTxGMST(t). (5)

Model evaluation was conducted on a distinct testing pe-
riod, 2090–2100, and a sub-set of events with a particu-
larly strong Z500 effect (Fig 4a), in order to specifically test
whether using the full Z500 field as a predictor (full model)
adds value compared to local Z500 information only (lo-
cal Z500 model). This second sub-set consists of all events
with the 20 % highest estimated Z500 effect µ̂∗Z(t), sam-
pled from both the training and testing periods (the “hat”
notation refers to parameter estimates). The full model and
the two sub-models (GMST-only and local Z500) are com-
pared with two measures: first, the coefficient of determi-
nation R2, a standard model evaluation metric in statistical
learning (Hastie et al., 2009; Wilks, 2011), which assesses
the predictive quality in a regression context. The R2 score
is not adjusted for the varying number of parameters in the
models, as the µ̂Z parameters in the full model are heavily
regularised. The predictive quality of the GMST-only model
serves as the baseline for this score, and thus the respective

R2 value is zero. Second, the continuous-ranked probability
score (CRPS) (Wilks, 2011) is used to assess the overall fit
of the GEV distribution with respect to the evaluation data.
More information on how the scores are computed is pro-
vided in Supplement Sect. S2.3.

3.4 Post-estimation model adjustment

Applying a statistical model whose parameters were esti-
mated from climate model data to specific heatwave events
in reanalysis data implicitly assumes that the training (cli-
mate model) and evaluation (reanalysis) data share the same
statistical characteristics. In this section, the necessary mea-
sures taken after model estimation are briefly summarised.
The pre-processing (detrending and scaling) ensures that
Z500 and SM predictors x̃Z and xSM agree well across cli-
mate model and reanalysis data (see Fig. 1b and d). Differ-
ing GMST representations in climate models and reanalysis
data were accounted for by expressing the GMST predic-
tor as a relative anomaly to a fixed 1981–2010 average of
0.63 ◦C. Also, constant offsets in yTx7d values are corrected
for, such that, of all GEV parameters, only the intercept pa-
rameter µ̂0 is adjusted. Supplement Sect. S2.4 outlines how
the correction steps for differences in the GMST predictor
and the Tx7d predictant are implemented. Reanalysis Z500
field data x̃Z were also standardised, as the GEV parame-
ters µ̂Z are also estimated based on standardised training data
(see Sect. 2.2). Due to the limited availability of 5-year block
maxima in reanalysis data, the multi-model Z500 field mean
and standard deviation are used for the standardisation of re-
analysis geopotential height fields.

4 Results and discussion

In the following, the estimated parameters of the full GEV
model are presented, which convey information on how the
effects of physical process variables are found to alter the
heatwave intensity. Furthermore, in the second part of this
section, the relative improvement in the representation of
temperature extremes by including the dynamical field (the
full model) relative to using local process variables (local
Z500 model) or GMST (GMST-only model) is assessed. The
application of the statistical model to the PNW 2021 event is
presented in the third part of the following section. For refer-
ence, a second application to a heatwave event at a different
location (WRU) and simulated by a climate model is pre-
sented in Supplement Sect. S3.5.

Before drawing conclusions from a statistical model, it is
vital to check whether the respective model is representative
of the underlying data. Diagnostics like quantile–quantile
plots in Supplement Sect. S3.1 confirm that the full GEV
model is capable not only of describing the data used for es-
timating the respective parameters, but also performing rea-
sonably on the testing dataset as well as for events with a
dominant Z500 effect.
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4.1 Scaling estimates of process variables

The linear and additive structure of the statistical model in
Eq. (2) allows us to disentangle and quantify the relative con-
tributions of physical process variables by the relative size of
the associated location parameter terms. In the following, we
discuss scaling relationships of extreme temperature with the
respective predictor variables (e.g. the increase in Tx7d tem-
perature in degrees Celsius as a result of a 1 standard devi-
ation unit change in SM). These relationships are quantified
by the coefficient estimates shown in Fig. 3 (estimates for lo-
cations WRU and WEU are shown in Supplement Figs. S18
and S19).

