Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-11-203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A spatio-temporal weather generator for the temperature over France
Caroline Cognot
CORRESPONDING AUTHOR
EDF R&D, 7 Bd Gaspard Monge, 91120 Palaiseau, France
MIA Paris-Saclay, AgroParisTech, INRAE, Université Paris-Saclay, 22 place de l'Agronomie, 91120 Palaiseau, France
Liliane Bel
MIA Paris-Saclay, AgroParisTech, INRAE, Université Paris-Saclay, 22 place de l'Agronomie, 91120 Palaiseau, France
David Métivier
MISTEA, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
Sylvie Parey
EDF R&D, 7 Bd Gaspard Monge, 91120 Palaiseau, France
Related authors
No articles found.
Emmanuel Gobet, David Métivier, and Sylvie Parey
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 159–201, https://doi.org/10.5194/ascmo-11-159-2025, https://doi.org/10.5194/ascmo-11-159-2025, 2025
Short summary
Short summary
Stochastic weather generators (SWGs) are statistical models used to study climate variability. We design an interpretable multisite SWG for precipitation, capable of learning large-scale weather regimes solely from French observational data. The model reproduces extreme events like droughts and heavy rain and is applied to climate models under historical and Representative Concentration Pathway (RCP) scenarios. This type of model aims to assess large-scale weather risks, such as those impacting energy systems and agriculture.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Cited articles
Allard, D., Emery, X., Lacaux, C., and Lantuéjoul, C.: Simulating space-time random fields with nonseparable Gneiting-type covariance functions, Statistics and Computing, 30, 1479–1495, https://doi.org/10.1007/s11222-020-09956-4, 2020. a, b
Allard, D., Clarotto, L., and Emery, X.: Fully nonseparable Gneiting covariance functions for multivariate space–time data, Spatial Statistics, 52, 100706, https://doi.org/10.1016/j.spasta.2022.100706, 2022. a, b, c, d
Apipattanavis, S., Podestá, G., Rajagopalan, B., and Katz, R. W.: A semiparametric multivariate and multisite weather generator, Water Resources Research, 43, https://doi.org/10.1029/2006WR005714, 2007. a
Baxevani, A. and Lennartsson, J.: A spatiotemporal precipitation generator based on a censored latent Gaussian field, Water Resources Research, 51, 4338–4358, https://doi.org/10.1002/2014WR016455, 2015. a
Beersma, J. and Buishand, T.: Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation, Climate Research, 25, 121–133, https://doi.org/10.3354/cr025121, 2003. a
Bourotte, M., Allard, D., and Porcu, E.: A flexible class of non-separable cross-covariance functions for multivariate space–time data, Spatial Statistics, 18, 125–146, https://doi.org/10.1016/j.spasta.2016.02.004, 2016. a, b, c, d
Buishand, T. A. and Brandsma, T.: Multisite simulation of daily precipitation and temperature in the Rhine Basin by nearest-neighbor resampling, Water Resources Research, 37, 2761–2776, https://doi.org/10.1029/2001WR000291, 2001. a
Chandler, R. E.: Multisite, multivariate weather generation based on generalised linear models, Environmental Modelling & Software, 134, 104867, https://doi.org/10.1016/j.envsoft.2020.104867, 2020. a
Chilès, J. and Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, Wiley Series in Probability and Statistics, Wiley, 1st edn., ISBN 978-0-470-18315-1, https://doi.org/10.1002/9781118136188, 2012. a
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The Schaake Shuffle: A Method for Reconstructing Space–Time Variability in Forecasted Precipitation and Temperature Fields, Journal of Hydrometeorology, 5, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004. a
Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, 74, 829–836, https://doi.org/10.1080/01621459.1979.10481038, 1979. a, b
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, Springer London, London, ISBN 978-1-84996-874-4, https://doi.org/10.1007/978-1-4471-3675-0, 2001. a
Cornes, R. C., Van Der Schrier, G., Van Den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E‐OBS Temperature and Precipitation Data Sets, Journal of Geophysical Research: Atmospheres, 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a
Cressie, N. and Wikle, C. K.: Spatio-Temporal Statistics, John Wiley & Sons, ISBN 978-0-471-69274-4, 2015. a
Cressie, N. A. C.: Statistics for spatial data, Wiley series in probability and mathematical statistics, Wiley, New York, ISBN 978-0-471-84336-8, 1991. a
