Articles | Volume 6, issue 2
https://doi.org/10.5194/ascmo-6-115-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-6-115-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of geographic sampling on evaluation of extreme precipitation in high-resolution climate models
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Michael F. Wehner
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Related authors
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5575–5603, https://doi.org/10.5194/gmd-18-5575-2025, https://doi.org/10.5194/gmd-18-5575-2025, 2025
Short summary
Short summary
Simulating extreme weather events in a warming world is a challenging task for current weather and climate models. These models' computational cost poses a challenge in studying low-probability extreme weather. We use machine learning to construct a new probabilistic system. We give an in-depth explanation of how we constructed this system. We present a thorough pipeline to validate our method. Our method requires fewer computational resources than existing weather and climate models.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025, https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Short summary
We use machine learning emulators to create a massive ensemble of simulated weather extremes. This ensemble provides a large sample size, which is essential to characterize the statistics of extreme weather events and study their physical mechanisms. Also, these ensembles can be beneficial to accurately forecast the probability of low-likelihood extreme weather.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5575–5603, https://doi.org/10.5194/gmd-18-5575-2025, https://doi.org/10.5194/gmd-18-5575-2025, 2025
Short summary
Short summary
Simulating extreme weather events in a warming world is a challenging task for current weather and climate models. These models' computational cost poses a challenge in studying low-probability extreme weather. We use machine learning to construct a new probabilistic system. We give an in-depth explanation of how we constructed this system. We present a thorough pipeline to validate our method. Our method requires fewer computational resources than existing weather and climate models.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025, https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Short summary
We use machine learning emulators to create a massive ensemble of simulated weather extremes. This ensemble provides a large sample size, which is essential to characterize the statistics of extreme weather events and study their physical mechanisms. Also, these ensembles can be beneficial to accurately forecast the probability of low-likelihood extreme weather.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Cited articles
Bacmeister, J. T., Hannay, C., Medeiros, B., Gettelman, A., Neale, R., Fredriksen, H. B., Lipscomb, W. H., Simpson, I., Bailey, D. A., Holland, M., and Lindsay, K.: CO2 increase experiments using the Community Earth System Model
(CESM): Relationship to climate sensitivity and comparison of CESM1 to CESM2, J. Adv. Model Earth Sy., pp. 1850–2014, submitted, 2020. a
Boucher, O., Denvil, S., Caubel, A., and Foujols, M. A.: IPSL
IPSL-CM6A-ATM-HR model output prepared for CMIP6 HighResMIP, Earth System Grid Federation,
https://doi.org/10.22033/ESGF/CMIP6.2361, 2019. a
Daly, C., Neilson, R. P., and Phillips, D. L.: A statistical-topographic model
for mapping climatological precipitation over mountainous terrain, J. Appl. Meteorol., 33, 140–158, 1994. a
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous
United States, Int. J. Climatol., 28, 2031–2064, 2008. a
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., and Hewitson, B.: Updated analyses of temperature
and precipitation extreme indices since the beginning of the twentieth
century: The HadEX2 dataset, J. Geophys. Res.-Atmos.,
118, 2098–2118, 2013. a
Easterling, D., Kunkel, K., Arnold, J., Knutson, T., LeGrande, A., Leung, L.,
Vose, R., Waliser, D., and Wehner, M.: Precipitation change in the United
States, in: Climate Science Special Report: Fourth National Climate
Assessment, Volume I, pp. 207–230, https://doi.org/10.7930/J0H993CC, 2017. a
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global occurrence
of heavy-precipitation and high-temperature extremes, Nat. Clim. Change,
5, 560, 2015. a
GISTEMP Team: GISS Surface Temperature Analysis (GISTEMP), version 4, NASA
Goddard Institute for Space Studies, dataset,
https://data.giss.nasa.gov/gistemp/data, last access: 14 April 2020. a
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019. a
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a, b, c
Jones, P., Osborn, T., Briffa, K., Folland, C., Horton, E., Alexander, L.,
Parker, D., and Rayner, N.: Adjusting for sampling density in grid box land
and ocean surface temperature time series, J. Geophys. Res. - Atmos., 106, 3371–3380, 2001. a
Jones, P. W.: First-and second-order conservative remapping schemes for grids
in spherical coordinates, Mon. Weather Rev., 127, 2204–2210, 1999. a
King, A. D., Alexander, L. V., and Donat, M. G.: The efficacy of using gridded
data to examine extreme rainfall characteristics: a case study for
Australia, Int. J. Climatol., 33, 2376–2387, 2013. a
Kunkel, K. E.: North American trends in extreme precipitation, Nat.