4.1.1 Scaling with GMST

We first analyse the scaling relationship of local extreme and
global average temperature, as this constitutes the dominat-
ing long-term thermodynamic effect on heatwave intensity.
As linear detrending removed the global warming signal in
the SM and Z500 covariates, the effect of global warming
is solely represented by the GMST covariate xGMST. The
estimates of the scaling coefficient µ̂GMST in Fig. 3a indi-
cate that heatwave extreme temperatures intensify at a rate
of roughly 1.7 to 1.9 ◦C per 1 ◦C warming in GMST at the
PNW location. A scaling value larger than unity should be
expected, as land areas are subject to stronger warming rela-
tive to oceans (Sutton et al., 2007; Toda et al., 2021), and thus
extreme temperature on land should increase at a higher rate
than the global average used as a covariate. Similar scaling
values are found when, instead of applying a non-stationary
GEV model, a simple least-squares linear regression is used
for the fit (diamonds in Fig. 3a). It should further be noted
that, for all underlying climate model datasets, the scaling
exceeds that of seasonal summer mean temperature scaling,
shown as the horizontal bars in the background of Fig. 3a.
This is an indication that the intensification of heatwaves
outpaces the general seasonal warming rate, a phenomenon
also found in observational data (Della-Marta et al., 2007b;
Lorenz et al., 2019). Scaling factors reported by Senevi-
ratne and Hauser (2020, Supplement Table S1, determined
in CMIP5 and CMIP6 multi-model assessments at a 1.5 ◦C
warming level) are slightly lower in western North Amer-
ica, with 1.47 in CMIP5 and 1.61 ◦C ◦C−1 in CMIP6. These
lower scaling estimates might be due to differences in event
definitions, as Seneviratne and Hauser (2020) analyse annual
single-day temperature maxima which are spatially averaged
over a substantially larger area. The relatively large CI of the
CESM2 model can be explained by the fact that it consists of
only five ensemble members and thus provides fewer data.

4.1.2 Scaling with SM

The estimates µ̂SM in Fig. 3b show a negative association of
soil moisture anomalies with extreme temperature, implying
that dry surface conditions are favourable for more intense

heatwave events, in accordance with the literature (Fischer
et al., 2007; Miralles et al., 2014). However, for three cli-
mate model datasets, the effect is statistically insignificant,
as the CIs include zero. The pattern is again comparable to
linear regression scaling estimates, even though these indi-
cate a more negative scaling relationship. Weaker and non-
significant scaling relationships at the PNW location esti-
mated with the full GEV model may be due to several fac-
tors: first, the SM covariate is a weighted average of SM in
the previous and current months of the heatwave event and
is thus potentially also affected by precipitation events after
the heatwave event. Suarez-Gutierrez et al. (2020) discuss
the advantages and disadvantages of considering SM in the
months previous to the extreme and during the extreme as
predictors. Second, a linear detrending of SM with respect to
global warming might not capture non-linear changes in soil
moisture regimes (Seneviratne et al., 2010) and thus further
disturb the signal of SM in heatwave intensity. Third, SM
information is obtained for soil depths of roughly 20 cm, as
soil layer definitions vary across land models. For the given
depth, the signal might be larger or smaller, depending on the
respective location. The negative scaling signal is stronger
and more consistent in the WRU and WEU study areas (Sup-
plement Figs. S18 and S19), in accordance with Zschender-
lein et al. (2019), who find temperature extremes in these re-
gions to be governed by near-surface advection and diabatic
heating and thus potentially more affected by surface condi-
tions compared to the PNW area.

4.1.3 Scaling with Z500

The spatially resolved effect of the geopotential height field
on local extreme temperature is represented in the coeffi-
cient fields of µ̂Z in Fig. 3d. Estimates in the vicinity of
the study area (yellow box) are generally positive and sig-
nificantly different from zero, reflecting the fact that posi-
tive Z500 anomalies – corresponding to a high-pressure sys-
tem – are a key driver of temperature extremes. Pfahl and
Wernli (2012) show that between 40 % and 60 % of all 6-
hourly warm temperature extremes in that region are asso-
ciated with a co-located blocking event. However, the sig-
nificance information is only approximate, as the bootstrap-
ping procedure inherits the bias of the regularised estimates,
and the significance information is not corrected for mul-
tiple testing. Thus the stippling should only be interpreted
as a first-order approximation of statistical significance. Ar-
eas with (mostly non-significant) negative coefficients are lo-
cated south-east and south-west of the grid points associated
with (significant) positive coefficient estimates, resembling
the omega blocking pattern (e.g. Detring et al., 2021), but
the orientation and spatial extent vary across climate model
datasets. It should also be noted that temporally integrated ef-
fects, for example the progressive accumulation of heat in a
persistent atmospheric high-pressure situation (as described
by Miralles et al., 2014), cannot be explicitly accounted for
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Figure 3. GEV parameter estimates at the PNW location. Point estimates (central horizontal line in the box) and bootstrap 95 % (dark
shading) and 99 % (light shading) CI of the (a) µ̂GMST and (b) µ̂SM coefficients and (c) the shape parameter ξ̂ . The diamonds show linear
regression estimates of the same coefficients, and the horizontal, semi-transparent bars show the linear regression scaling coefficient of
summer mean temperature change with GMST. (d) Maps of estimated Z500 µ̂Z coefficients. Stippling marks coefficients for which the
99 % CI does not include zero.

with this model, as only temporally co-occurring 7 d aver-
aged geopotential height fields are analysed.

