Articles | Volume 10, issue 2
https://doi.org/10.5194/ascmo-10-173-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-10-173-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identifying time patterns of highland and lowland air temperature trends in Italy and the UK across monthly and annual scales
Chalachew Muluken Liyew
Department of Computer Science, University of Turin, Turin, Italy
Faculty of Computing, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
Elvira Di Nardo
Department of Mathematics “Giuseppe Peano”, University of Turin, Turin, Italy
Rosa Meo
Department of Computer Science, University of Turin, Turin, Italy
Stefano Ferraris
CORRESPONDING AUTHOR
Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino and University of Turin, Turin, Italy
Related authors
No articles found.
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024, https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Short summary
In hydrology, the probability distributions are used to determine the probability of occurrence of rainfall events. In this study, two different methods for modeling rainfall time characteristics have been applied: a direct method and an indirect method that make it possible to relax the assumptions of the renewal process. The analysis was extended to two additional time variables that may be of great interest for practical hydrological applications: wet chains and dry chains.
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023, https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Elisa Brussolo, Elisa Palazzi, Jost von Hardenberg, Giulio Masetti, Gianna Vivaldo, Maurizio Previati, Davide Canone, Davide Gisolo, Ivan Bevilacqua, Antonello Provenzale, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 26, 407–427, https://doi.org/10.5194/hess-26-407-2022, https://doi.org/10.5194/hess-26-407-2022, 2022
Short summary
Short summary
In this study, we evaluate the past, present and future quantity of groundwater potentially available for drinking purposes in the metropolitan area of Turin, north-western Italy. In order to effectively manage water resources, a knowledge of the water cycle components is necessary, including precipitation, evapotranspiration and subsurface reservoirs. All these components have been carefully evaluated in this paper, using observational datasets and modelling approaches.
Related subject area
Climate research
Formally combining different lines of evidence in extreme-event attribution
Environmental sensitivity of the Caribbean economic growth rate
Spatial patterns and indices for heat waves and droughts over Europe using a decomposition of extremal dependency
Changes in the distribution of annual maximum temperatures in Europe
Evaluating skills and issues of quantile-based bias adjustment for climate change scenarios
Comparing climate time series – Part 4: Annual cycles
Statistical reconstruction of European winter snowfall in reanalysis and climate models based on air temperature and total precipitation
A multi-method framework for global real-time climate attribution
Analysis of the evolution of parametric drivers of high-end sea-level hazards
Comparing climate time series – Part 3: Discriminant analysis
Spatial heterogeneity in rain-bearing winds, seasonality and rainfall variability in southern Africa's winter rainfall zone
Spatial heterogeneity of 2015–2017 drought intensity in South Africa's winter rainfall zone
A statistical framework for integrating nonparametric proxy distributions into geological reconstructions of relative sea level
A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5
A protocol for probabilistic extreme event attribution analyses
The effect of geographic sampling on evaluation of extreme precipitation in high-resolution climate models
A new energy-balance approach to linear filtering for estimating effective radiative forcing from temperature time series
Robust regional clustering and modeling of nonstationary summer temperature extremes across Germany
Possible impacts of climate change on fog in the Arctic and subpolar North Atlantic
Approaches to attribution of extreme temperature and precipitation events using multi-model and single-member ensembles of general circulation models
Comparison and assessment of large-scale surface temperature in climate model simulations
Future climate emulations using quantile regressions on large ensembles
Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures
Estimates of climate system properties incorporating recent climate change
The joint influence of break and noise variance on the break detection capability in time series homogenization
A space–time statistical climate model for hurricane intensification in the North Atlantic basin
Building a traceable climate model hierarchy with multi-level emulators
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024, https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Short summary
To assess the role of climate change in individual weather events, different lines of evidence need to be combined in order to draw robust conclusions about whether observed changes can be attributed to anthropogenic climate change. Here we present a transparent method, developed over 8 years, to combine such lines of evidence in a single framework and draw conclusions about the overarching role of human-induced climate change in individual weather events.
