Articles | Volume 11, issue 2
https://doi.org/10.5194/ascmo-11-159-2025
https://doi.org/10.5194/ascmo-11-159-2025
08 Sep 2025
 | 08 Sep 2025

Interpretable seasonal multisite hidden Markov model for stochastic rain generation in France

Emmanuel Gobet, David Métivier, and Sylvie Parey

Related authors

CMIP7 Data Request: Impacts and Adaptation Priorities and Opportunities
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408,https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Preface: Advances in extreme value analysis and application to natural hazards
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021,https://doi.org/10.5194/nhess-21-1461-2021, 2021

Cited articles

Ailliot, P. and Monbet, V.: Markov-Switching Autoregressive Models for Wind Time Series, Environ. Model. Softw., 30, 92–101, https://doi.org/10.1016/j.envsoft.2011.10.011, 2012. a, b
Ailliot, P., Thompson, C., and Thomson, P.: Space–Time Modelling of Precipitation by Using a Hidden Markov Model and Censored Gaussian Distributions, J. Roy. Stat. Soc. Ser. C, 58, 405–426, 2009. a, b, c, d
Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: an overview of weather type models, Journal de la société française de statistique, 156, 101–113, 2015a. a
Ailliot, P., Bessac, J., Monbet, V., and Pène, F.: Non-Homogeneous Hidden Markov-Switching Models for Wind Time Series, J. Stat. Plan. Infer., 160, 75–88, https://doi.org/10.1016/j.jspi.2014.12.005, 2015b. a, b
Ailliot, P., Boutigny, M., Koutroulis, E., Malisovas, A., and Monbet, V.: Stochastic Weather Generator for the Design and Reliability Evaluation of Desalination Systems with Renewable Energy Sources, Renew. Energ., 158, 541–553, https://doi.org/10.1016/j.renene.2020.05.076, 2020. a
Download
Short summary
Stochastic weather generators (SWGs) are statistical models used to study climate variability. We design an interpretable multisite SWG for precipitation, capable of learning large-scale weather regimes solely from French observational data. The model reproduces extreme events like droughts and heavy rain and is applied to climate models under historical and Representative Concentration Pathway (RCP) scenarios. This type of model aims to assess large-scale weather risks, such as those impacting energy systems and agriculture.
Share