Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-159-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-11-159-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interpretable seasonal multisite hidden Markov model for stochastic rain generation in France
Emmanuel Gobet
CMAP, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau, France
CMAP, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau, France
MISTEA, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
Sylvie Parey
EDF R&D, 6 quai Watier, 78401 Chatou CEDEX, France
Related authors
No articles found.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Cited articles
Ailliot, P. and Monbet, V.: Markov-Switching Autoregressive Models for Wind Time Series, Environ. Model. Softw., 30, 92–101, https://doi.org/10.1016/j.envsoft.2011.10.011, 2012. a, b
Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: an overview of weather type models, Journal de la société française de statistique, 156, 101–113, 2015a. a
Ailliot, P., Bessac, J., Monbet, V., and Pène, F.: Non-Homogeneous Hidden Markov-Switching Models for Wind Time Series, J. Stat. Plan. Infer., 160, 75–88, https://doi.org/10.1016/j.jspi.2014.12.005, 2015b. a, b
Ailliot, P., Boutigny, M., Koutroulis, E., Malisovas, A., and Monbet, V.: Stochastic Weather Generator for the Design and Reliability Evaluation of Desalination Systems with Renewable Energy Sources, Renew. Energ., 158, 541–553, https://doi.org/10.1016/j.renene.2020.05.076, 2020. a
Allouche, M., Girard, S., and Gobet, E.: EV-GAN: Simulation of Extreme Events with ReLU Neural Networks, J. Mach. Learn. Res., 23, 1–39, 2022. a
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J., Cassou, C., Cherchi, A., Collins, W., Collins, W., Connors, S., Corti, S., Cruz, F., Dentener, F., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt, J., Fyfe, J., Gillett, N., Goldfarb, L., Gorodetskaya, I., Gutierrez, J., Hamdi, R., Hawkins, E., Hewitt, H., Hope, P., Islam, A., Jones, C., Kaufman, D., Kopp, R., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T., Meinshausen, M., Min, S.-K., Monteiro, P., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A., Ruiz, L., Sallée, J.-B., Samset, B., Sathyendranath, S., Seneviratne, S., Sörensson, A., Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Technical Summary, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 33–144, https://doi.org/10.1017/9781009157896, 2021. a, b
Bardossy, A. and Plate, E. J.: Space-Time Model for Daily Rainfall Using Atmospheric Circulation Patterns, Water Resour. Res., 28, 1247–1259, https://doi.org/10.1029/91WR02589, 1992. a
Beck, C., Philipp, A., and Streicher, F.: The Effect of Domain Size on the Relationship between Circulation Type Classifications and Surface Climate, Int. J. Climatol., 36, 2692–2709, https://doi.org/10.1002/joc.3688, 2016. a
Bellone, E., Hughes, J. P., and Guttorp, P.: A Hidden Markov Model for Downscaling Synoptic Atmospheric Patterns to Precipitation Amounts, Clim. Res., 15, 1–12, https://doi.org/10.3354/cr015001, 2000. a, b, c
Bennett, B., Thyer, M., Leonard, M., Lambert, M., and Bates, B.: A Comprehensive and Systematic Evaluation Framework for a Parsimonious Daily Rainfall Field Model, J. Hydrol., 556, 1123–1138, https://doi.org/10.1016/j.jhydrol.2016.12.043, 2018. a, b, c
Besançon, M., Papamarkou, T., Anthoff, D., Arslan, A., Byrne, S., Lin, D., and Pearson, J.: Distributions.Jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem, J. Stat. Softw., 98, 1–30, https://doi.org/10.18637/jss.v098.i16, 2021. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Review, 59, 65–98, https://doi.org/10.1137/141000671, 2017. a