Mark R. Jury
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 95–104, https://doi.org/10.5194/ascmo-10-95-2024, https://doi.org/10.5194/ascmo-10-95-2024, 2024
Short summary
Short summary
A unique link is found between the Caribbean GDP growth rate and the tropical climate system. Although the Pacific El Niño–Southern Oscillation governs some aspects of this link, the Walker circulation and associated humidity over the equatorial Atlantic emerge as leading predictors of economic prosperity in the central Antilles islands.
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024, https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Short summary
This paper uses the tail pairwise dependence matrix (TPDM) proposed by Cooley and Thibaud (2019), which we extend to the description of common extremes in two variables. We develop an extreme pattern index (EPI), a pattern-based aggregation to describe spatially extended weather extremes. Our results show that the EPI is suitable for describing heat waves. We extend the EPI to describe extremes in two variables and obtain an index to describe compound precipitation deficits and heat waves.
Graeme Auld, Gabriele C. Hegerl, and Ioannis Papastathopoulos
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 45–66, https://doi.org/10.5194/ascmo-9-45-2023, https://doi.org/10.5194/ascmo-9-45-2023, 2023
Short summary
Short summary
In this paper we consider the problem of detecting changes in the distribution of the annual maximum temperature, during the years 1950–2018, across Europe.
We find that, on average, the temperature that would be expected to be exceeded
approximately once every 100 years in the 1950 climate is expected to be exceeded once every 6 years in the 2018 climate. This is of concern due to the devastating effects on humans and natural systems that are caused by extreme temperatures.
Fabian Lehner, Imran Nadeem, and Herbert Formayer
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 29–44, https://doi.org/10.5194/ascmo-9-29-2023, https://doi.org/10.5194/ascmo-9-29-2023, 2023
Short summary
Short summary
Climate model output has systematic errors which can be reduced with statistical methods. We review existing bias-adjustment methods for climate data and discuss their skills and issues. We define three demands for the method and then evaluate them using real and artificially created daily temperature and precipitation data for Austria to show how biases can also be introduced with bias-adjustment methods themselves.
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 187–203, https://doi.org/10.5194/ascmo-8-187-2022, https://doi.org/10.5194/ascmo-8-187-2022, 2022
Short summary
Short summary
Most climate time series contain annual and diurnal cycles. However, an objective criterion for deciding whether two time series have statistically equivalent annual and diurnal cycles is lacking, particularly if the residual variability is serially correlated. Such a criterion would be helpful in deciding whether a new version of a climate model better simulates such cycles. This paper derives an objective rule for such decisions based on a rigorous statistical framework.
Flavio Maria Emanuele Pons and Davide Faranda
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 155–186, https://doi.org/10.5194/ascmo-8-155-2022, https://doi.org/10.5194/ascmo-8-155-2022, 2022
Short summary
Short summary
The objective motivating this study is the assessment of the impacts of winter climate extremes, which requires accurate simulation of snowfall. However, climate simulation models contain physical approximations, which result in biases that must be corrected using past data as a reference. We show how to exploit simulated temperature and precipitation to estimate snowfall from already bias-corrected variables, without requiring the elaboration of complex, multivariate bias adjustment techniques.
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022, https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.
Alana Hough and Tony E. Wong
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 117–134, https://doi.org/10.5194/ascmo-8-117-2022, https://doi.org/10.5194/ascmo-8-117-2022, 2022
Short summary
Short summary
We use machine learning to assess how different geophysical uncertainties relate to the severity of future sea-level rise. We show how the contributions to coastal hazard from different sea-level processes evolve over time and find that near-term sea-level hazards are driven by thermal expansion and the melting of glaciers and ice caps, while long-term hazards are driven by ice loss from the major ice sheets.
Timothy DelSole and Michael K. Tippett
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 97–115, https://doi.org/10.5194/ascmo-8-97-2022, https://doi.org/10.5194/ascmo-8-97-2022, 2022
Short summary
Short summary
A common problem in climate studies is to decide whether a climate model is realistic. Such decisions are not straightforward because the time series are serially correlated and multivariate. Part II derived a test for deciding wether a simulation is statistically distinguishable from observations. However, the test itself provides no information about the nature of those differences. This paper develops a systematic and optimal approach to diagnosing differences between stochastic processes.
