Articles | Volume 6, issue 2
https://doi.org/10.5194/ascmo-6-79-2020
https://doi.org/10.5194/ascmo-6-79-2020
23 Jul 2020
 | 23 Jul 2020

A statistical approach to fast nowcasting of lightning potential fields

Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner

Related authors

How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022,https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system
Zofia Stanley, Ian Grooms, and William Kleiber
Nonlin. Processes Geophys., 28, 565–583, https://doi.org/10.5194/npg-28-565-2021,https://doi.org/10.5194/npg-28-565-2021, 2021
Short summary
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021,https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
Review article: Observations for high-impact weather and their use in verification
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021,https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary

Related subject area

Statistics
On inference of boxplot symbolic data: applications in climatology
Abdolnasser Sadeghkhani and Ali Sadeghkhani
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 73–87, https://doi.org/10.5194/ascmo-11-73-2025,https://doi.org/10.5194/ascmo-11-73-2025, 2025
Short summary
Proper scoring rules for multivariate probabilistic forecasts based on aggregation and transformation
Romain Pic, Clément Dombry, Philippe Naveau, and Maxime Taillardat
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 23–58, https://doi.org/10.5194/ascmo-11-23-2025,https://doi.org/10.5194/ascmo-11-23-2025, 2025
Short summary
Reducing reliability bias in assessments of extreme weather risk using calibrating priors
Stephen Jewson, Trevor Sweeting, and Lynne Jewson
Adv. Stat. Clim. Meteorol. Oceanogr., 11, 1–22, https://doi.org/10.5194/ascmo-11-1-2025,https://doi.org/10.5194/ascmo-11-1-2025, 2025
Short summary
A non-stationary climate-informed weather generator for assessing future flood risks
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024,https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
A robust approach to Gaussian process implementation
Juliette Mukangango, Amanda Muyskens, and Benjamin W. Priest
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, https://doi.org/10.5194/ascmo-10-143-2024,https://doi.org/10.5194/ascmo-10-143-2024, 2024
Short summary

Cited articles

Aberg, S., Lindgren, F., Malmberg, A., Holst, J., and Holst, U.: An image warping approach to spatio-temporal modelling, Environmetrics, 16, 833–848, 2005. a, b, c
Barthe, C., Deierling, W., and Barth, M. C.: Estimation of total lightning from various storm parameters: A cloud-resolving model study, J. Geophys. Res.-Atmos., 115, D24202, https://doi.org/10.1029/2010JD014405, 2010. a
Bookstein, F. L.: Principal warps: Thin-plate splines and the decomposition of deformations, IEEE T. Pattern Anal., 11, 567–585, 1989. a
Buechler, D. E. and Goodman, S. J.: Echo size and asymmetry: Impact on NEXRAD storm identification, J. Appl. Meteorol., 29, 962–969, 1990. a
Deierling, W. and Petersen, W. A.: Total lightning activity as an indicator of updraft characteristics, J. Geophys. Res.-Atmos., 113, D16210, https://doi.org/10.1029/2007JD009598, 2008. a
Download
Short summary
Very short-term forecasting, called nowcasting, is used to monitor storms that pose a significant threat to people and infrastructure. These threats could include lightning strikes, hail, heavy precipitation, strong winds, and possible tornados. This paper proposes a fast approach to nowcasting lightning threats using simple statistical methods. The proposed model results in fast nowcasts that are more accurate than a competitive, computationally expensive, approach.
Share