Hazards, 29, 291–305, 2003. a
Lenssen, N. J., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy,
R., and Zyss, D.: Improvements in the GISTEMP uncertainty model, J. Geophys. Res. - Atmos., 124, 6307–6326, 2019. a
Li, C., Zwiers, F., Zhang, X., and Li, G.: How much information is required to
well constrain local estimates of future precipitation extremes? Earth's
Future, 7, 11–24, 2019. a
Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose,
R., Cayan, D. R., and Brekke, L.: A spatially comprehensive,
hydrometeorological data set for Mexico, the US, and Southern Canada (NCEI
Accession 0129374), NOAA National Centers for Environmental Information,
Dataset, (Daily precipitation), https://doi.org/10.7289/v5x34vf6
(last access: 13 April 2020), 2015a. a
Lovejoy, S., Schertzer, D., and Allaire, V.: The remarkable wide range spatial
scaling of TRMM precipitation, Atmos. Res., 90, 10–32,
https://doi.org/10.1016/j.atmosres.2008.02.016, available at:
http://linkinghub.elsevier.com/retrieve/pii/S0169809508000562,
2008. a
Madden, R. A. and Meehl, G. A.: Bias in the global mean temperature estimated
from sampling a greenhouse warming pattern with the current surface observing
network, J. Climate, 6, 2486–2489, 1993. a
Maskey, M. L., Puente, C. E., Sivakumar, B., and Cortis, A.: Encoding daily
rainfall records via adaptations of the fractal multifractal method,
Stochastic Environmental Research and Risk Assessment, 30, 1917–1931,
https://doi.org/10.1007/s00477-015-1201-7, available at:
http://link.springer.com/10.1007/s00477-015-1201-7, 2016. a
Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human contribution to
more-intense precipitation extremes, Nature, 470, 378, 2011. a
Paciorek, C.: climextRemes: Tools for Analyzing Climate Extremes,
https://CRAN.R-project.org/package=climextRemes (last access: 1 January 2019), R package
version 2.1, 2016. a
Risser, M. D. and Wehner, M. F.: Attributable Human-Induced Changes in the
Likelihood and Magnitude of the Observed Extreme Precipitation during
Hurricane Harvey, Geophys. Res. Lett., 44, 12,457–12,464,
https://doi.org/10.1002/2017GL075888, available at:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075888,
2017. a
Risser, M. D., Paciorek, C. J., O'Brien, T. A., Wehner, M. F., and Collins,
W. D.: Detected Changes in Precipitation Extremes at Their Native Scales
Derived from In Situ Measurements, J. Climate, 32, 8087–8109,
https://doi.org/10.1175/JCLI-D-19-0077.1, 2019a. a, b, c
Risser, M. D., Paciorek, C. J., Wehner, M. F., O'Brien, T. A., and Collins,
W. D.: A probabilistic gridded product for daily precipitation extremes over
the United States, Clim. Dynam., 53, 2517–2538,
https://doi.org/10.1007/s00382-019-04636-0,
2019b. a, b, c
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E.: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geosci. Model Dev., 11, 3681–3712, https://doi.org/10.5194/gmd-11-3681-2018, 2018. a
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019. a, b
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019. a
Timmermans, B., Wehner, M., Cooley, D., O'Brien, T., and Krishnan, H.: An
evaluation of the consistency of extremes in gridded precipitation data sets,
Clim. Dynam., 52, 6651–6670, https://doi.org/10.1007/s00382-018-4537-0, 2019. a
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou,
C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M.,
Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G.,
Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S.,
Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin,
F.: The CNRM-CM5.1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2013. a
von Hardenberg, J.: rainfarmr: Stochastic Precipitation Downscaling with the
RainFARM Method,
https://CRAN.R-project.org/package=rainfarmr (last access: 13 April 2020), R package
version 0.1, 2019. a
Vose, R. S., Wuertz, D., Peterson, T. C., and Jones, P.: An intercomparison of
trends in surface air temperature analyses at the global, hemispheric, and
grid-box scale, Geophys. Res. Lett., 32, 2005. a
Wehner, M. F.: Very extreme seasonal precipitation in the NARCCAP ensemble:
model performance and projections, Clim. Dynam., 40, 59–80, 2013. a
Wuebbles, D. J., Fahey, D. W., and Hibbard, K. A.: Climate science special
report, fourth National Climate Assessment, volume I, 2017. a
Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C., and Min, S.-K.: Attributing
intensification of precipitation extremes to human influence, Geophysical
Research Letters, 40, 5252–5257, 2013. a
Short summary
Evaluation of modern high-resolution global climate models often does not account for the geographic location of the underlying weather station data. In this paper, we quantify the impact of geographic sampling on the relative performance of climate model representations of precipitation extremes over the United States. We find that properly accounting for the geographic sampling of weather stations can significantly change the assessment of model performance.
Evaluation of modern high-resolution global climate models often does not account for the...