Willem Stefaan Conradie, Piotr Wolski, and Bruce Charles Hewitson
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 31–62, https://doi.org/10.5194/ascmo-8-31-2022, https://doi.org/10.5194/ascmo-8-31-2022, 2022
Short summary
Short summary
Cape Town is situated in a small but ecologically and climatically highly diverse and vulnerable pocket of South Africa uniquely receiving its rain mostly in winter. We show complex structures in the spatial patterns of rainfall seasonality and year-to-year changes in rainfall within this domain, tied to spatial differences in the rain-bearing winds. This allows us to develop a new spatial subdivision of the region to help future studies distinguish spatially distinct climate change responses.
Willem Stefaan Conradie, Piotr Wolski, and Bruce Charles Hewitson
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 63–81, https://doi.org/10.5194/ascmo-8-63-2022, https://doi.org/10.5194/ascmo-8-63-2022, 2022
Short summary
Short summary
The
Day Zerowater crisis affecting Cape Town after the severe 2015–2017 drought motivated renewed research interest into causes and projections of rainfall variability and change in this water-stressed region. Unusually few wet months and very wet days characterised the Day Zero Drought. Its extent expanded as it shifted gradually north-eastward, concurrent with changes in the weather systems driving drought. Our results emphasise the need to consider the interplay between drought drivers.
Erica L. Ashe, Nicole S. Khan, Lauren T. Toth, Andrea Dutton, and Robert E. Kopp
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 1–29, https://doi.org/10.5194/ascmo-8-1-2022, https://doi.org/10.5194/ascmo-8-1-2022, 2022
Short summary
Short summary
We develop a new technique to integrate realistic uncertainties in probabilistic models of past sea-level change. The new framework performs better than past methods (in precision, accuracy, bias, and model fit) because it enables the incorporation of previously unused data and exploits correlations in the data. This method has the potential to assess the validity of past estimates of extreme sea-level rise and highstands providing better context in which to place current sea-level change.
Katherine Dagon, Benjamin M. Sanderson, Rosie A. Fisher, and David M. Lawrence
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020, https://doi.org/10.5194/ascmo-6-223-2020, 2020
Short summary
Short summary
Uncertainties in land model projections are important to understand in order to build confidence in Earth system modeling. In this paper, we introduce a framework for estimating uncertain land model parameters with machine learning. This method increases the computational efficiency of this process relative to traditional hand tuning approaches and provides objective methods to assess the results. We further identify key processes and parameters that are important for accurate land modeling.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Mark D. Risser and Michael F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115–139, https://doi.org/10.5194/ascmo-6-115-2020, https://doi.org/10.5194/ascmo-6-115-2020, 2020
Short summary
Short summary
Evaluation of modern high-resolution global climate models often does not account for the geographic location of the underlying weather station data. In this paper, we quantify the impact of geographic sampling on the relative performance of climate model representations of precipitation extremes over the United States. We find that properly accounting for the geographic sampling of weather stations can significantly change the assessment of model performance.
Donald P. Cummins, David B. Stephenson, and Peter A. Stott
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 91–102, https://doi.org/10.5194/ascmo-6-91-2020, https://doi.org/10.5194/ascmo-6-91-2020, 2020
Short summary
Short summary
We have developed a novel and fast statistical method for diagnosing effective radiative forcing (ERF), a measure of the net effect of greenhouse gas emissions on Earth's energy budget. Our method works by inverting a recursive digital filter energy balance representation of global climate models and has been successfully validated using simulated data from UK Met Office climate models. We have estimated time series of historical ERF by applying our method to the global temperature record.
