Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-203-2025
https://doi.org/10.5194/ascmo-11-203-2025
09 Oct 2025
 | 09 Oct 2025

A spatio-temporal weather generator for the temperature over France

Caroline Cognot, Liliane Bel, David Métivier, and Sylvie Parey

Related authors

Interpretable seasonal multisite hidden Markov model for stochastic rain generation in France
Emmanuel Gobet, David Métivier, and Sylvie Parey
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 159–201, https://doi.org/10.5194/ascmo-11-159-2025,https://doi.org/10.5194/ascmo-11-159-2025, 2025
Short summary
CMIP7 Data Request: Impacts and Adaptation Priorities and Opportunities
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408,https://doi.org/10.5194/egusphere-2025-3408, 2025
Short summary
Preface: Advances in extreme value analysis and application to natural hazards
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021,https://doi.org/10.5194/nhess-21-1461-2021, 2021

Cited articles

Allard, D., Ailliot, P., Monbet, V., and Naveau, P.: Stochastic weather generators: an overview of weather type models, Journal de la Societe Française de Statistique, 156, 101–113, 2015. a, b
Allard, D., Emery, X., Lacaux, C., and Lantuéjoul, C.: Simulating space-time random fields with nonseparable Gneiting-type covariance functions, Statistics and Computing, 30, 1479–1495, https://doi.org/10.1007/s11222-020-09956-4, 2020. a, b
Allard, D., Clarotto, L., and Emery, X.: Fully nonseparable Gneiting covariance functions for multivariate space–time data, Spatial Statistics, 52, 100706, https://doi.org/10.1016/j.spasta.2022.100706, 2022. a, b, c, d
Apipattanavis, S., Podestá, G., Rajagopalan, B., and Katz, R. W.: A semiparametric multivariate and multisite weather generator, Water Resources Research, 43, https://doi.org/10.1029/2006WR005714, 2007. a
Baxevani, A. and Lennartsson, J.: A spatiotemporal precipitation generator based on a censored latent Gaussian field, Water Resources Research, 51, 4338–4358, https://doi.org/10.1002/2014WR016455, 2015. a
Download
Short summary
Weather generators efficiently create realistic weather data based on historical records. This study introduces a daily temperature generator for large regions, separating deterministic factors (trends, seasonality) from random variations modeled using space-time interactions. Validated on French weather station data, it replicates observed patterns, including heatwaves. It offers a practical solution for generating realistic weather data, for applications such as climate impact assessments.
Share