4.1.4 Scale and shape parameters

The log-scale parameter in Eq. (3) is a linear function of
the location parameter, and thus it indirectly adjusts to heat-
wave processes, but primarily to GMST, as this predictor is
responsible for the dominating long-term change in yTx7d.
However, only for two climate model datasets, CESM12 and
CanESM, is a significantly positive σ1 parameter estimated
(not shown). This is in accordance with earlier studies find-
ing only minor changes in GEV scale and shape parameters
over historical and future periods (Wehner, 2020). Scale pa-
rameter intercepts σ̂0 are roughly 40 % larger in the nested
GMST-only sub-model than the respective estimates of the
full model, as substantially more variability is explained with
the full Z500 predictor, which materialises in a narrower
probability distribution (Jézéquel et al., 2018). The shape pa-
rameters ξ are estimated to be negative for all climate model
datasets, ranging from −0.28 to −0.20 (Fig. 3c), thus con-

straining the upper bound of the probability distribution to an
estimated non-stationary maximum value of µ̂(t)− σ̂ (t)/̂ξ .
For the sub-models, shape parameters are generally esti-
mated to be higher (−0.18 to −0.10), indicating that includ-
ing the Z500 field information constrains the variability in
the tail of the distribution.

In summary, the estimated parameters associated with the
process variables are consistent with physical understanding
and earlier research. However, it is not per se evident whether
the model is missing additional crucial predictor information
and whether the linear additive model structure can represent
the relationship between predictors and predictant. In Sup-
plement Sect. S3.2 the potential effects of seasonality and
low-frequency climate variability on Tx7d data are analysed.
No relevant signal could be detected, except for a tendency to
overestimate the intensity of heat extremes at the end of the
summer period, indicating that all relevant first-order process
variables are considered.

With respect to the model structure, prior process un-
derstanding and sufficient data provide the basis and
justification for a non-stationary modelling approach
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(Koutsoyiannis and Montanari, 2015), always considering
the related challenges (Serinaldi and Kilsby, 2015). With re-
spect to the GMST covariate, an approximately linear scaling
relationship has been demonstrated for CMIP5 and CMIP6
models across various mid-latitude locations (Seneviratne
and Hauser, 2020). Supplement Fig. S20a also confirms that
a GEV model with non-linear capabilities (a generalised
additive extreme value model; see Youngman, 2022) pre-
dicts an almost linear relationship between Tx7d and GMST.
Modelling a joint Z500–SM effect with the generalised addi-
tive approach also does not reveal any non-linear interaction
which would have to be considered in order to adequately
model heatwave intensity (Supplement Fig. S20b). The linear
additive model structure is therefore sufficient in represent-
ing the effects of the physical process variables on heatwave
intensity.

4.2 Statistical model skill evaluation

An interpretation of the GEV parameter estimates of the full
GEV model is provided in the previous section. It remains
to be shown that this complex model adds value compared
to simpler model structures, i.e. with fewer predictor vari-
ables. We evaluate the full GEV model with respect to the lo-
cal Z500 and GMST-only nested sub-models, based on skill
score metrics introduced in Sect. 3.3. These scores are cal-
culated for the training period (1980–2089), an independent
testing period (2090–2099) and specific events across both
the training and testing periods, where a strongZ500 effect is
estimated as visualised in Fig. 4a. A summary of the R2 skill
score metric across statistical models fitted to all considered
climate model datasets and three locations (PNW, WEU and
WRU) is shown in the top row of Fig 4b, where the GMST-
only model serves as a baseline (and thus the respective R2

scores are zero). The bottom row of Fig 4b shows the respec-
tive summary for the CRPS skill score. A detailed discussion
of skill score selection and results and an assessment of indi-
vidual locations and climate model datasets are provided in
Supplement Sect. S3.3 and S3.4, respectively.