Meagan Carney and Holger Kantz
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 61–77, https://doi.org/10.5194/ascmo-6-61-2020, https://doi.org/10.5194/ascmo-6-61-2020, 2020
Short summary
Short summary
Extremes in weather can have lasting effects on human health and resource consumption. Studying the recurrence of these events on a regional scale can improve response times and provide insight into a changing climate. We introduce a set of clustering tools that allow for regional clustering of weather recordings from stations across Germany. We use these clusters to form regional models of summer temperature extremes and find an increase in the mean from 1960 to 2018.
Richard E. Danielson, Minghong Zhang, and William A. Perrie
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 31–43, https://doi.org/10.5194/ascmo-6-31-2020, https://doi.org/10.5194/ascmo-6-31-2020, 2020
Short summary
Short summary
Visibility is estimated for the 21st century using global and regional climate model output. A baseline decrease in visibility in the Arctic (10 %) is more notable than in the North Atlantic (< 5 %). We develop an adjustment that yields greater consistency among models and explore the justification of our ad hoc adjustment toward ship observations during the historical period. Baseline estimates are found to be sensitive to the representation of temperature and humidity.
Sophie C. Lewis, Sarah E. Perkins-Kirkpatrick, and Andrew D. King
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 133–146, https://doi.org/10.5194/ascmo-5-133-2019, https://doi.org/10.5194/ascmo-5-133-2019, 2019
Short summary
Short summary
Extreme temperature and precipitation events in Australia have caused significant socio-economic and environmental impacts. Determining the factors contributing to these extremes is an active area of research. This paper describes a set of studies that have examined the causes of extreme climate events in recent years in Australia. Ideally, this review will be useful for the application of these extreme event attribution approaches to climate and weather extremes occurring elsewhere.
Raquel Barata, Raquel Prado, and Bruno Sansó
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 67–85, https://doi.org/10.5194/ascmo-5-67-2019, https://doi.org/10.5194/ascmo-5-67-2019, 2019
Matz A. Haugen, Michael L. Stein, Ryan L. Sriver, and Elisabeth J. Moyer
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 37–55, https://doi.org/10.5194/ascmo-5-37-2019, https://doi.org/10.5194/ascmo-5-37-2019, 2019
Short summary
Short summary
This work uses current temperature observations combined with climate models to project future temperature estimates, e.g., 100 years into the future. We accomplish this by modeling temperature as a smooth function of time both in the seasonal variation as well as in the annual trend. These smooth functions are estimated at multiple quantiles that are all projected into the future. We hope that this work can be used as a template for how other climate variables can be projected into the future.
Rasmus E. Benestad, Bob van Oort, Flavio Justino, Frode Stordal, Kajsa M. Parding, Abdelkader Mezghani, Helene B. Erlandsen, Jana Sillmann, and Milton E. Pereira-Flores
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, https://doi.org/10.5194/ascmo-4-37-2018, https://doi.org/10.5194/ascmo-4-37-2018, 2018
Short summary
Short summary
A new study indicates that heatwaves in India will become more frequent and last longer with global warming. Its results were derived from a large number of global climate models, and the calculations differed from previous studies in the way they included advanced statistical theory. The projected changes in the Indian heatwaves will have a negative consequence for wheat crops in India.
Alex G. Libardoni, Chris E. Forest, Andrei P. Sokolov, and Erwan Monier
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 19–36, https://doi.org/10.5194/ascmo-4-19-2018, https://doi.org/10.5194/ascmo-4-19-2018, 2018
Short summary
Short summary
We present new probabilistic estimates of model parameters in the MIT Earth System Model using more recent data and an updated method. Model output is compared to observed climate change to determine which sets of model parameters best simulate the past. In response to increasing surface temperatures and accelerated heat storage in the ocean, our estimates of climate sensitivity and ocean diffusivity are higher. Using a new interpolation algorithm results in smoother probability distributions.
Ralf Lindau and Victor Karel Christiaan Venema
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 1–18, https://doi.org/10.5194/ascmo-4-1-2018, https://doi.org/10.5194/ascmo-4-1-2018, 2018
Short summary
Short summary
Climate data contain spurious breaks, e.g., by relocation of stations, which makes it difficult to infer the secular temperature trend. Homogenization algorithms use the difference time series of neighboring stations to detect and eliminate this spurious break signal. For low signal-to-noise ratios, i.e., large distances between stations, the correct break positions may not only remain undetected, but segmentations explaining mainly the noise can be erroneously assessed as significant and true.
