Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-257-2025
https://doi.org/10.5194/ascmo-11-257-2025
28 Nov 2025
 | 28 Nov 2025

A bi-level spatiotemporal clustering approach and its application to drought extraction

T. Elana Christian, Amit N. Subrahmanya, Brandi Gamelin, Vishwas Rao, Noelle I. Samia, and Julie Bessac

Related authors

A stochastic covariance shrinkage approach to particle rejuvenation in the ensemble transform particle filter
Andrey A. Popov, Amit N. Subrahmanya, and Adrian Sandu
Nonlin. Processes Geophys., 29, 241–253, https://doi.org/10.5194/npg-29-241-2022,https://doi.org/10.5194/npg-29-241-2022, 2022
Short summary
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022,https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary

Cited articles

Agrawal, K. P., Garg, S., Sharma, S., and Patel, P.: Development and validation of OPTICS based spatio-temporal clustering technique, Information Sciences, 369, 388–401, https://doi.org/10.1016/j.ins.2016.06.048, 2016. a
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.: Twentieth-Century Drought in the Conterminous United States, Journal of Hydrometeorology, 6, 985–1001, https://doi.org/10.1175/JHM450.1, 2005. a, b, c, d
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.: OPTICS: ordering points to identify the clustering structure, SIGMOD Rec., 28, 49–60, https://doi.org/10.1145/304181.304187, 1999. a
Ansari, M. Y., Ahmad, A., Khan, S. S., Bhushan, G., and Mainuddin: Spatiotemporal clustering: a review, Artificial Intelligence Review, 53, 2381–2423, https://doi.org/10.1007/s10462-019-09736-1, 2020. a
Birant, D. and Kut, A.: ST-DBSCAN: An algorithm for clustering spatial–temporal data, Data & Knowledge Engineering, 60, 208–221, https://doi.org/10.1016/j.datak.2006.01.013, 2007. a
Download
Short summary

We present a novel spatiotemporal clustering algorithm to extract spatiotemporal events based on their intensity. Our algorithm proceeds in two steps: (1) extracting intensity structures that are spatiotemporally consistent and, (2) separating individual events. We apply the algorithm to a novel drought index over the continental United States from 19802021 and show that it captures historical drought events over the continental United States and their spatiotemporal extents. 

Share