Articles | Volume 6, issue 2
https://doi.org/10.5194/ascmo-6-79-2020
https://doi.org/10.5194/ascmo-6-79-2020
23 Jul 2020
 | 23 Jul 2020

A statistical approach to fast nowcasting of lightning potential fields

Joshua North, Zofia Stanley, William Kleiber, Wiebke Deierling, Eric Gilleland, and Matthias Steiner

Related authors

How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023,https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022,https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Multivariate localization functions for strongly coupled data assimilation in the bivariate Lorenz 96 system
Zofia Stanley, Ian Grooms, and William Kleiber
Nonlin. Processes Geophys., 28, 565–583, https://doi.org/10.5194/npg-28-565-2021,https://doi.org/10.5194/npg-28-565-2021, 2021
Short summary
Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multi-variable weather generator
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021,https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
Review article: Observations for high-impact weather and their use in verification
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021,https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary

Related subject area

Statistics
Spatiotemporal methods for estimating subsurface ocean thermal response to tropical cyclones
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024,https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Applying different methods to model dry and wet spells at daily scale in a large range of rainfall regimes across Europe
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024,https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Comparison of climate time series – Part 5: Multivariate annual cycles
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, https://doi.org/10.5194/ascmo-10-1-2024,https://doi.org/10.5194/ascmo-10-1-2024, 2024
Short summary
Regridding uncertainty for statistical downscaling of solar radiation
Maggie D. Bailey, Douglas Nychka, Manajit Sengupta, Aron Habte, Yu Xie, and Soutir Bandyopadhyay
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 103–120, https://doi.org/10.5194/ascmo-9-103-2023,https://doi.org/10.5194/ascmo-9-103-2023, 2023
Short summary
Quantifying the statistical dependence of mid-latitude heatwave intensity and likelihood on prevalent physical drivers and climate change
Joel Zeder and Erich M. Fischer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 83–102, https://doi.org/10.5194/ascmo-9-83-2023,https://doi.org/10.5194/ascmo-9-83-2023, 2023
Short summary

Cited articles

Aberg, S., Lindgren, F., Malmberg, A., Holst, J., and Holst, U.: An image warping approach to spatio-temporal modelling, Environmetrics, 16, 833–848, 2005. a, b, c
Barthe, C., Deierling, W., and Barth, M. C.: Estimation of total lightning from various storm parameters: A cloud-resolving model study, J. Geophys. Res.-Atmos., 115, D24202, https://doi.org/10.1029/2010JD014405, 2010. a
Bookstein, F. L.: Principal warps: Thin-plate splines and the decomposition of deformations, IEEE T. Pattern Anal., 11, 567–585, 1989. a
Buechler, D. E. and Goodman, S. J.: Echo size and asymmetry: Impact on NEXRAD storm identification, J. Appl. Meteorol., 29, 962–969, 1990. a
Deierling, W. and Petersen, W. A.: Total lightning activity as an indicator of updraft characteristics, J. Geophys. Res.-Atmos., 113, D16210, https://doi.org/10.1029/2007JD009598, 2008. a
Download
Short summary
Very short-term forecasting, called nowcasting, is used to monitor storms that pose a significant threat to people and infrastructure. These threats could include lightning strikes, hail, heavy precipitation, strong winds, and possible tornados. This paper proposes a fast approach to nowcasting lightning threats using simple statistical methods. The proposed model results in fast nowcasts that are more accurate than a competitive, computationally expensive, approach.