Erik Fraza, James B. Elsner, and Thomas H. Jagger
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 105–114, https://doi.org/10.5194/ascmo-2-105-2016, https://doi.org/10.5194/ascmo-2-105-2016, 2016
Short summary
Short summary
Climate influences on hurricane intensification are investigated by averaging hourly intensification rates over the period 1975–2014 in 8° by 8° latitude–longitude grid cells. The statistical effects of hurricane intensity, sea-surface temperature (SST), El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Madden–Julian Oscillation (MJO) are quantified. Intensity, SST, and NAO had a positive effect on intensification rates. The NAO effect should be further studied.
Giang T. Tran, Kevin I. C. Oliver, András Sóbester, David J. J. Toal, Philip B. Holden, Robert Marsh, Peter Challenor, and Neil R. Edwards
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 17–37, https://doi.org/10.5194/ascmo-2-17-2016, https://doi.org/10.5194/ascmo-2-17-2016, 2016
Short summary
Short summary
In this work, we combine the information from a complex and a simple atmospheric model to efficiently build a statistical representation (an emulator) of the complex model and to study the relationship between them. Thanks to the improved efficiency, this process is now feasible for complex models, which are slow and costly to run. The constructed emulator provide approximations of the model output, allowing various analyses to be made without the need to run the complex model again.
Cited articles
Acquaotta, F., Fratianni, S., and Garzena, D.: Temperature changes in the North-Western Italian Alps from 1961 to 2010, Theor. Appl. Climatol., 122, 619–634, https://doi.org/10.1007/s00704-014-1316-7, 2015. a
Alhaji, U., Yusuf, A. S., Edet, C. O., Oche, C., and Agbo, E. P.: Trend analysis of temperature in Gombe state using Mann Kendall trend test, J. Sci. Res. Rep., 20, 1–9, https://doi.org/10.9734/JSRR/2018/42029, 2018. a
Bhuyan, M. D. I., Islam, M. M., and Bhuiyan, M. E. K.: A trend analysis of temperature and rainfall to predict climate change for northwestern region of Bangladesh, Am. J. Clim. Change, 7, 115–134, https://doi.org/10.4236/ajcc.2018.72009, 2018. a, b, c
Blackport, R., Fyfe, J. C., and Screen, J. A.: Decreasing subseasonal temperature variability in the northern extratropics attributed to human influence, Nat. Geosci., 14, 719–723, 2021. a
Bruley, E., Mouillot, F., Lauvaux, T., and Rambal, S.: Enhanced spring warming in a Mediterranean mountain by atmospheric circulation, Sci. Rep., 12, 7721, https://doi.org/10.1038/s41598-022-11837-x, 2022. a
Brunetti, M., Maugeri, M., Monti, F., and Nanni, T.: Temperature and precipitation variability In Italy in the last two centuries from homogenised instrumental time series, Int. J. Climatol., 26, 345–381, 2006. a
Byrne, M. P., Boos, W. R., and Hu, S.: Elevation-dependent warming: observations, models, and energetic mechanisms, Weather Clim. Dynam., 5, 763–777, https://doi.org/10.5194/wcd-5-763-2024, 2024. a
Cai, Q., Chen, W., Chen, S., Xie, S.-P., Piao, J., Ma, T., and Lan, X.: Recent pronounced warming on the Mongolian Plateau boosted by internal climate variability, Nat. Geosci., 17, 181–188, https://doi.org/10.1038/s41561-024-01377-6, 2024. a
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate Change: Projections, Commitments and Irreversibility, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a
Cox, D. R. and Stuart, A.: Some quick sign tests for trend in location and dispersion, Biometrika, 42, 80–95, https://doi.org/10.2307/2333424, 1955. a