Overall, the skill of the full model is higher from the re-
gression perspective, indicated by higher average coefficient
of determination R2 values than attained by the nested local
Z500 and GMST-only sub-models, and it has better prob-
abilistic coverage, indicated by lower average CRPS val-
ues than found for the nested sub-models. The ranking of
scores remains consistent for individual models, but for the
UKESM1-0-LL (UKESM) dataset, full model scores indi-
cate slightly lower skill than the local Z500 model on test-
ing data. Thus, it can be concluded that, in general, relevant
information can be gained by considering the geopotential
height field instead of just local Z500 anomalies in order to
quantify the dynamic contribution to heatwave intensity.

4.3 Characterisation of the Pacific Northwest 2021
heatwave

The parameter estimates of the statistical GEV model dis-
cussed in Sect. 4.1 provide insight into the general relation-
ship of the selected process-based covariates GMST, SM and
Z500 with Tx7d. In the following, the GMST-only model
and the full model are evaluated for the PNW heatwave of
2021, based on the respective ERA5 reanalysis data. For ref-
erence, we also provide an analogous analysis of a simu-
lated heatwave event in the CESM12 large ensemble dataset
in western Russia (i.e. not the actual 2010 heatwave event),
which is presented in Supplement Sect. S3.5.

In the first step, we present the state of the physical process
variables pre-conditioning the heatwave event, and given
the estimated statistical models, the respective effect size is
quantified. In the second step, the conditional event intensity
is put into perspective: for instance, according to the statis-
tical model, how would the intensity change at a different
warming level? In the third step, an assessment of the re-
spective likelihood changes is also presented. The following
section will not just discuss the added value of the method,
but also provide a critical review of its limitations.

4.3.1 Disentanglement of process contributions

The Pacific Northwest heatwave in late June 2021 was an
unprecedented event considering the location and time of oc-
currence (Overland, 2021; Philip et al., 2022; Bercos-Hickey
et al., 2022; White et al., 2023), with 30.7 ◦C average temper-
ature over 7 d exceeding all previous maxima in the ERA5-
Land record (Fig. 5a). An unusually strong blocking anti-
cyclone dominated the tropospheric circulation, driven by
upstream wave activity (Neal et al., 2022; Schumacher et al.,
2022). The centre of theZ500 anomaly is located north of the
study region (Fig. 5c), with a magnitude substantially higher
than observed for average Tx7d events (Fig. 2a). There is
consensus that the larger western North American region was
also affected by drought conditions (Bartusek et al., 2022;
Schumacher et al., 2022); however, monthly weighted av-
erage SM values in the study domain were not anomalous
relative to expected summer mean SM conditions (Fig. 5b).
In addition to differences in the spatio-temporal definition,
this might be explained by the seasonal decrease in SM over
summer, implying that the specific anomaly value of 2021
was close to average due to the early occurrence of the event.

As the PNW 2021 event falls into a period of strong global
warming, the GMST effect amounts to µ̂∗GMST = 2.09 ◦C
(Fig. 5f), which can be interpreted as the expected intensifi-
cation of Tx7d relative to a pre-industrial base state given the
2021 warming level. The relative contribution of this thermo-
dynamic global warming effect (i.e. the explained difference
between µ̂0, which can be interpreted as the pre-industrial
average heatwave intensity, and the observed event inten-
sity yTx7d) is consistently estimated to fall between 40 % and
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Figure 4. (a) Scatter plot of predictant values yTx7d in CESM12, showing the training and testing periods and selected events with a strong
Z500 effect. Average (b) R2 and (c) CRPS skill score values across climate model datasets for the training data (1980–2090), testing data
(not used for model training, 2090–2100) and events with a strong Z500 effect (i.e. where the respective Z500 effect is among the 20 %
strongest Z500 effects). For R2, the GMST-only model serves as the baseline, and thus the respective R2 score is zero. The horizontal
light-green line marks the optimal “perfect” model score (R2

= 1 and CRPS= 0).

