Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-229-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-11-229-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Post-processing of wind gusts from COSMO-REA6 with a spatial Bayesian hierarchical extreme value model
Institute of Geosciences, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Petra Friederichs
Institute of Geosciences, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany
Related authors
No articles found.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024, https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Short summary
This paper uses the tail pairwise dependence matrix (TPDM) proposed by Cooley and Thibaud (2019), which we extend to the description of common extremes in two variables. We develop an extreme pattern index (EPI), a pattern-based aggregation to describe spatially extended weather extremes. Our results show that the EPI is suitable for describing heat waves. We extend the EPI to describe extremes in two variables and obtain an index to describe compound precipitation deficits and heat waves.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021, https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary
Short summary
When insects fill the lower kilometers of the atmosphere, they get caught in the convergent parts of the wind field. Their concentration visualizes the otherwise invisible circulation on radar images. This study shows how clear-air radar data can be compared to simulated wind fields in terms of scale, anisotropy, and direction. Despite known difficulties with simulating these near-surface wind systems, we find decent agreement between a long-term simulation and the German radar mosaic.
Cited articles
Apputhurai, P. and Stephenson, A. G.: Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields, Environ. Ecol. Stat., 20, 667–677, https://doi.org/10.1007/s10651-013-0240-9, 2013. a, b
Atger, F.: Estimation of the reliability of ensemble-based probabilistic forecasts, Q. J. Roy. Meteor. Soc., 130, 627–646, https://doi.org/10.1256/qj.03.23, 2004. a
Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E.: An empirical distribution function for sampling with incomplete information, Ann. Math. Stat., 26, 641–647, https://doi.org/10.1214/aoms/1177728423, 1955. a
Banerjee, S., Carlin, B. P., and Gelfand, A. E.: Hierarchical modeling and analysis for spatial data, Chapman and Hall/CRC, New York, ISBN 9780429205231, https://doi.org/10.1201/9780203487808, 2003. a
Baran, S. and Lakatos, M.: Clustering-based spatial interpolation of parametric postprocessing models, Weather Forecast., 39, 1591–1604, https://doi.org/10.1175/WAF-D-24-0016.1, 2024. a
Bentzien, S. and Friederichs, P.: Decomposition and graphical portrayal of the quantile score, Q. J. Roy. Meteor. Soc., 140, 1924–1934, https://doi.org/10.1002/qj.2284, 2014. a, b
Best, M. J. and Chakravarti, N.: Active set algorithms for isotonic regression; A unifying framework, Math. Program., 47, 425–439, https://doi.org/10.1007/BF01580873, 1990. a
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteor. Soc., 141, 1–15, https://doi.org/10.1002/qj.2486, 2015. a
Bradbury, W. M. S., Deaves, D. M., Hunt, J. C. R., Kershaw, R., Nakamura, K., Hardman, M. E., and Bearman, P. W.: The importance of convective gusts, Meteorol. Appl., 1, 365–378, https://doi.org/10.1002/met.5060010407, 1994. a
Brasseur, O.: Development and application of a physical approach to estimating wind gusts, Mon. Weather Rev., 129, 5–25, https://doi.org/10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2, 2001. a
Brier, G. W.: Verification of forecasts expressed in terms of probability, Mon. Weather Rev., 78, 1–3, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2, 1950. a
Bröcker, J.: Reliability, sufficiency, and the decomposition of proper scores, Q. J. Roy. Meteor. Soc., 135, 1512–1519, https://doi.org/10.1002/qj.456, 2009. a
Climate Data Center: Observations Germany, https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/ (last access: 31 October 2023), 2023. a
Coles, S.: An introduction to statistical modeling of extreme values, Springer Series in Statistics, Springer-Verlag, London, ISBN 9781447136750, https://doi.org/10.1007/978-1-4471-3675-0, 2001. a, b, c
Cooley, D., Nychka, D., and Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels, J. Am. Stat. Assoc., 102, 824–840, https://doi.org/10.1198/016214506000000780, 2007. a, b, c, d
Davison, A. C. and Gholamrezaee, M. M.: Geostatistics of extremes, Proc. Roy. Soc. A., 468, 581–608, https://doi.org/10.1098/RSPA.2011.0412, 2012. a