Di Bernardino, A., Iannarelli, A. M., Diémoz, H., Casadio, S., Cacciani, M., and Siani, A. M.: Analysis of two-decade meteorological and air quality trends in Rome (Italy), Theor. Appl. Climatol., 149, 291–307, https://doi.org/10.1007/s00704-022-04047-y, 2022. a, b
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., and Mérindol, L.: Reanalysis of 44 yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation, J. Appl. Meteorol. Climatol., 48, 429–449, https://doi.org/10.1175/2008JAMC1808.1, 2009. a, b
El Kenawy, A., López-Moreno, J. I., and Vicente-Serrano, S. M.: Trend and variability of surface air temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation, Atmos. Res., 106, 159–180, https://doi.org/10.1016/j.atmosres.2011.12.006, 2012. a, b, c
Farooq, I., Shah, A. R., Salik, K. M., and Ismail, M.: Annual, seasonal and monthly trend analysis of temperature in Kazakhstan during 1970–2017 using non-parametric statistical methods and GIS technologies, Earth Syst. Environ., 5, 575–595, https://doi.org/10.1007/s41748-021-00244-3, 2021. a, b
Fleig, A. K., Tallaksen, L. M., James, P., Hisdal, H., and Stahl, K.: Attribution of European precipitation and temperature trends to changes in synoptic circulation, Hydrol. Earth Syst. Sci., 19, 3093–3107, https://doi.org/10.5194/hess-19-3093-2015, 2015. a
Gil-Alaña, L. A., Gupta, R., Sauci, L., and Carmona-González, N.: Temperature and precipitation in the US states: long memory, persistence, and time trend, Theor. Appl. Climatol., 150, 1731–1744, https://doi.org/10.1007/s00704-022-04232-z, 2022. a
Giorgino, T.: Computing and visualizing dynamic time warping alignments in R: the dtw package, J. Stat. Softw., 31, 1–24, 2009. a
Hoffmann, P. and Spekat, A.: Identification of possible dynamical drivers for long-term changes in temperature and rainfall patterns over Europe, Theor. Appl. Climatol., 143, 177–191, https://doi.org/10.1007/s00704-020-03373-3, 2021. a
Huwald, H., Higgins, C. W., Boldi, M. O., Bou‐ Zeid, E., Lehning, M., and Parlange, M. B.: Albedo effect on radiative errors in air temperature measurements, Water Resour. Res., 45, https://doi.org/10.1029/2008WR007600, 2009. a
Hyndman, R. J. and Athanasopoulos, G.: Forecasting: principles and practice, OTEXTS, Melbourne, Australia, 2018. a
Isaac, V. and Van Wijngaarden, W.: Surface water vapor pressure and temperature trends in North America during 1948–2010, J. Climate, 25, 3599–3609, https://doi.org/10.1175/JCLI-D-11-00003.1, 2012. a, b
Johnson, G. C. and Lyman, J. M.: Warming trends increasingly dominate global ocean, Nat. Clim. Change, 10, 757–761, https://doi.org/10.1038/s41558-020-0822-0, 2020. a
Khavse, R., Deshmukh, R., Manikandan, N., Chaudhary, J., and Kaushik, D.: Statistical analysis of temperature and rainfall trend in Raipur district of Chhattisgarh, Current World Environment, 10, 305–312, 2015. a
Li, Q., Sheng, B., Huang, J., Li, C., Song, Z., Chao, L., Sun, W., Yang, Y., Jiao, B., Guo, Z., Liao, L., Li, X., Sun, C., Li, W., Huang, B., Dong, W., and Jones, P.: Different climate response persistence causes warming trend unevenness at continental scales, Nat. Clim. Change, 12, 343–349, https://doi.org/10.1038/s41558-022-01313-9, 2022. a
Liyew, C. M.: cliyew/temperature_trends: Temperature Trends (temperature_trends), Zenodo [code], https://doi.org/10.5281/zenodo.14070482, 2024. a
Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Koller, M., Conceicao, E. L. T., and Anna di Palma, M.: robustbase: Basic Robust Statistics, r package version 0.99-0, http://robustbase.r-forge.r-project.org/ (last access: 16 May 2023), 2023a. a