Boé, J. and Terray, L.: A Weather-Type Approach to Analyzing Winter Precipitation in France: Twentieth-Century Trends and the Role of Anthropogenic Forcing, J. Climate, 21, 3118–3133, https://doi.org/10.1175/2007JCLI1796.1, 2008. a, b, c
Boé, J., Somot, S., Corre, L., and Nabat, P.: Large Discrepancies in Summer Climate Change over Europe as Projected by Global and Regional Climate Models: Causes and Consequences, Clim. Dynam., 54, 2981–3002, 2020. a
Bouchet-Valat, M. and Kamiński, B.: DataFrames.Jl: Flexible and Fast Tabular Data in Julia, J. Stat. Softw., 107, 1–32, https://doi.org/10.18637/jss.v107.i04, 2023. a
Cassou, C.: Du changement climatique aux régimes de temps : l'oscillation nord-atlantique [prix Prud'homme 2002], La Météorologie, 2004, 21–32, https://doi.org/10.4267/2042/36039, 2004. a, b, c
Celeux, G. and Durand, J.-B.: Selecting hidden Markov model state number with cross-validated likelihood, Comput. Stat., 23, 541–564, https://doi.org/10.1007/s00180-007-0097-1, 2008. a
Chandler, R. E.: Multisite, Multivariate Weather Generation Based on Generalised Linear Models, Environ. Model. Softw., 134, 104 867, https://doi.org/10.1016/j.envsoft.2020.104867, 2020. a
Christ, S., Schwabeneder, D., Rackauckas, C., Borregaard, M. K., and Breloff, T.: Plots.Jl – A User Extendable Plotting API for the Julia Programming Language, J. Open Res. Softw., 11, https://doi.org/10.5334/jors.431, 2023. a
Christophe, P. and Pompili, B.: Rapport fait au nom de la commission d'enquête sur “la sûreté et la sécurité des installations nucléaires”, Assemblée Nationale, 1122, http://www.assemblee-nationale.fr/15/rap-enq/r1122-tI.asp (last access: 28 August 2025), 2018. a
Cognot, C., Bel, L., Métivier, D., and Parey, S.: A spatio-temporal weather generator for the temperature over France, Adv. Stat. Clim. Meteorol. Oceanogr., in preparation, 2025. a
Cowpertwait, P., Isham, V., and Onof, C.: Point Process Models of Rainfall: Developments for Fine-Scale Structure, P. Roy. Soc. A-Math., 463, 2569–2587, https://doi.org/10.1098/rspa.2007.1889, 2007. a
Danisch, S. and Krumbiegel, J.: Makie.Jl: Flexible High-Performance Data Visualization for Julia, J. Open Source Softw., 6, 3349, https://doi.org/10.21105/joss.03349, 2021. a
Diaconis, P. and Freedman, D.: Finite Exchangeable Sequences, Ann. Probab., 8, 745–764, https://doi.org/10.1214/aop/1176994663, 1980. a
Dueben, P. D. and Bauer, P.: Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999–4009, https://doi.org/10.5194/gmd-11-3999-2018, 2018. a
Dunn, P. K.: Occurrence and Quantity of Precipitation Can Be Modelled Simultaneously, Int. J. Climatol., 24, 1231–1239, https://doi.org/10.1002/joc.1063, 2004. a
Evin, G., Blanchet, J., Paquet, E., Garavaglia, F., and Penot, D.: A Regional Model for Extreme Rainfall Based on Weather Patterns Subsampling, J. Hydrol., 541, 1185–1198, 2016. a
Evin, G., Favre, A.-C., and Hingray, B.: Stochastic generation of multi-site daily precipitation focusing on extreme events, Hydrol. Earth Syst. Sci., 22, 655–672, https://doi.org/10.5194/hess-22-655-2018, 2018. a, b, c, d
Fang, H.-B., Fang, K.-T., and Kotz, S.: The Meta-elliptical Distributions with Given Marginals, J. Multivariate Anal., 82, 1–16, 2002. a
Feldmann, C. C., Mews, S., Coculla, A., Stanewsky, R., and Langrock, R.: Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models, J. Stat. Theor. Pract., 17, 45, https://doi.org/10.1007/s42519-023-00342-7, 2023. a
Fischer, E. M., Beyerle, U., Bloin-Wibe, L., Gessner, C., Humphrey, V., Lehner, F., Pendergrass, A. G., Sippel, S., Zeder, J., and Knutti, R.: Storylines for Unprecedented Heatwaves Based on Ensemble Boosting, Nat. Commun., 14, 4643, https://doi.org/10.1038/s41467-023-40112-4, 2023. a
Flecher, C., Naveau, P., Allard, D., and Brisson, N.: A Stochastic Daily Weather Generator for Skewed Data, Water Resour. Res., 46, W07519, https://doi.org/10.1029/2009WR008098, 2010. a
Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and Bernardara, P.: Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951–964, https://doi.org/10.5194/hess-14-951-2010, 2010. a, b, c
Ghassempour, S., Girosi, F., and Maeder, A.: Clustering Multivariate Time Series Using Hidden Markov Models, Int. J. Environ. Res. Pub. He., 11, 2741–2763, https://doi.org/10.3390/ijerph110302741, 2014. a
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Generative adversarial nets, Advances in Neural Information Processing Systems, Curran Associates, Inc., 27, 2014. a
Greene, A. M., Robertson, A. W., Smyth, P., and Triglia, S.: Downscaling Projections of Indian Monsoon Rainfall Using a Non-Homogeneous Hidden Markov Model, Q. J. Roy. Meteor. Soc., 137, 347–359, https://doi.org/10.1002/qj.788, 2011. a, b, c
Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S., San Martín, D., Herrera, S., Bedia, J., Casanueva, A., Manzanas, R., Iturbide, M., Vrac, M., Dubrovsky, M., Ribalaygua, J., Pórtoles, J., Räty, O., Räisänen, J., Hingray, B., Raynaud, D., Casado, M. J., Ramos, P., Zerenner, T., Turco, M., Bosshard, T., Štěpánek, P., Bartholy, J., Pongracz, R., Keller, D. E., Fischer, A. M., Cardoso, R. M., Soares, P. M. M., Czernecki, B., and Pagé, C.: An Intercomparison of a Large Ensemble of Statistical Downscaling Methods over Europe: Results from the VALUE Perfect Predictor Cross-Validation Experiment, Int. J. Climatol., 39, 3750–3785, https://doi.org/10.1002/joc.5462, 2019. a
Gyllenberg, M., Koski, T., Reilink, E., and Verlaan, M.: Non-Uniqueness in Probabilistic Numerical Identification of Bacteria, J. Appl. Probab., 31, 542–548, 1994. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a, b, c
Hughes, J. P. and Guttorp, P.: A Class of Stochastic Models for Relating Synoptic Atmospheric Patterns to Regional Hydrologic Phenomena, Water Resour. Res., 30, 1535–1546, https://doi.org/10.1029/93WR02983, 1994a. a, b
Hughes, J. P., Guttorp, P., and Charles, S. P.: A Non-Homogeneous Hidden Markov Model for Precipitation Occurrence, J. Roy. Stat. Soc. Ser. Cs, 48, 15–30, https://doi.org/10.1111/1467-9876.00136, 1999. a
Huth, R., Beck, C., and Kučerová, M.: Synoptic-Climatological Evaluation of the Classifications of Atmospheric Circulation Patterns over Europe, Int. J. Climatol., 36, 2710–2726, https://doi.org/10.1002/joc.4546, 2016. a
International Energy Agency: Climate Resilience for Energy Security, Tech. rep., IEA, Paris, 2022. a
Katz, R. W.: On Some Criteria for Estimating the Order of a Markov Chain, Technometrics, 23, 243–249, https://doi.org/10.2307/1267787, 1981. a
Kim, Y., Wiseman, S., and Rush, A. M.: A Tutorial on Deep Latent Variable Models of Natural Language, arXiv [preprint], https://doi.org/10.48550/arXiv.1812.06834, 2019. a
Kirshner, S., Smyth, P., and Robertson, A. W.: Conditional Chow-Liu Tree Structures for Modeling Discrete-Valued Vector Time Series, in: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI '04, AUAI Press, Arlington, Virginia, USA, 317–324, ISBN 978-0-9749039-0-3, 2004. a, b, c
Kleiber, W., Katz, R. W., and Rajagopalan, B.: Daily Spatiotemporal Precipitation Simulation Using Latent and Transformed Gaussian Processes, Water Resour. Res., 48, W01523, https://doi.org/10.1029/2011WR011105, 2012. a
Lang, A. and Poschlod, B.: Updating Catastrophe Models to Today's Climate – An Application of a Large Ensemble Approach to Extreme Rainfall, Clim. Risk Manage., 44, 100594, https://doi.org/10.1016/j.crm.2024.100594, 2024. a
Langrock, R. and Zucchini, W.: Hidden Markov Models with Arbitrary State Dwell-Time Distributions, Comput. Stat. Data Anal., 55, 715–724, https://doi.org/10.1016/j.csda.2010.06.015, 2011. a