Dawkins, L. C., Osborne, J. M., Economou, T., Darch, G. J. C., and Stoner, O. R.: The Advanced Meteorology Explorer: a novel stochastic, gridded daily rainfall generator, Journal of Hydrology, 607, 127478, https://doi.org/10.1016/j.jhydrol.2022.127478, 2022. a, b, c
De Iaco, S. and Posa, D.: Positive and negative non-separability for space–time covariance models, Journal of Statistical Planning and Inference, 143, 378–391, https://doi.org/10.1016/j.jspi.2012.07.006, 2013. a
De Iaco, S., Posa, D., Cappello, C., and Maggio, S.: Isotropy, symmetry, separability and strict positive definiteness for covariance functions: A critical review, Spatial Statistics, 29, 89–108, https://doi.org/10.1016/j.spasta.2018.09.003, 2019. a
Dubrovsky, M., Huth, R., Dabhi, H., and Rotach, M. W.: Parametric gridded weather generator for use in present and future climates: focus on spatial temperature characteristics, Theoretical and Applied Climatology, 139, 1031–1044, https://doi.org/10.1007/s00704-019-03027-z, 2020. a, b
Evin, G., Favre, A.-C., and Hingray, B.: Stochastic generators of multi-site daily temperature: comparison of performances in various applications, Theoretical and Applied Climatology, 135, 811–824, https://doi.org/10.1007/s00704-018-2404-x, 2019. a, b, c, d
Furrer, E. and Katz, R.: Generalized linear modeling approach to stochastic weather generators, Climate Research, 34, 129–144, https://doi.org/10.3354/cr034129, 2007. a
Geoga, C. J., Marin, O., Schanen, M., and Stein, M. L.: Fitting Matérn Smoothness Parameters Using Automatic Differentiation, 33, 48, https://doi.org/10.1007/s11222-022-10127-w, 2022. a
Gneiting, T.: Nonseparable, Stationary Covariance Functions for Space–Time Data, Journal of the American Statistical Association, 97, 590–600, https://doi.org/10.1198/016214502760047113, 2002. a, b
Gneiting, T., Kleiber, W., and Schlather, M.: Matérn Cross-Covariance Functions for Multivariate Random Fields, Journal of the American Statistical Association, 105, 1167–1177, https://doi.org/10.1198/jasa.2010.tm09420, 2010. a
Gobet, E., Métivier, D., and Parey, S.: Interpretable seasonal multisite hidden Markov model for stochastic rain generation in France, Adv. Stat. Clim. Meteorol. Oceanogr., 11, 159–201, https://doi.org/10.5194/ascmo-11-159-2025, 2025. a, b
Hoang, T. T. H.: Modeling of non-stationary, non-linear time series. Application to the definition of trends on mean, variability and extremes of air temperatures in Europe, PhD thesis, Université Paris Sud – Paris XI, https://theses.hal.science/tel-00531549 (last access: 30 May 2025), 2010. a, b, c, d, e, f
Holsclaw, T., Greene, A. M., Robertson, A. W., and Smyth, P.: A Bayesian Hidden Markov Model of Daily Precipitation over South and East Asia, Journal of Hydrometeorology, https://doi.org/10.1175/JHM-D-14-0142.1, 2016. a
Intergovernmental Panel On Climate Change (IPCC): Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1st edn., ISBN 978-1-009-15789-6, https://doi.org/10.1017/9781009157896, 2023. a
International Organization for Standardization (ISO): Standard Atmosphere, ISO 2533:1975, https://www.iso.org/standard/7472.html (last access: 4 April 2024), 1975. a
Ji, H. K., Mirzaei, M., Lai, S. H., Dehghani, A., and Dehghani, A.: Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation, Environmental Modelling & Software, 172, 105896, https://doi.org/10.1016/j.envsoft.2023.105896, 2024. a
Kleiber, W., Katz, R. W., and Rajagopalan, B.: Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes: PRECIPITATION SIMULATION USING GAUSSIAN PROCESSES, Water Resources Research, 48, https://doi.org/10.1029/2011WR011105, 2012. a
Kroiz, G. C., Majumder, R., Gobbert, M. K., Neerchal, N. K., Markert, K., and Mehta, A.: Daily Precipitation Generation using a Hidden Markov Model with Correlated Emissions for the Potomac River Basin, PAMM, 20, e202000117, https://doi.org/10.1002/pamm.202000117, 2021. a
Li, B., Genton, M. G., and Sherman, M.: A Nonparametric Assessment of Properties of Space–Time Covariance Functions, Journal of the American Statistical Association, 102, 736–744, https://doi.org/10.1198/016214507000000202, 2007. a
Li, X. and Babovic, V.: Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches, Climate Dynamics, 52, 5775–5799, https://doi.org/10.1007/s00382-018-4480-0, 2019. a
Li, Z.: A new framework for multi-site weather generator: a two-stage model combining a parametric method with a distribution-free shuffle procedure, Climate Dynamics, 43, 657–669, https://doi.org/10.1007/s00382-013-1979-2, 2014. a
Li, Z., Li, J. J., and Shi, X. P.: A Two-Stage Multisite and Multivariate Weather Generator, Journal of Environmental Informatics, https://doi.org/10.3808/jei.201900424, 2019. a