ERA5 PNW 2021 extreme event

Figure 5. ERA5-Land (a) 1-year Tx7d time series yTx7d and (b) corresponding detrended and scaled soil moisture anomalies xSM; the
yellow point marks the PNW heatwave event. (c) Detrended and standardised ERA5 Z500 anomaly x̃Z and (d) temperature anomaly fields
of the respective event. Conditional GEV densities of the (e) GMST-only and (f) full models with estimated effect sizes (horizontal arrows)
and 95 % CI (horizontal bars), event intensity yTx7d (vertical yellow line), intercept µ̂0 (vertical grey line) and location parameter µ̂∗ (vertical
dotted line). Multi-model assessment of the relative effect sizes of (g) the GMST-only model and (h) the full GEV model.
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60 % across GEV models and the underlying climate model
datasets (Fig. 5g and h). The estimated soil moisture effect
is also consistently estimated to be negligible (since the in-
put predictor value is close to zero), whereas the circula-
tion effect is estimated to account for a significant fraction
of intensity not explained by the GMST predictor variable.
According to the CESM12-based GEV model, the Z500 ef-
fect amounts to µ̂∗Z = 1.30 ◦C (Fig. 5f), which is among the
7 % strongestZ500 effects found for all considered heatwave
events simulated by the five climate models. The distribu-
tion of Z500 effect sizes and where the PNW 2021 event lies
therein is shown in Fig. 6a. Overall, the total estimated effect
size explained by the three process variables, i.e. the combi-
nation of GMST, Z500 and (negligible) SM effects, amounts
to µ̂∗(t)= 3.4 ◦C. For GEV models trained with CMIP6 cli-
mate model data, the respective estimates range from +2.9
(MPIESM) to +3.7 ◦C (CanESM and CESM2). The physi-
cal process variables thereby explain 60 %–80 % of the ex-
cess PNW 2021 heatwave intensity relative to average pre-
industrial Tx7d events (Fig. 5h).

There remains a considerable gap between the estimated
location parameter µ̂∗ = 29.0 ◦C, which is the sum of the
pre-industrial base state (µ̂0 = 25.6 ◦C) and strong GMST
and Z500 effects (µ̂∗(t)= 3.4 ◦C), and the observed event
intensity of yTx7d = 30.7 ◦C. This difference of 1.7 ◦C is re-
ferred to as the unexplained remainder term in Fig. 5f. Non-
linear interactions of the land–atmosphere system and up-
stream latent heating were found to account for much of the
intensity of the event (Philip et al., 2022; Mo et al., 2022;
Schumacher et al., 2022; Bartusek et al., 2022), processes
that are not represented in this linear statistical framework.

Given the statistical model, how would the event inten-
sity be altered under alternative prevalent conditions, in con-
trast to the actual drivers of the PNW heatwave? A major
driver of the 2021 heatwave event is the anti-cyclone, whose
effect is larger than in all previous 5-year ERA5 heatwave
events (highest among the dots in Fig. 6a) but not far in the
tail of all estimated Z500 effects found in the climate model
datasets (histogram and density function in Fig. 6a). Eight
events have Z500 effects of at least 3 ◦C, one even reaching
4.5 ◦C (Supplement Fig. S22), exceeding the estimated Z500
effect of the PNW 2021 event by 3.2 ◦C. If the event were to
occur under the same conditions (in terms of Z500 and SM
effects) and with the same unexplained event intensity in the
year 2060 under the RCP-8.5 climate forcing, the tempera-
ture of an equivalent event would reach almost 34 ◦C (the
dot–dashed white arrow in Fig. 6b).

The model also suggests that, in order to fully compensate
for the Z500 effect, global temperatures would need to rise
to roughly 2 ◦C (dashed arrow): that is, at a 2 ◦C warming
level, the 2021 event would have the same conditional like-
lihood, even under average circulation conditions (of 5-year
temperature maxima). Finally, if the global warming levels
were to rise further by another 1 ◦C (dotted arrow), the unex-
plained remainder term would also be compensated for. Put

differently, at this warming level, the event intensity of 2021
would be a standard 5-year heatwave extreme.

Our statistical model detects a considerable contribution
of atmospheric circulation to the PNW 2021 heatwave inten-
sity. Other methods used to disentangle the contribution of at-
mospheric circulation and warming to heatwaves include the
analogue method (Yiou, 2014; Jézéquel et al., 2018) or tar-
geted nudging experiments (Wehrli et al., 2019, 2022; Schu-
macher et al., 2022). The quantification of the circulation
effect in the latter relies on the quantified temperature dif-
ferences between the event and a reference climate and pro-
vides an upper bound of the circulation effect. The statistical
method adopted here, on the other hand, provides a joint es-
timate of the event contribution but relies on a regression sig-
nal detectable in climate model heatwave events, thus proba-
bly rather providing a lower bound of the true circulation ef-
fect. The difficulty in detecting a signal is evident for SM in
this example. The statistical models derive only a relatively
weak relationship between SM anomalies and heatwave in-
tensity (Fig. 3b), and furthermore, the SM anomaly retrieved
for the PNW 2021 event is also small, and thus the method
detects no SM effect. By adapting the SM definition to the
respective circumstances (a different soil depth or spatial ex-
tent or using daily instead of monthly data), a stronger SM
effect might be detected, but at the cost of an inevitable se-
lection bias.

