Articles | Volume 9, issue 2
https://doi.org/10.5194/ascmo-9-121-2023
https://doi.org/10.5194/ascmo-9-121-2023
22 Dec 2023
 | 22 Dec 2023

Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information

Jhayron S. Pérez-Carrasquilla, Paola A. Montoya, Juan Manuel Sánchez, K. Santiago Hernández, and Mauricio Ramírez

Related authors

Developing Guidelines for Working with Multi-Model Ensembles in CMIP
Anja Katzenberger, Jhayron S. Perez-Carrasquilla, Keighan Gemmell, Evgenia Galytska, Christine Leclerc, P. Punya, Indrani Roy, Arianna Varuolo-Clarke, Milica Tošić, and Nina Črnivec
EGUsphere, https://doi.org/10.5194/egusphere-2025-4744,https://doi.org/10.5194/egusphere-2025-4744, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary

Cited articles

Ballesteros-González, K., Sullivan, A. P., and Morales-Betancourt, R.: Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model, Sci. Total Environ., 739, 139755, https://doi.org/10.1016/j.scitotenv.2020.139755, 2020. a
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J., Razinger, M., Schulz, M., Serrar, S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A. M., and Untch, A.: Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D06206, https://doi.org/10.1029/2008JD011235, 2009. a
Breiman, L.: Random forests, Machine Learning, 45, 5–32, 2001. a
Chellali, M., Abderrahim, H., Hamou, A., Nebatti, A., and Janovec, J.: Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers, Environ. Sci. Pollut. R., 23, 14008–14017, 2016. a
Download
Short summary
This study uses tree-based machine learning (ML) to forecast PM2.5 in a complex terrain region. The models show the potential to predict pollution events with several hours of anticipation, and they integrate multiple sources of information, including in situ stations, satellite data, and deterministic model outputs. The importance analysis helps understand the processes affecting air quality in the region and highlights the relevance of external sources of pollution in PM2.5 predictability.
Share