Journal cover Journal topic
Advances in Statistical Climatology, Meteorology and Oceanography An international open-access journal on applied statistics
Journal topic

Journal metrics

CiteScore value: 0.1
CiteScore
0.1
Scimago H <br class='widget-line-break'>index value: 1
Scimago H
index
1
Volume 2, issue 2
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, 2016
https://doi.org/10.5194/ascmo-2-115-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, 2016
https://doi.org/10.5194/ascmo-2-115-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

  12 Oct 2016

12 Oct 2016

Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

Jérôme Pernin et al.

Related authors

The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from space by MetOp-A/IASI
C. Crevoisier, D. Nobileau, R. Armante, L. Crépeau, T. Machida, Y. Sawa, H. Matsueda, T. Schuck, T. Thonat, J. Pernin, N. A. Scott, and A. Chédin
Atmos. Chem. Phys., 13, 4279–4289, https://doi.org/10.5194/acp-13-4279-2013,https://doi.org/10.5194/acp-13-4279-2013, 2013

Related subject area

Atmospheric science
Nonlinear time series models for the North Atlantic Oscillation
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020,https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020,https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020,https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary
Automated detection of weather fronts using a deep learning neural network
James C. Biard and Kenneth E. Kunkel
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019,https://doi.org/10.5194/ascmo-5-147-2019, 2019
Short summary

Cited articles

Akaike, A.: Information theory and an extension of the maximum likelihood principle, in: Second International Symposium on Information Theory, edited by: Petrov, B. N. and Csaki, F., Akadémiai Kiado, Budapest, Hungary, 267–281, 1973.
Banfield, J. D. and Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803–821, https://doi.org/10.2307/2532201, 1993.
Barry, R. G. and Perry, A. H.: Synoptic Climatology and Its Applications, in: Synoptic and Dynamic Climatology, edited by: Barry, R. G. and Carleton, A. M., Routledge, London, UK, 547–603, 2001.
Bayes, T. and Price, M.: An Essay towards solving a Problem in the Doctrine of Chances, Philos. T. R. Soc. Lond., 53, 370–418, https://doi.org/10.1098/rstl.1763.0053, 1763.
Bergeron, T.: Richtlinien einer dynamischen klimatologie, Meteorol. Z., 47, 246–262, 1930.
Publications Copernicus
Download
Short summary
Here, we propose a classification methodology of various space-time atmospheric datasets into discrete air mass groups homogeneous in temperature and humidity through a probabilistic point of view: both the classification process and the data are probabilistic. Unlike conventional classification algorithms, this methodology provides the probability of belonging to each class as well as the corresponding uncertainty, which can be used in various applications.
Here, we propose a classification methodology of various space-time atmospheric datasets into...
Citation