4.3.2 Conditional likelihood of the Pacific Northwest
2021 heatwave

The non-stationary GEV model also provides a (paramet-
ric) probability distribution quantifying the stochastic, unex-
plained variability in heat extremes, conditional on the re-
spective process variables. In the following paragraphs, the
conditional likelihood of the PNW heatwave is analysed,
which is expressed in terms of its annual exceedance prob-
ability (AEP). The AEP is the probability of observing an
event as intense or more intense than the PNW heatwave (ac-
cording to the estimated GEV distribution and conditional on
the respective covariates). Under stationary conditions, the
AEP corresponds to the inverse of the return period. As the
GEV distribution is derived from 5-year block maxima, the
annual exceedance probability pex is obtained from the re-
spective 5-year exceedance probability pex,5 as follows (see
Supplement Sect. S2.5 for the derivation of the conversion
formula):

pex = 1− (1−pex,5)1/5. (6)

If only GMST is considered as a driver for changing heat-
wave intensity – as in the GMST-only GEV model – the esti-
mated AEP for a given Tx7d threshold can be displayed as a
function over time. Figure 7 shows the respective exceedance
probabilities based on the non-stationary GEV model esti-
mated from CESM12 climate model data (white dots). The
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Figure 6. (a) Density of Z500 effects µ̂∗
Z

on the abscissa in green (data of the CESM12 climate model dataset as a histogram and for all
climate model datasets as smoothed density) at the PNW location. Dots indicate corresponding values in ERA5 5-year heatwave events,
and the yellow dot shows the 2021 heatwave event. (b) Event intensity (coloured background) as a function of the GMST predictor xGMST
(bottom ordinate) or the GMST effect µ̂∗GMST (top ordinate) and the Z500 effect µ̂∗

Z
(on the abscissa, same as in panel (a)), conditional

on the 2021 event-specific SM effect µ̂∗SM = 0.02 ◦C and unexplained remainder term of 1.73 ◦C (see Fig. 5f). The yellow dot marks the
2021 event under discussion, and further dots show 5-year heatwave events in the ERA5 reanalysis dataset (white dots) and the underlying
CESM12 training and testing dataset (black dots). The locations of these points only refer to their respective GMST or Z500 effect, and their
intensity is not related to the background colouring. The black dashed line at the bottom of the plot indicates the timing when certain GMST
levels are reached in the CESM12 large ensemble under the RCP-8.5 forcing. White arrows and transparent yellow dots or lines refer to the
“what if” scenarios discussed in the text.

GEV probability density function shown in Fig. 5e corre-
sponds to the cross section along the vertical dotted line. The
non-linear increase in the location parameter µ̂(t) (solid and
dashed white lines) and the respective isolines of the AEP
reflect the non-linear increase in GMST over time forced by
an RCP-8.5 scenario. The GEV model captures the distri-
bution of the CESM12 5-year block-maximum event inten-
sity (small white dots) well, as these dots scatter around the
pex = 5−1 line. Non-transparent large dots mark ERA5 heat-
wave events, which are shifted along the time coordinate to
the year with equal GMST levels in the CESM12 climate
model dataset (grey arrows).

The estimated AEP value of the 2021 heatwave event is
estimated to be p̂ex = 1/228; thus, assuming constant 2021
global warming conditions, the 2021 event has an estimated
return period of roughly 200 years. AEPs based on GEV
distributions estimated from different climate model datasets
range from 1/28 to 1/210 (Supplement Fig. S23). The spread
partially reflects GEV model uncertainty but is likely dom-
inated by uncertainty induced by the data-processing steps
required to apply the statistical GEV framework estimated
from climate model data to heatwave events in reanalysis
data. The pex = 5−1 isoline reaches the Tx7d value of the
PNW 2021 event roughly in 2060 (following the dot–dashed
arrow in Fig. 7), and thus the corresponding event intensity
becomes an average 5-year heatwave event at the respec-
tive warming level. This is well aligned with the finding in
the previous Sect. 4.3.1 showing that compensating for the
anomalous Z500 effect and the unexplained remainder term
would require the warming level to increase to almost 3 ◦C,

reached right before 2060 (following the dashed and dotted
arrows in Fig. 6b).

