Articles | Volume 2, issue 2
https://doi.org/10.5194/ascmo-2-171-2016
https://doi.org/10.5194/ascmo-2-171-2016
14 Dec 2016
 | 14 Dec 2016

Weak constraint four-dimensional variational data assimilation in a model of the California Current System

William J. Crawford, Polly J. Smith, Ralph F. Milliff, Jerome Fiechter, Christopher K. Wikle, Christopher A. Edwards, and Andrew M. Moore

Related authors

Improving coastal ocean pH estimates through assimilation of glider observations and hybrid statistical methods
Jann Paul Mattern, Yuichiro Takeshita, Carlos Rocha, and Christopher Edwards
EGUsphere, https://doi.org/10.5194/egusphere-2025-3560,https://doi.org/10.5194/egusphere-2025-3560, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Numerical models for monitoring and forecasting ocean biogeochemistry: a short description of present status
Gianpiero Cossarini, Andrew Moore, Stefano Ciavatta, and Katja Fennel
State Planet, 5-opsr, 12, https://doi.org/10.5194/sp-5-opsr-12-2025,https://doi.org/10.5194/sp-5-opsr-12-2025, 2025
Short summary
Data assimilation schemes for ocean forecasting: state of the art
Matthew J. Martin, Ibrahim Hoteit, Laurent Bertino, and Andrew M. Moore
State Planet, 5-opsr, 9, https://doi.org/10.5194/sp-5-opsr-9-2025,https://doi.org/10.5194/sp-5-opsr-9-2025, 2025
Short summary
Merging and serving ocean observations: a description of marine data aggregators
Antonio Novellino, Pierre-Yves Le Traon, and Andy Moore
State Planet, 5-opsr, 8, https://doi.org/10.5194/sp-5-opsr-8-2025,https://doi.org/10.5194/sp-5-opsr-8-2025, 2025
Short summary
Connecting ocean observations with prediction
Pierre-Yves Le Traon, Antonio Novellino, and Andrew M. Moore
State Planet, 5-opsr, 7, https://doi.org/10.5194/sp-5-opsr-7-2025,https://doi.org/10.5194/sp-5-opsr-7-2025, 2025
Short summary

Related subject area

Oceanography
Deep learning for statistical downscaling of sea states
Marceau Michel, Said Obakrim, Nicolas Raillard, Pierre Ailliot, and Valérie Monbet
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 83–95, https://doi.org/10.5194/ascmo-8-83-2022,https://doi.org/10.5194/ascmo-8-83-2022, 2022
Short summary

Cited articles

Bennett, A.: Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, 2002.
Broquet, G., Edwards, C., Moore, A., Powell, B., Veneziani, M., and Doyle, J.: Application of 4D-variational data assimilation to the California Current System, Dyn. Atmos. Oceans, 48, 69–91, 2009a.
Broquet, G., Moore, A., Arango, H., Edwards, C., and Powell, B.: Ocean state and surface forcing correction using the ROMS-IS4DVAR data assimilation system, Mercator Ocean Quarterly Newsletter, 34, 5–13, 2009b.
Broquet, G., Moore, A., Arango, H., and Edwards, C.: Corrections to ocean surface forcing in the California Current System using 4D-variational data assimilation, Ocean Model., 36, 116–132, 2011.
Carton, J. and Giese, B.: A reanalysis of ocean climate using simple ocean data assimilation (SODA), Mon. Weather Rev., 136, 2999–3017, 2008.
Download
Short summary
We present a method for estimating intrinsic model error in a model of the California Current System. The estimated model error covariance matrix is used in the weak constraint formulation of the Regional Ocean Modeling System, four-dimensional variational data assimilation system, and comparison of the circulation estimates computed in this way show demonstrable improvement to those computed in the strong constraint formulation, where intrinsic model error is not taken into account.
Share