Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-229-2025
https://doi.org/10.5194/ascmo-11-229-2025
27 Nov 2025
 | 27 Nov 2025

Post-processing of wind gusts from COSMO-REA6 with a spatial Bayesian hierarchical extreme value model

Philipp Ertz and Petra Friederichs

Related authors

Compound events in Germany in 2018: drivers and case studies
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025,https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024,https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022,https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Verification of boundary layer wind patterns in COSMO-REA2 using clear-air radar echoes
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021,https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary

Cited articles

Apputhurai, P. and Stephenson, A. G.: Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields, Environ. Ecol. Stat., 20, 667–677, https://doi.org/10.1007/s10651-013-0240-9, 2013. a, b
Atger, F.: Estimation of the reliability of ensemble-based probabilistic forecasts, Q. J. Roy. Meteor. Soc., 130, 627–646, https://doi.org/10.1256/qj.03.23, 2004. a
Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E.: An empirical distribution function for sampling with incomplete information, Ann. Math. Stat., 26, 641–647, https://doi.org/10.1214/aoms/1177728423, 1955. a
Banerjee, S., Carlin, B. P., and Gelfand, A. E.: Hierarchical modeling and analysis for spatial data, Chapman and Hall/CRC, New York, ISBN 9780429205231, https://doi.org/10.1201/9780203487808, 2003. a
Baran, S. and Lakatos, M.: Clustering-based spatial interpolation of parametric postprocessing models, Weather Forecast., 39, 1591–1604, https://doi.org/10.1175/WAF-D-24-0016.1, 2024. a
Download
Short summary
We develop a spatial statistical calibration of wind gust observations for the region of Germany with an interpolation to unobserved locations. Furthermore, the model is spatially adaptive and includes the station altitude both as explanatory variable and as offset to increase the distance between stations. This offset allows us to include mountain stations into the training data. Compared to a spatially constant model, the adaptive model improves the representation of extreme wind gusts.
Share