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K.: cluster: Cluster Analysis Basics and Extensions, r package version 2.1.5, https://CRAN.R-project.org/package=cluster (last access: 23 September 2023), 2023b. a
Manara, V., Brunetti, M., Wild, M., and Maugeri, M.: Variability and trends of the total cloud cover over Italy (1951–2018), Atmos. Res., 285, 106625, https://doi.org/10.1016/j.atmosres.2023.106625, 2023. a
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945. a
Meshram, S. G., Kahya, E., Meshram, C., Ghorbani, M. A., Ambade, B., and Mirabbasi, R.: Long-term temperature trend analysis associated with agriculture crops, Theor. Appl. Climatol., 140, 1139–1159, https://doi.org/10.1007/s00704-020-03137-z, 2020. a
Meyer, D. and Buchta, C.: proxy: Distance and Similarity Measures, r package version 0.4-27, https://cran.r-project.org/web/packages/proxy/index.html (last access: 23 September 2023), 2022. a
Mohsin, T. and Gough, W. A.: Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA), Theor. Appl. Climatol., 101, 311–327, https://doi.org/10.1007/s00704-009-0214-x, 2010. a
Moritz, S. and Bartz-Beielstein, T.: imputeTS: Time Series Missing Value Imputation in R, The R Journal, 9, 207–218, https://doi.org/10.32614/RJ-2017-009, 2017. a
MRI: Elevation-dependent warming in mountain regions of the world, Nat. Clim. Change, 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015. a
Mudelsee, M.: Trend analysis of climate time series: A review of methods, Earth-science reviews, 190, 310–322, https://doi.org/10.1016/j.earscirev.2018.12.005, 2019. a
NOAA: Climate at a Glance: Global Time Series, published November 2023, J. Comput. Appl. Math., 20, 53–65, 1987. a
Patterson, M.: North-West Europe hottest days are warming twice as fast as mean summer days, Geophys. Res. Lett., 50, 1–10, https://doi.org/10.1029/2023GL102757, 2023. a, b
Radhakrishnan, K., Sivaraman, I., Jena, S. K., Sarkar, S., and Adhikari, S.: A climate trend analysis of temperature and rainfall in India, Clim. Change Environ. Sustain., 5, 146–153, https://doi.org/10.5958/2320-642X.2017.00014.X, 2017. a, b, c
Rebetez, M. and Reinhard, M.: Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004, Theor. Appl. Climatol., 91, 27–34, https://doi.org/10.1007/s00704-007-0296-2, 2008. a, b
Rizzo, M. and Szekely, G.: energy: E-Statistics: Multivariate Inference via the Energy of Data, r package version 1.7-11, https://cran.r-project.org/web/packages/energy/index.html (last access: 1 October 2023), 2022. a
Robson, J., Ortega, P., and Sutton, R.: A reversal of climatic trends in the North Atlantic since 2005, Nat. Geosci., 9, 513–517, https://doi.org/10.1038/NGEO2727, 2016. a
Rogora, M., Arisci, S., and Mosello, R.: Recent trends of temperature and precipitation in alpine and subalpine areas in North Western Italy, Geogr. Fis. Dinam. Quat., 27, 151–158, 2004. a
Rousseeuw, P. and Yohai, V.: Robust regression by means of S-estimators, in: Robust and Nonlinear Time Series Analysis: Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 “Stochastische Mathematische Modelle”, Heidelberg 1983, 256–272, Springer, https://doi.org/10.1007/978-1-4615-7821-5_15, 1984. a
Rousseeuw, P. J.: Least median of squares regression, J. Am. Stat. A., 79, 871–880, https://doi.org/10.2307/2288718, 1984. a, b
Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53–65, 1987. a
Royston, J. P.: An extension of Shapiro and Wilk's W test for normality to large samples, J. Roy. Stat. Soc. C, 31, 115–124, 1982. a