Laverny, O. and Jimenez, S.: Copulas.Jl: A Fully Distributions.Jl-Compliant Copula Package [code], J. Open Source Softw., 9, 6189, https://doi.org/10.21105/joss.06189, 2024. a, b
Lubin, M., Dowson, O., Garcia, J. D., Huchette, J., Legat, B., and Vielma, J. P.: JuMP 1.0: Recent Improvements to a Modeling Language for Mathematical Optimization, Math. Programm. Comput., 15, 581–589, 2023. a
Luu, L. N., Vautard, R., Yiou, P., and Soubeyroux, J.-M.: Evaluation of convection-permitting extreme precipitation simulations for the south of France, Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, 2022. a
Manzano, V. J. P. and Ines, A. V.: Downscaling Seasonal Climate Forecasts for Risks Management of Rice Production in the Philippines, Indian Journal of Science and Technology, 13, 1–17, https://doi.org/10.17485/ijst/2020/v13i01/147074, 2020. a
McLachlan, G. J. and Krishnan, T.: The EM Algorithm and Extensions, John Wiley & Sons, ISBN 978-0-470-19160-6, 2007. a
Métivier, D., Allouche, M., Saux, M., Gobet, E., and Pachebat, J.: Data from Hackathon “GenHack 3 Generative Modeling Challenge”: Predicting maize crop yield distribution under stochastic weather [data set], Recherche Data Gouv., https://doi.org/10.57745/C3FNBY, 2025. a
Miloshevich, G., Cozian, B., Abry, P., Borgnat, P., and Bouchet, F.: Probabilistic Forecasts of Extreme Heatwaves Using Convolutional Neural Networks in a Regime of Lack of Data, Phys. Rev. Fluids, 8, 040501, https://doi.org/10.1103/PhysRevFluids.8.040501, 2023. a
Miloshevich, G., Lucente, D., Yiou, P., and Bouchet, F.: Extreme Heat Wave Sampling and Prediction with Analog Markov Chain and Comparisons with Deep Learning, Environ. Data Sci., 3, e9, ISSN 2634-4602, https://doi.org/10.1017/eds.2024.7, 2024. a
Monbet, V. and Ailliot, P.: Sparse Vector Markov Switching Autoregressive Models. Application to Multivariate Time Series of Temperature, Comput. Stat. Data Anal., 108, 40–51, https://doi.org/10.1016/j.csda.2016.10.023, 2017. a
Najibi, N., Mukhopadhyay, S., and Steinschneider, S.: Identifying Weather Regimes for Regional-Scale Stochastic Weather Generators, Int. J. Climatol., 41, 2456–2479, https://doi.org/10.1002/joc.6969, 2021. a, b
Neykov, N., Neytchev, P., Zucchini, W., and Hristov, H.: Linking Atmospheric Circulation to Daily Precipitation Patterns over the Territory of Bulgaria, Environ. Ecol. Stat., 19, 249–267, https://doi.org/10.1007/s10651-011-0185-9, 2012. a
Nguyen, T. H. T., Bennett, B., and Leonard, M.: Evaluating Stochastic Rainfall Models for Hydrological Modelling, J. Hydrol., 627, 130381, https://doi.org/10.1016/j.jhydrol.2023.130381, 2023. a, b, c
Nguyen, V. D., Vorogushyn, S., Nissen, K., Brunner, L., and Merz, B.: A non-stationary climate-informed weather generator for assessing future flood risks, Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, 2024. a
Pandey, P. K., Das, L., Jhajharia, D., and Pandey, V.: Modelling of Interdependence between Rainfall and Temperature Using Copula, Model. Earth Syst. Environ., 4, 867–879, 2018. a
Papastamatiou, Y. P., Watanabe, Y. Y., Demšar, U., Leos-Barajas, V., Bradley, D., Langrock, R., Weng, K., Lowe, C. G., Friedlander, A. M., and Caselle, J. E.: Activity Seascapes Highlight Central Place Foraging Strategies in Marine Predators That Never Stop Swimming, Movement Ecol., 6, 9, https://doi.org/10.1186/s40462-018-0127-3, 2018. a
Parent, B., Leclere, M., Lacube, S., Semenov, M. A., Welcker, C., Martre, P., and Tardieu, F.: Maize Yields over Europe May Increase in Spite of Climate Change, with an Appropriate Use of the Genetic Variability of Flowering Time, P. Natl. Acad. Sci. USA, 115, 10642–10647, https://doi.org/10.1073/pnas.1720716115, 2018. a
