Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-123-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.Forecasting springtime rainfall in southeastern Australia using empirical orthogonal functions and neural networks
Cited articles
Australian Bureau of Meteorology: Australian climate variability & change – Time series graphs, Australian Bureau of Meteorology [data set], http://www.bom.gov.au/cgi-bin/climate/change/timeseries.cgi, last access: 9 July 2025.
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3d neural networks, Nature, 619, 1–6, https://doi.org/10.1038/s41586-023-06185-3, 2023.
Cai, W. and Cowan, T.: Dynamics of late autumn rainfall reduction over southeastern Australia, Geophys. Res. Lett., 35, L09708, https://doi.org/10.1029/2008GL033727, 2008.
Cai, W., van Rensch, P., Cowan, T., and Hendon, H. H.: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall, J. Climate, 24, 3910–3923, https://doi.org/10.1175/2011JCLI4129.1, 2011a.
Cai, W., van Rensch, P., and Cowan, T.: Influence of Global-Scale Variability on the Subtropical Ridge over Southeast Australia, J. Climate, 24, 6035–6053, https://doi.org/10.1175/2011JCLI4149.1, 2011b.