Davison, A. C., Padoan, S., and Ribatet, M.: Statistical modeling of spatial extremes, Stat. Sci., 27, 161–186, https://doi.org/10.1214/11-STS376, 2012. a, b
Dawid, A. P.: Present position and potential developments: Some personal views: Statistical Theory: The prequential approach, J. R. Stat. Soc. Series A (General), 147, 278, https://doi.org/10.2307/2981683, 1984. a
de Leeuw, J., Hornik, K., and Mair, P.: Isotone optimization in R: Pool-adjacent-violators algorithm (PAVA) and Active Set Methods, J. Stat. Softw., 32, 1–24, https://doi.org/10.18637/jss.v032.i05, 2009. a
Dimitriadis, T., Gneiting, T., and Jordan, A. I.: Stable reliability diagrams for probabilistic classifiers, P. Natl. Acad. Sci. USA, 118, e2016191118, https://doi.org/10.1073/pnas.2016191118, 2021. a, b
Dyrrdal, A. V., Lenkoski, A., Thorarinsdottir, T. L., and Stordal, F.: Bayesian hierarchical modeling of extreme hourly precipitation in Norway, Environmetrics, 26, 89–106, https://doi.org/10.1002/env.2301, 2015. a
Ertz, P. and Friederichs, P.: Wind gust postprocessing from COSMO-REA6 with a spatial Bayesian hierarchical extreme value model, Zenodo [code], https://doi.org/10.5281/zenodo.15437958, 2025. a
Ferro, C. A. T.: Fair scores for ensemble forecasts: Fair scores for ensemble forecasts, Q. J. Roy. Meteor. Soc., 140, 1917–1923, https://doi.org/10.1002/qj.2270, 2014. a
Friederichs, P. and Hense, A.: Statistical downscaling of extreme precipitation events using censored quantile regression, Mon. Weather Rev., 135, 2365–2378, https://doi.org/10.1175/MWR3403.1, 2007. a
Friederichs, P., Goeber, M., Bentzien, S., Lenz, A., and Krampitz, R.: A probabilistic analysis of wind gusts using extreme value statistics, Meteorol. Z., 18, 615–629, https://doi.org/10.1127/0941-2948/2009/0413, 2009. a, b, c
Friederichs, P., Wahl, S., and Buschow, S.: Postprocessing for extreme events, in: Statistical postprocessing of ensemble forecasts, edited by: Vannitsem, S., Wilks, D. S., and Messner, J. W., Elsevier, 127–154, https://doi.org/10.1016/B978-0-12-812372-0.00005-4, 2018. a, b, c
Gilks, R. W., Richardson, S., and Spiegelhalter, D. J. (Eds.): Markov Chain Monte Carlo in practice, Chapman & Hall/CRCinterdisciplinary statistics series, Chapman and Hall/CRC, Boca Raton, FL, ISBN 9781482214970, 1995. a
Giorgi, F., Jones, C., and Asrar, G. R.: Adressing climate information needs at the regional level: the CORDEX framework, WMO Bull., 58, 175–183, 2009. a
Gneiting, T.: Strictly and non-strictly positive definite functions on spheres, Bernoulli, 19, https://doi.org/10.3150/12-BEJSP06, 2013. a, b
Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc., 102, 359–378, https://doi.org/10.1198/016214506000001437, 2007. a, b, c
Gneiting, T. and Ranjan, R.: Comparing density forecasts using threshold- and quantile-weighted scoring rules, J. B. Econ. Stat., 29, 411–422, https://doi.org/10.1198/jbes.2010.08110, 2011. a
Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Mon. Weather Rev., 133, 1098–1118, https://doi.org/10.1175/MWR2904.1, 2005. a, b
Gneiting, T., Kleiber, W., and Schlather, M.: Matérn cross-covariance functions for multivariate random fields, J. Amer. Stat. Assoc., 105, 1167–1177, https://doi.org/10.1198/jasa.2010.tm09420, 2012. a, b
Gneiting, T., Wolffram, D., Resin, J., Kraus, K., Bracher, J., Dimitriadis, T., Hagenmeyer, V., Jordan, A. I., Lerch, S., Phipps, K., and Schienle, M.: Model diagnostics and forecast evaluation for quantiles, Ann. Rev. Stat. Appl., 10, 597–621, https://doi.org/10.1146/annurev-statistics-032921-020240, 2023. a, b, c, d
Hersbach, H.: Decomposition of the continuous ranked probability score for ensemble prediction systems, Weather Forecasting, 15, 559–570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000. a, b
Hyndman, R. and Fan, Y.: Sample quantiles in statistical packages, Am. Stat., 50, 361–365, https://doi.org/10.1080/00031305.1996.10473566, 1996. a
Jordan, A. I., Mühlemann, A., and Ziegel, J. F.: Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals, Ann. Inst. Stat. Math., 74, 489–514, https://doi.org/10.1007/s10463-021-00808-0, 2022. a
Koenker, R.: Quantile regression, vol. 38 of Econometric Society Monographs, Cambridge University Press, ISBN 9780511754098, 2005. a
Koenker, R. and Machado, J. A. F.: Goodness of fit and related inference processes for quantile regression, J. Amer. Stat. Assoc., 94, 1296–1310, https://doi.org/10.1080/01621459.1999.10473882, 1999. a
Krüger, F., Lerch, S., Thorarinsdottir, T., and Gneiting, T.: Predictive inference based on Markov Chain Monte Carlo output, Int. Stat. Rev., 89, 274–301, https://doi.org/10.1111/insr.12405, 2021. a
Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F., and Gneiting, T.: Forecaster’s Dilemma: Extreme events and forecast evaluation, Stat. Sci., 32, 106–127, https://doi.org/10.1214/16-STS588, 2017. a
Lindgren, F., Lindström, J., and Rue, H.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc.: Series B, 73, 423–498, https://doi.org/10.1111/j.1467-9868.2011.00777.x, 2011. a
Miles, R. E.: The complete amalgamation into blocks, by weighted means, of a finite set of real numbers, Biometrika, 46, 317–327, https://doi.org/10.2307/2333529, 1959. a
Möller, A., Thorarinsdottir, T. L., Lenkoski, A., and Gneiting, T.: Spatially adaptive, Bayesian estimation for probabilistic temperature forecasts, arXiv [preprint], https://doi.org/10.48550/arXiv.1507.05066, 2016. a
Murphy, A. H.: A new vector partition of the probability dcore, J. Appl. Meteor., 12, 595–600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2, 1973. a, b
Nakamura, K., Kershaw, R., and Gait, N.: Prediction of near-surface gusts generated by deep convection, Meteorol. Appl., 3, 157–167, https://doi.org/10.1002/met.5060030206, 1996. a
Oesting, M., Schlather, M., and Friederichs, P.: Statistical post-processing of forecasts for extremes using bivariate brown-resnick processes with an application to wind gusts, Extremes, 24 pp., https://doi.org/10.1007/s10687-016-0277-x, 2016. a, b
Perrin, O., Rootzén, H., and Taesler, R.: A discussion of statistical methods used to estimate extreme wind speeds, Theor. Appl. Climatol., 85, 203–215, https://doi.org/10.1007/s00704-005-0187-3, 2006. a
R Development Core Team: R: A language and environment for statistical computing, Version 4.2.3, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org (last access: 12 May 2025), ISBN 3-900051-07-0, 2023. a
Rasmussen, C. E. and Williams, C. K. I.: Gaussian processes for machine learning, Adaptive computation and machine learning, 3rd edn., MIT Press, Cambridge, Mass, ISBN 9780262182539, 2008. a
Riddell, A., Hartikainen, A., and Carter, M.: pystan (3.9.0), PyPI, https://pypi.org/project/pystan (last access: 1 March 2024), 2021. a
Rockel, B., Will, A., and Hense, A.: Special issue: regional climateo modelling with COSMO-CLM(CCLM), Meteorol. Z., 347–348, https://doi.org/10.1127/0941-2948/2008/0309, 2008. a
Rue, H., Martino, S., and Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using Integrated Nested Laplace Approximations, J. R. Stat. Soc. B, 71, 319–392, https://doi.org/10.1111/j.1467-9868.2008.00700.x, 2009. a
Sang, H. and Gelfand, A. E.: Continuous spatial process models for spatial extreme values, J. Agric. Biol. Envir. Stat., 15, 49–65, https://doi.org/10.1007/s13253-009-0010-1, 2010. a
Schulz, J.-P.: Revision of the turbulent gust diagnostics in the COSMO-model, COSMO News Letter, 8, 17–22, 2008. a
Schulz, J.-P. and Heise, E.: A new scheme for diagnosing near-surface convective gusts, COSMO News Letter, 3, E221–225, 2003. a
Stan Development Team: Stan: A probabilistic programming language, Stan Development Team,version 2.33, https://mc-stan.org/ (last access: 1 March 2024), 2022. a
Stephenson, A. G., Lehmann, E. A., and Phatak, A.: A max-stable process model for rainfall extremes at different accumulation durations, Weather Clim. Extrem., https://doi.org/10.1016/j.wace.2016.07.002, 2016. a
Walshaw, D.: Getting the most from your extreme wind data: A step by step guide, J. Res. Natl. Inst. Stan., 99, 399–411, https://doi.org/10.6028/jres.099.038, 1994. a
Walshaw, D. and Anderson, C. W.: A model for extreme wind gusts, J. R. Stat. Soc. C, 49, 499–508, https://doi.org/10.1111/1467-9876.00208, 2000. a
Wessel, J. B., Ferro, C. A. T., Evans, G. R., and Kwasniok, F.: Improving probabilistic forecasts of extreme wind speeds by training statistical post-processing models with weighted scoring rules, Mon. Weather Rev., https://doi.org/10.1175/MWR-D-24-0151.1, 2025. a
Wolffram, D.: Replication package for “Model Diagnostics and Forecast Evaluation for Quantiles”, GitHub [code], https://github.com/dwolffram/replication-ARSIA2023 (last access: 27 November 2024), 2022. a
Short summary
We develop a spatial statistical calibration of wind gust observations for the region of Germany with an interpolation to unobserved locations. Furthermore, the model is spatially adaptive and includes the station altitude both as explanatory variable and as offset to increase the distance between stations. This offset allows us to include mountain stations into the training data. Compared to a spatially constant model, the adaptive model improves the representation of extreme wind gusts.
We develop a spatial statistical calibration of wind gust observations for the region of Germany...