Lindsay, B. G.: Composite likelihood methods, in: Contemporary Mathematics, edited by: Prabhu, N. U., Vol. 80, 221–239, American Mathematical Society, Providence, Rhode Island, ISBN 978-0-8218-5087-9, https://doi.org/10.1090/conm/080/999014, 1988. a, b
Miloshevich, G., Cozian, B., Abry, P., Borgnat, P., and Bouchet, F.: Probabilistic forecasts of extreme heatwaves using convolutional neural networks in a regime of lack of data, Physical Review Fluids, 8, 040501, https://doi.org/10.1103/PhysRevFluids.8.040501, 2023. a
Naveau, P., Huser, R., Ribereau, P., and Hannart, A.: Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection, Water Resources Research, 52, 2753–2769, https://doi.org/10.1002/2015WR018552, 2016. a
Porcu, E., Furrer, R., and Nychka, D.: 30 Years of space–time covariance functions, WIREs Computational Statistics, 13, e1512, https://doi.org/10.1002/wics.1512, 2021. a, b
Prairie, J. R., Rajagopalan, B., Fulp, T. J., and Zagona, E. A.: Modified K-NN Model for Stochastic Streamflow Simulation, Journal of Hydrologic Engineering, 11, 371–378, https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(371), 2006. a
Rajagopalan, B. and Lall, U.: A k-nearest-neighbor simulator for daily precipitation and other weather variables, Water Resources Research, 35, 3089–3101, https://doi.org/10.1029/1999WR900028, 1999. a
Richardson, C. W.: Stochastic simulation of daily precipitation, temperature, and solar radiation, Water Resources Research, 17, 182–190, https://doi.org/10.1029/WR017i001p00182, 1981. a, b, c
Sha, J., Chen, X., Chang, Y., Zhang, M., and Li, X.: A spatial weather generator based on conditional deep convolution generative adversarial nets (cDCGAN), Climate Dynamics, 62, 1275–1290, https://doi.org/10.1007/s00382-023-06971-9, 2024. a
Sparks, N. J., Hardwick, S. R., Schmid, M., and Toumi, R.: IMAGE: a multivariate multi-site stochastic weather generator for European weather and climate, Stochastic Environmental Research and Risk Assessment, 32, 771–784, https://doi.org/10.1007/s00477-017-1433-9, 2018. a, b, c
Stoner, O. and Economou, T.: A coupled hidden markov model for daily rainfall at multiple sites, in: Proceedings of the 35th International Workshop on Statistical Modelling, 20–24 July 2020, Bilbao, Basque Country, Spain, ISBN 978-84-1319-267-3, 228–232, https://addi.ehu.eus/handle/10810/45863 (last access: 9 September 2024), 2020. a
Touron, A.: Modélisation multivariée de variables météorologiques, PhD thesis, Université Paris-Saclay, https://theses.hal.science/tel-02319170 (last access: 8 June 2023), 2019. a
Verdin, A., Rajagopalan, B., Kleiber, W., and Katz, R. W.: Coupled stochastic weather generation using spatial and generalized linear models, Stochastic Environmental Research and Risk Assessment, 29, 347–356, https://doi.org/10.1007/s00477-014-0911-6, 2015. a, b
Verdin, A., Rajagopalan, B., Kleiber, W., Podestá, G., and Bert, F.: BayGEN: A Bayesian Space-Time Stochastic Weather Generator, Water Resources Research, 55, 2900–2915, https://doi.org/10.1029/2017WR022473, 2019. a
Wang, Y., Xie, J., You, Y., Wang, Y., Xu, Y.-P., and Guo, Y.-X.: A new multi-site multi-variable stochastic model with inter-site and inter-variable correlations, low frequency attributes and stochasticity: A case study in the lower Yellow River basin, Journal of Hydrology, 599, 126365, https://doi.org/10.1016/j.jhydrol.2021.126365, 2021. a
Wilks, D. S.: Multisite generalization of a daily stochastic precipitation generation model, Journal of Hydrology, 210, 178–191, https://doi.org/10.1016/S0022-1694(98)00186-3, 1998. a
Wilks, D. S.: A gridded multisite weather generator and synchronization to observed weather data, Water Resources Research, 45, https://doi.org/10.1029/2009WR007902, 2009. a, b, c
Yiou, P.: AnaWEGE: a weather generator based on analogues of atmospheric circulation, Geosci. Model Dev., 7, 531–543, https://doi.org/10.5194/gmd-7-531-2014, 2014. a
Short summary
Weather generators efficiently create realistic weather data based on historical records. This study introduces a daily temperature generator for large regions, separating deterministic factors (trends, seasonality) from random variations modeled using space-time interactions. Validated on French weather station data, it replicates observed patterns, including heatwaves. It offers a practical solution for generating realistic weather data, for applications such as climate impact assessments.
Weather generators efficiently create realistic weather data based on historical records. This...