Pascual, D., Pla, E., Fons, J., and Abdul-Malak, D.: Climate change impacts on water availability and human security in the intercontinental biosphere reserve of the mediterranean (Morocco-Spain), in: Environmental Change and Human Security in Africa and the Middle East, Springer, 75–93, ISBN 978-3-319-45648-5, https://doi.org/10.1007/978-3-319-45648-5_4, 2017. a
Pawlowsky-Glahn, V. and Buccianti, A.: Compositional data analysis: Theory and applications, John Wiley & Sons, https://doi.org/10.1002/9781119976462, 2011. a
Philipp, A., Beck, C., Huth, R., and Jacobeit, J.: Development and Comparison of Circulation Type Classifications Using the COST 733 Dataset and Software, Int. J. Climatol., 36, 2673–2691, https://doi.org/10.1002/joc.3920, 2016. a
Raftery, A. E.: A Model for High-Order Markov Chains, J. Roy. Stat. Soc. Ser. B, 47, 528–539, https://doi.org/10.1111/j.2517-6161.1985.tb01383.x, 1985. a
Ranger, N. A., Mahul, O., and Monasterolo, I.: Assessing Financial Risks from Physical Climate Shocks: A Framework for Scenario Generation, World Bank, Washington, DC, https://hdl.handle.net/10986/37041 (last access: 29 August 2025), 2022. a
Renard, B. and Lang, M.: Use of a Gaussian Copula for Multivariate Extreme Value Analysis: Some Case Studies in Hydrology, Adv. Water Resour., 30, 897–912, 2007. a
Robertson, A. W., Ines, A. V. M., and Hansen, J. W.: Downscaling of Seasonal Precipitation for Crop Simulation, J. Appl. Meteorol. Clim., 46, 677–693, https://doi.org/10.1175/JAM2495.1, 2007. a
Sansom, J. and Thomson, P.: A hidden seasonal switching model for high-resolution breakpoint rainfall data, Water Resour. Res., 46, 8, ISSN 1944-7973, https://doi.org/10.1029/2009WR008602, 2010. a
Serinaldi, F. and Kilsby, C. G.: Simulating Daily Rainfall Fields over Large Areas for Collective Risk Estimation, J. Hydrol., 512, 285–302, https://doi.org/10.1016/j.jhydrol.2014.02.043, 2014. a
Srikanthan, R. and Pegram, G. G. S.: A Nested Multisite Daily Rainfall Stochastic Generation Model, J. Hydrol., 371, 142–153, https://doi.org/10.1016/j.jhydrol.2009.03.025, 2009. a, b, c, d
Stoner, O. and Economou, T.: An Advanced Hidden Markov Model for Hourly Rainfall Time Series, Comput. Stat. Data Anal., 152, 107045, https://doi.org/10.1016/j.csda.2020.107045, 2020. a, b, c
Tencaliec, P., Favre, A.-C., Naveau, P., Prieur, C., and Nicolet, G.: Flexible Semiparametric Generalized Pareto Modeling of the Entire Range of Rainfall Amount, Environmetrics, 31, e2582, https://doi.org/10.1002/env.2582, 2020. a, b
Tootoonchi, F., Todorović, A., Grabs, T., and Teutschbein, C.: Uni- and Multivariate Bias Adjustment of Climate Model Simulations in Nordic Catchments: Effects on Hydrological Signatures Relevant for Water Resources Management in a Changing Climate, J. Hydrol., 623, 129807, https://doi.org/10.1016/j.jhydrol.2023.129807, 2023. a
Vaittinada Ayar, P., Vrac, M., Bastin, S., Carreau, J., Déqué, M., and Gallardo, C.: Intercomparison of Statistical and Dynamical Downscaling Models under the EURO- and MED-CORDEX Initiative Framework: Present Climate Evaluations, Clim. Dynam., 46, 1301–1329, https://doi.org/10.1007/s00382-015-2647-5, 2016. a
Vaittinada Ayar, P., Blanchet, J., Paquet, E., and Penot, D.: Space-Time Simulation of Precipitation Based on Weather Pattern Sub-Sampling and Meta-Gaussian Model, J. Hydrol., 581, 124451, https://doi.org/10.1016/j.jhydrol.2019.124451, 2020. a, b
van der Wiel, K., Bloomfield, H. C., Lee, R. W., Stoop, L. P., Blackport, R., Screen, J. A., and Selten, F. M.: The Influence of Weather Regimes on European Renewable Energy Production and Demand, Environ. Res. Lett., 14, 094010, https://doi.org/10.1088/1748-9326/ab38d3, 2019. a, b, c, d