Figure 6b visualises the change in intensity of the 2021
PNW for a specific combination of GMST and Z500 ef-
fects based on the full GEV model. For Fig. 8, the inten-
sity yTx7d = 30.7 ◦C is kept constant (as is the SM effect
µ̂∗SM = 0.016 ◦C), and the resulting 2021 PNW event like-
lihoods for different hypothetical GMST and Z500 effect
combinations are visualised. It is evident that, while the loca-
tion parameter increases linearly in Fig. 6b, changes in AEP
are highly non-linear. In analogy to the scenarios discussed in
Fig. 6b, we find that, in order to compensate for the synoptic
circulation effect, the warming level would have to increase
to roughly 2 ◦C (moving along the diagonal dashed arrow),
and it would become an average 5-year heatwave event once
a warming level of almost 3 ◦C is reached (moving further
along the dotted arrow). An event of the same intensity and
with the same synoptic circulation conditions would have an
AEP of less than 0.5 in 2060 (moving along the horizontal
dot–dashed arrow) and thus would be exceeded every second
year.

The conditional AEP p̂ex = 1/380 estimated by the full
model is lower than the AEP estimated by the GMST-only
model with p̂ex = 1/288, which might seem contradictory.
However, it should be noted that, with the additional predic-
tors, the GEV model became more flexible and able to ex-
plain year-to-year variability, and thus the width of the distri-
bution also decreased (see Fig. 5e and f). A smaller AEP thus
means that the event intensity moved even further into the tail
of the distribution, given the event-specific circumstances.
Also, there is a large uncertainty associated with this esti-
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Figure 7. AEP for heatwave intensity yTx7d (abscissa) as a function of the CESM12 model warming level in the respective model year
(ordinate). Small white dots are events in the CESM12 climate model dataset, larger semi-transparent black dots with white strokes are
ERA5 events in the year of occurrence, and non-transparent dots are the respective events shifted to the year of equal GMST as in the
CESM12 climate model dataset (the 2021 PNW event has a yellow stroke). The vertical dotted line marks the cross section shown as a
probability distribution in Fig. 5e. The bold white line marks the location parameter µ̂∗ during the historical (solid) and RCP-8.5 (dashed)
forcing periods, and the dot–dashed line is the “what if” scenario discussed in the text.

mate, which is underlined by the fact that conditional AEP
estimates retrieved from full GEV models based on other cli-
mate model datasets range from 1/6 to 1/366. Still, an in-
teresting observation is that, according to the GEV models
fitted to CESM12 and MPIESM data (not shown), the AEP
of the 2021 event would be zero without the strong Z500
effect (i.e. under average Z500 conditions associated with
5-year heatwave intensity, following the vertical downward
arrow in Fig. 8b). Thus, the strong anti-cyclone is recognised
as a necessary condition for this specific heatwave event.

The following limitations should be considered regard-
ing conditional AEP estimates: first, non-stationary extreme
value theory strictly holds only for slowly varying covari-
ates (like the GMST covariate), such that block maxima arise
from a larger set of observations which are identically dis-
tributed given the covariate (Cooley et al., 2019). This is not
the case for the SM and Z500 covariates, as they vary at the
same pace as the response variable yTx7d. Second, tail mea-
sures are highly sensitive and non-robust. Given for example
the CI of effect sizes in Fig. 5f, it is evident that, shifting
the distribution within the range of the CI (horizontal bar)
of the location parameter µ̂∗, the exceedance probability (the
area under the density curve beyond the yellow vertical line)
changes substantially in response. Again, the merging of cli-
mate model and reanalysis data can also cause significant dif-
ferences in the estimated AEP. Thus, the respective results
must be interpreted as first-order estimates of the conditional
event likelihood.

5 Conclusions

In this publication we introduce and evaluate a statistical
framework to disentangle and quantify the effect of three ma-
jor physical drivers of heatwave intensity and likelihood: the
long-term warming trend, the regional-scale atmospheric cir-
culation and local soil moisture anomalies. The respective re-
lationships are integrated into a non-stationary extreme value
model by estimating the respective parameters across a large
set of heatwave events in long climate model simulations and
large initial-condition ensembles. The framework is then ap-
plied to reanalysis data in order to estimate the respective
contributions in observed heatwave events, specifically the
2021 Pacific Northwest heatwave. The climate change sig-
nal is first separated from the circulation and soil moisture
covariates, such that a linear and additive model structure is
representative of the statistical relationship of heatwave in-
tensity with the considered process variables. It is shown that,
by detrending and scaling, the covariates become comparable
in mean and variance across climate model datasets. Thus,
the pre-processing allows the relationship structure learned
in climate model simulations to be transferred to heatwave
events in reanalysis data. The statistical model benefits from
the regional circulation field information by pre-training pa-
rameters in a stationary pre-industrial environment and regu-
larising the respective estimates, thus guarding against over-
fitting.
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Figure 8. AEP of the 2021 PNW event yTx7d = 30.7◦C (coloured background, with the soil moisture effect fixed at the 2021 value µ̂∗SM =
0.016 ◦C) as a function of GMST xGMST (bottom ordinate) or GMST forcing µ̂∗GMST (top ordinate) and Z500 forcing µ̂∗

Z
(on the abscissa).

