Articles | Volume 2, issue 1
https://doi.org/10.5194/ascmo-2-49-2016
https://doi.org/10.5194/ascmo-2-49-2016
10 Jun 2016
 | 10 Jun 2016

A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors

Laura D. Riihimaki, Jennifer M. Comstock, Kevin K. Anderson, Aimee Holmes, and Edward Luke

Related authors

Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024,https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022,https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Shallow cumuli cover and its uncertainties from ground-based lidar–radar data and sky images
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020,https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary
Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling
Qi Tang, Stephen A. Klein, Shaocheng Xie, Wuyin Lin, Jean-Christophe Golaz, Erika L. Roesler, Mark A. Taylor, Philip J. Rasch, David C. Bader, Larry K. Berg, Peter Caldwell, Scott E. Giangrande, Richard B. Neale, Yun Qian, Laura D. Riihimaki, Charles S. Zender, Yuying Zhang, and Xue Zheng
Geosci. Model Dev., 12, 2679–2706, https://doi.org/10.5194/gmd-12-2679-2019,https://doi.org/10.5194/gmd-12-2679-2019, 2019

Related subject area

Atmospheric science
Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information
Jhayron S. Pérez-Carrasquilla, Paola A. Montoya, Juan Manuel Sánchez, K. Santiago Hernández, and Mauricio Ramírez
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 121–135, https://doi.org/10.5194/ascmo-9-121-2023,https://doi.org/10.5194/ascmo-9-121-2023, 2023
Short summary
A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns
Vitaly Kholodovsky and Xin-Zhong Liang
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021,https://doi.org/10.5194/ascmo-7-35-2021, 2021
Short summary
Nonlinear time series models for the North Atlantic Oscillation
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020,https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020,https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary

Cited articles

Anderson, T. W.: An Introduction to Multivariate Statistical Analysis, John Wiley and Sons, Inc., New York, 1958.
Atlas, D., Matrosov, S. Y., Heymsfield, A. J., Chou, M.-D., and Wolff, D. B.: Radar and Radiation Properties of Ice Clouds, J. Appl. Meteorol., 34, 2329–2345, https://doi.org/10.1175/1520-0450(1995)034<2329:RARPOI>2.0.CO;2, 1995.
Bühl, J., Ansmann, A., Seifert, P., Baars, H., and Engelmann, R.: Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations, Geophys. Res. Lett., 40, 4404–4408, https://doi.org/10.1002/grl.50792, 2013.
Cesana, G. and Chepfer, H.: Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP, J. Geophys. Res.-Atmos., 118, 7922–7937, https://doi.org/10.1002/jgrd.50376, 2013.
Choi, Y. S., Lindzen, R. S., Ho, C. H., and Kim, J.: Space observations of cold-cloud phase change, P. Natl. Acad. Sci. USA, 107, 11211–11216, https://doi.org/10.1073/pnas.1006241107, 2010.
Download
Short summary
Between atmospheric temperatures of 0 and −38 °C, clouds contain ice crystals, super-cooled liquid droplets, or a mixture of both, impacting how they influence the atmospheric energy budget and challenging our ability to simulate climate change. Better cloud-phase measurements are needed to improve simulations. We demonstrate how a Bayesian method to identify cloud phase can improve on currently used methods by including information from multiple measurements and probability estimates.