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K., Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M., Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlo, J. M., Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K., Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann, J., Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Evaluation of the Large EURO-CORDEX Regional Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032344, https://doi.org/10.1029/2019JD032344, 2021. a
Verdin, A., Rajagopalan, B., Kleiber, W., Podestá, G., and Bert, F.: BayGEN: A Bayesian Space-Time Stochastic Weather Generator, Water Resour. Res., 55, 2900–2915, https://doi.org/10.1029/2017WR022473, 2019. a, b
Verfaillie, D., Déqué, M., Morin, S., and Lafaysse, M.: The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models, Geosci. Model Dev., 10, 4257–4283, https://doi.org/10.5194/gmd-10-4257-2017, 2017. a
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50-Year High-Resolution Atmospheric Reanalysis over France with the Safran System, Int. J. Climatol., 30, 1627–1644, 2010. a
Vrac, M., Stein, M., and Hayhoe, K.: Statistical Downscaling of Precipitation through Nonhomogeneous Stochastic Weather Typing, Climate Res., 34, 169–184, https://doi.org/10.3354/cr00696, 2007. a
Wächter, A. and Biegler, L. T.: On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming, Math. Programm., 106, 25–57, 2006. a
Wilks, D. S.: A Gridded Multisite Weather Generator and Synchronization to Observed Weather Data, Water Resour. Res., 45, https://doi.org/10.1029/2009WR007902, 2009. a
Wilks, D. S. and Wilby, R. L.: The weather generation game: a review of stochastic weather models, Prog. Phys. Geogr., 23, 329–357, 1999. a
Woollings, T., Hannachi, A., Hoskins, B., and Turner, A.: A Regime View of the North Atlantic Oscillation and Its Response to Anthropogenic Forcing, J. Climate, 23, 1291–1307, https://doi.org/10.1175/2009JCLI3087.1, 2010. a
Yakowitz, S. J. and Spragins, J. D.: On the Identifiability of Finite Mixtures, Ann. Math. Stat., 39, 209–214, 1968. a
Yamanishi, K.: Latent Variable Model Selection, in: Learning with the Minimum Description Length Principle, edited by: Yamanishi, K., Springer Nature, Singapore, 137–183, ISBN 978-981-9917-90-7, https://doi.org/10.1007/978-981-99-1790-7_4, 2023. a
Yang, C., Chandler, R. E., Isham, V. S., and Wheater, H. S.: Spatial-Temporal Rainfall Simulation Using Generalized Linear Models, Water Resour. Res., 41, https://doi.org/10.1029/2004WR003739, 2005. a
Yang, J., Jun, M., Schumacher, C., and Saravanan, R.: Predictive Statistical Representations of Observed and Simulated Rainfall Using Generalized Linear Models, J. Climate, 32, 3409–3427, https://doi.org/10.1175/JCLI-D-18-0527.1, 2019. a
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S.: Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates, P. Natl. Acad. Sci. USA, 114, 9326–9331, https://doi.org/10.1073/pnas.1701762114, 2017. a
Zucchini, W. and MacDonald, I. L.: Hidden Markov Models for Time Series: An Introduction Using R, Chapman and Hall/CRC, New York, ISBN 978-0-429-13953-6, https://doi.org/10.1201/9781420010893, 2009. a
Short summary
Stochastic weather generators (SWGs) are statistical models used to study climate variability. We design an interpretable multisite SWG for precipitation, capable of learning large-scale weather regimes solely from French observational data. The model reproduces extreme events like droughts and heavy rain and is applied to climate models under historical and Representative Concentration Pathway (RCP) scenarios. This type of model aims to assess large-scale weather risks, such as those impacting energy systems and agriculture.
Stochastic weather generators (SWGs) are statistical models used to study climate...