Articles | Volume 9, issue 2
https://doi.org/10.5194/ascmo-9-121-2023
https://doi.org/10.5194/ascmo-9-121-2023
22 Dec 2023
 | 22 Dec 2023

Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information

Jhayron S. Pérez-Carrasquilla, Paola A. Montoya, Juan Manuel Sánchez, K. Santiago Hernández, and Mauricio Ramírez

Related subject area

Atmospheric science
A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns
Vitaly Kholodovsky and Xin-Zhong Liang
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021,https://doi.org/10.5194/ascmo-7-35-2021, 2021
Short summary
Nonlinear time series models for the North Atlantic Oscillation
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020,https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020,https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020,https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary

Cited articles

Ballesteros-González, K., Sullivan, A. P., and Morales-Betancourt, R.: Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model, Sci. Total Environ., 739, 139755, https://doi.org/10.1016/j.scitotenv.2020.139755, 2020. a
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J., Razinger, M., Schulz, M., Serrar, S., Simmons, A. J., Sofiev, M., Suttie, M., Tompkins, A. M., and Untch, A.: Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D06206, https://doi.org/10.1029/2008JD011235, 2009. a
Breiman, L.: Random forests, Machine Learning, 45, 5–32, 2001. a
Chellali, M., Abderrahim, H., Hamou, A., Nebatti, A., and Janovec, J.: Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers, Environ. Sci. Pollut. R., 23, 14008–14017, 2016. a
Download
Short summary
This study uses tree-based machine learning (ML) to forecast PM2.5 in a complex terrain region. The models show the potential to predict pollution events with several hours of anticipation, and they integrate multiple sources of information, including in situ stations, satellite data, and deterministic model outputs. The importance analysis helps understand the processes affecting air quality in the region and highlights the relevance of external sources of pollution in PM2.5 predictability.