Campello, R. J. G. B., Moulavi, D., and Sander, J.: Density-Based Clustering Based on Hierarchical Density Estimates, in: Advances in Knowledge Discovery and Data Mining, edited by: Pei, J., Tseng, V. S., Cao, L., Motoda, H., and Xu, G., 160–172, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-37456-2, 2013. a
Chen, L. G., Gottschalck, J., Hartman, A., Miskus, D., Tinker, R., and Artusa, A.: Flash Drought Characteristics Based on U.S. Drought Monitor, Atmosphere, 10, 498,
https://doi.org/10.3390/atmos10090498, 2019.
a
Christian, J. I., Basara, J. B., Otkin, J. A., Hunt, E. D., Wakefield, R. A., Flanagan, P. X., and Xiao, X.: A Methodology for Flash Drought Identification: Application of Flash Drought Frequency across the United States, Journal of Hydrometeorology, 20, 833–846,
https://doi.org/10.1175/JHM-D-18-0198.1, 2019.
a,
b
Corzo Perez, G. A., van Huijgevoort, M. H. J., Voß, F., and van Lanen, H. A. J.: On the spatio-temporal analysis of hydrological droughts from global hydrological models, Hydrol. Earth Syst. Sci., 15, 2963–2978,
https://doi.org/10.5194/hess-15-2963-2011, 2011.
a
Cressie, N. and Johannesson, G.: Fixed-rank kriging for very large spatial data sets, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 209–226, 2008. a
Davis IV, W. L., Carlson, M. L., Tezaur, I. K., Bull, D. L., Peterson, K. J., and Swiler, L. P.: Spatio-temporal multivariate cluster evolution analysis for detecting and tracking climate impacts, Journal of Computational and Applied Mathematics, 465, 116583,
https://doi.org/10.1016/j.cam.2025.116583, 2025.
a
Diaz, V., Corzo Perez, G. A., Lanen, H. A. V., Solomatine, D., and Varouchakis, E. A.: An approach to characterise spatio-temporal drought dynamics, Advances in Water Resources, 137, 103512,
https://doi.org/10.1016/j.advwatres.2020.103512, 2020.
a
Edris, S. G., Basara, J. B., Christian, J. I., Hunt, E. D., Otkin, J. A., Salesky, S. T., and Illston, B. G.: Analysis of the critical components of flash drought using the standardized evaporative stress ratio, Agricultural and Forest Meteorology, 330,
https://doi.org/10.1016/j.agrformet.2022.109288, 2023.
a,
b
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96, 226–231, AAAI Press, Portland, Oregon, 1996.
a,
b
Gamelin, B., Rao, V., Altinakar, M. S., and Bessac, J.: Coupled ocean-atmosphere influences on large-scale drought variability in the United States using SVDI, Climate Dynamics, 63,
https://doi.org/10.1007/s00382-025-07691-y, 2025.
a,
b
Gamelin, B. L., Feinstein, J., Wang, J., Bessac, J., Yan, E., and Kotamarthi, V. R.: Projected U.S. drought extremes through the twenty-first century with vapor pressure deficit, Scientific Reports, 12, 8615,
https://doi.org/10.1038/s41598-022-12516-7, 2022.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Herrera-Estrada, J. E., Satoh, Y., and Sheffield, J.: Spatiotemporal dynamics of global drought, Geophysical Research Letters, 44, 2254–2263,
https://doi.org/10.1002/2016GL071768, 2017.
a
Kholodovsky, V. and Liang, X.-Z.: A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns, Advances in statistical climatology, meteorology and oceanography, 7, 35–52,
https://doi.org/10.5194/ascmo-7-35-2021, 2021.
a
Leeper, R. D., Bilotta, R., Petersen, B., Stiles, C. J., Heim, R., Fuchs, B., Prat, O. P., Palecki, M., and Ansari, S.: Characterizing U.S. drought over the past 20 years using the U.S. drought monitor, International Journal of Climatology, 42, 6616–6630,
https://doi.org/10.1002/joc.7653, 2022.
a
Lisonbee, J., Woloszyn, M., and Skumanich, M.: Making sense of flash drought: definitions, indicators, and where we go from here, Journal of Applied and Service Climatology, 2021, 1–19,
https://doi.org/10.46275/JOASC.2021.02.001, 2021.
a,
b
Liu, Y., Zhu, Y., Ren, L., Otkin, J., Hunt, E. D., Yang, X., Yuan, F., and Jiang, S.: Two Different Methods for Flash Drought Identification: Comparison of Their Strengths and Limitations, Journal of Hydrometeorology, 21, 691–704,
https://doi.org/10.1175/JHM-D-19-0088.1, 2020.
a
MacQueen, J.: Some methods for classification and analysis of multivariate observations, in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, 281–297, Oakland, CA, USA, 1967. a
Maimon, O. and Rokach, L.: Data mining and knowledge discovery handbook, vol. 2, Springer, ISBN 978-0-387-25465-4, 2005.
a,
b
Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C., and Basara, J. B.: Flash Droughts: A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States, Bulletin of the American Meteorological Society, 99, 911–919,
https://doi.org/10.1175/BAMS-D-17-0149.1, 2018.
a
Sculley, D.: Web-scale
k-means clustering, in: Proceedings of the 19th International Conference on World Wide Web, WWW'10, 1177–1178, Association for Computing Machinery, New York, NY, USA, ISBN 9781605587998,
https://doi.org/10.1145/1772690.1772862, 2010.
a
Smith, A. B.: U.S. Billion-dollar Weather and Climate Disasters, 1980–present (NCEI Accession 0209268), NOAA National Centers for Environmental Information,
https://doi.org/10.25921/STKW-7W73, 2020.
a
Strzepek, K., Yohe, G., Neumann, J., and Boehlert, B.: Characterizing changes in drought risk for the United States from climate change, Environmental Research Letters, 5, 044012,
https://doi.org/10.1088/1748-9326/5/4/044012, 2010.
a
Vicente-Serrano, S. M., Begueria, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, Journal of Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
a
Winovich, N., Moynihan, L., Abdelrahman, O., West, R., Dauphin, S., Tucker, J. D., Huerta, G., Potter, K., Forrest, R., Phillips, C., and Ebeida, M.: VoroClust: Scalable Clustering for Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, in review, 2024. a
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products, Journal of Geophysical Research: Atmospheres, 117,
https://doi.org/10.1029/2011JD016048, 2012.
a
Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., and Shen, Y.: Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective, Journal of Hydrology, 526, 253–264,
https://doi.org/10.1016/j.jhydrol.2014.09.047, 2015.
a
Zhang, T., Ramakrishnan, R., and Livny, M.: BIRCH: an efficient data clustering method for very large databases, SIGMOD Rec., 25, 103–114,
https://doi.org/10.1145/235968.233324, 1996.
a