Salerno, F., Guyennon, N., Yang, K., Shaw, T. E., Lin, C., Colombo, N., Romano, E., Gruber, S., Bolch, T., Alessandri, A., Cristofanelli, P., Putero, D., Diolaiuti, G., Tartari, G., Verza, G., Thakuri, S., Balsamo, G., Miled, E. S., and Pellicciotti, F.: Local cooling and drying induced by Himalayan glaciers under global warming, Nat. Geosci., 16, 1120–1127, https://doi.org/10.1038/s41561-023-01331-y, 2023. a
Sardá-Espinosa, A.: Comparing time-series clustering algorithms in r using the dtwclust package, R package vignette, 12, 41, https://cran.radicaldevelop.com/web/packages/dtwclust/vignettes/dtwclust.pdf (last access: 18 September 2023), 2017. a
Sayemuzzaman, M., Mekonnen, A., and Jha, M. K.: Diurnal temperature range trend over North Carolina and the associated mechanisms, Atmos. Res., 160, 99–108, https://doi.org/10.1016/j.atmosres.2015.03.009, 2015. a, b
Shen, S. and Chi, M.: Clustering Student Sequential Trajectories Using Dynamic Time Warping., International Educational Data Mining Society, https://api.semanticscholar.org/CorpusID:19096679 (last access: 24 September 2023), 2017. a
Shen, X., Liu, B., Li, G., Wu, Z., Jin, Y., Yu, P., and Zhou, D.: Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China, J. Geophys. Res.-Atmos., 119, 13–163, https://doi.org/10.1002/2014JD022326, 2014. a
Shen, X., Liu, B., and Lu, X.: Weak cooling of cold extremes versus continued warming of hot extremes in China during the recent global surface warming hiatus, J. Geophys. Res.-Atmos., 123, 4073–4087, https://doi.org/10.1002/2017JD027819, 2018. a
Simmons, A., Hersbach, H., Munoz-Sabater, J., Nicolas, J., Vamborg, F., Berrisford, P., de Rosnay, P., Willett, K., and Woollen, J.: Low frequency variability and trends in surface air temperature and humidity from ERA5 and other datasets, ECMWF Technical Memoranda, 881, https://doi.org/10.21957/ly5vbtbfd, 2021. a
Székely, G. J. and Rizzo, M. L.: Brownian distance covariance, Ann. Appl. Stat., 3, 1236–1265, 2009. a
Tang, R., He, B., Chen, H. W., Chen, D., Chen, Y., Fu, Y. H., Yuan, W., Li, B., Li, Z., Guo, L., Hao, X., Sun, L., Liu, H., Sun, C., and Yang, Y.: Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming, Nat. Clim. Change, 12, 380–385, https://doi.org/10.1038/s41558-022-01304-w, 2022. a
Twardosz, R., Walanus, A., and Guzik, I.: Warming in Europe: Recent trends in annual and seasonal temperatures, Pure Appl. Geophys., 178, 4021–4032, https://doi.org/10.1007/s00024-021-02860-6, 2021. a
Vinnikov, K. Y., Robock, A., and Basist, A.: Diurnal and seasonal cycles of trends of surface air temperature, J. Geophys. Res.-Atmos., 107, ACL 13-1–ACL 13-9, https://doi.org/10.1029/2001JD002007, 2002. a, b
Wooldridge, J. M.: Introductory econometrics: A modern approach, Cengage learning, 2015. a
Zhang, Y., Piao, S., Sun, Y., Rogers, B. M., Li, X., Lian, X., Liu, Z., Chen, A., and Peñuelas, J.: Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere, Nat. Clim. Change, 12, 581–586, https://doi.org/10.1038/s41558-022-01374-w, 2022. a
Short summary
Global warming is a big issue: it is necessary to know more details to make a forecast model and plan adaptation measures. Warming varies in space and time and models often average it over large areas. However, it shows great variations between months of the year. It also varies between regions of the world and between lowland and highland regions. This paper uses statistical and machine learning techniques to quantify such differences between Italy and the UK at different altitudes.
Global warming is a big issue: it is necessary to know more details to make a forecast model and...