Small white dots are 5-year heatwave events in the CESM12 climate model dataset, and larger dots are from the ERA5 reanalysis dataset.
The line at the bottom of the plot indicates the timing when a certain GMST level is reached in the CESM12 large ensemble under the
RCP-8.5 forcing. White arrows mark the “what if” scenarios discussed in the text.

Estimated GEV parameters provide valuable information
on the relationship of local extreme temperatures with global
warming, indicating that heatwave events intensify beyond
the summer mean temperature trends. In the case of the PNW
area, the 7 d annual temperature maxima increase by almost
2 ◦C per degree of global warming. The circulation contribu-
tion is largest for positive geopotential height anomalies in
the vicinity of the study area, where clear-sky conditions and
subsidence locally affect surface temperatures. Even though
this indicates thatZ500 conditions close to the heatwave cen-
tre are important, the statistical model accounting for the full
circulation field outperforms the sub-model only based on
very localised geopotential height information, explaining an
additional 12 % of extreme temperature variability in an in-
dependent testing period.

For the PNW 2021 heatwave event, the dominant contri-
bution of the anti-cyclone and the amplification by global
warming is confirmed by our analysis. The event magnitude
is estimated to be increased by 2.1 ◦C through global warm-
ing relative to pre-industrial conditions, and 43 % of the re-
maining event intensity is directly linked to the circulation
pattern. However, a substantial fraction of the total event in-
tensity is not explained by the statistical model, suggesting
that non-local processes such as diabatic heating, which are
not accounted for by this approach, have contributed substan-
tially to the record-breaking temperatures. Given the conser-
vative regularisation strategy, we interpret the estimated ef-
fect sizes associated with the respective covariates as a lower
bound of the overall contribution of regional circulation and
local land surface conditions.

The statistical model is also a tool to approach “what
if” questions, such as by how much the event would inten-

sify given the same dynamic conditions but at a different
warming level or how much additional warming is needed
for the same event intensity to occur under average circula-
tion conditions. Changes in the exceedance probability under
varying large- and regional-scale conditions can also be as-
sessed. For instance, we estimate that the additional warming
at a 2 ◦C GMST level would already compensate for the ex-
plained effect of the very anomalous PNW circulation con-
ditions. Based on our framework, we can further demon-
strate that, without the exceptional circulation conditions,
the respective event intensity could not be reached. While
these estimates are associated with substantial uncertainties,
they provide interesting insights into the strongly non-linear
dependence of event likelihood on global warming levels,
where comparatively small increases in global mean temper-
ature drastically increase the exceedance probability of for-
mer tail events.

Given the capabilities and limitations of the method, it can
serve as an additional tool to characterise and assess both
simulated and observed low-likelihood heatwave extremes.
The method can further be extended by not just applying
the model to observational data, but also integrating it into
the estimation procedure, such that the distribution estimated
from climate model data is also constrained by observations
(Gabda et al., 2019; Robin and Ribes, 2020). Our approach
can provide an additional line of evidence for attributing an
extreme event not only to anthropogenic climate change, but
also to regional circulation and local land surface conditions,
thus helping to put future extreme events into a refined risk-
based context (Stott et al., 2016). Even though the statistical
model is fundamentally probabilistic in nature, its capability
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to answer “what if” questions may also serve as a basis for
process-based storyline analyses (Shepherd, 2016).

Code and data availability. All original CMIP6, ERA5 and
ERA5-Land reanalysis data used in this study are publicly avail-
able.

– CMIP6: https://esgf-node.llnl.gov/projects/cmip6/ (WCRP,
2023; Eyring et al., 2016)

– ERA5: https://doi.org/10.24381/cds.adbb2d47 (Hersbach et
al., 2023)

– ERA5-Land: https://doi.org/10.24381/cds.e2161bac (Muñoz
Sabater, 2019)

Pre-processed data (including CESM12 large ensemble model
data) are available at https://doi.org/10.3929/ethz-b-000615056
(Zeder and Fischer, 2023). Code for pre-processing of data, reading
the pre-processed data and GEV model training and event analy-
sis is available at https://git.iac.ethz.ch/climphys/climate-extremes/
nonstationary-extremes (last access: 11 July 2023). Regu-
larised GEV code is available at https://git.iac.ethz.ch/climphys/
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