Articles | Volume 5, issue 1
https://doi.org/10.5194/ascmo-5-101-2019
https://doi.org/10.5194/ascmo-5-101-2019
24 Jun 2019
 | 24 Jun 2019

Low-visibility forecasts for different flight planning horizons using tree-based boosting models

Sebastian J. Dietz, Philipp Kneringer, Georg J. Mayr, and Achim Zeileis

Related authors

Detection and consequences of atmospheric deserts: insights from a case study
Fiona Fix, Georg Mayr, Achim Zeileis, Isabell Stucke, and Reto Stauffer
Weather Clim. Dynam., 5, 1545–1560, https://doi.org/10.5194/wcd-5-1545-2024,https://doi.org/10.5194/wcd-5-1545-2024, 2024
Short summary
Identifying Lightning Processes in ERA5 Soundings with Deep Learning
Gregor Ehrensperger, Thorsten Simon, Georg Johann Mayr, and Tobias Hell
EGUsphere, https://doi.org/10.48550/arXiv.2210.11529,https://doi.org/10.48550/arXiv.2210.11529, 2024
Short summary
Robust weather-adaptive post-processing using model output statistics random forests
Thomas Muschinski, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Nonlin. Processes Geophys., 30, 503–514, https://doi.org/10.5194/npg-30-503-2023,https://doi.org/10.5194/npg-30-503-2023, 2023
Short summary
Thunderstorm environments in Europe
Deborah Morgenstern, Isabell Stucke, Georg J. Mayr, Achim Zeileis, and Thorsten Simon
Weather Clim. Dynam., 4, 489–509, https://doi.org/10.5194/wcd-4-489-2023,https://doi.org/10.5194/wcd-4-489-2023, 2023
Short summary
Predicting power ramps from joint distributions of future wind speeds
Thomas Muschinski, Moritz N. Lang, Georg J. Mayr, Jakob W. Messner, Achim Zeileis, and Thorsten Simon
Wind Energ. Sci., 7, 2393–2405, https://doi.org/10.5194/wes-7-2393-2022,https://doi.org/10.5194/wes-7-2393-2022, 2022
Short summary

Related subject area

Atmospheric science
Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information
Jhayron S. Pérez-Carrasquilla, Paola A. Montoya, Juan Manuel Sánchez, K. Santiago Hernández, and Mauricio Ramírez
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 121–135, https://doi.org/10.5194/ascmo-9-121-2023,https://doi.org/10.5194/ascmo-9-121-2023, 2023
Short summary
A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns
Vitaly Kholodovsky and Xin-Zhong Liang
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021,https://doi.org/10.5194/ascmo-7-35-2021, 2021
Short summary
Nonlinear time series models for the North Atlantic Oscillation
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020,https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020,https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary

Cited articles

Agresti, A.: Categorical Data Analysis, John Wiley & Sons, Inc., 2003. a
Bocchieri, J. R. and Glahn, H. R.: Use of Model Output Statistics for Predicting Ceiling Height, Mon. Weather Rev., 100, 869–879, https://doi.org/10.1175/1520-0493(1972)100<0869:UOMOSF>2.3.CO;2, 1972. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Bühlmann, P. and Hothorn, T.: Boosting Algorithms: Regularization, Prediction and Model Fitting, Stat. Sci., 22, 477–505, https://doi.org/10.1214/07-STS242, 2007. a, b, c
Christensen, R. H. B.: ordinal – Regression Models for Ordinal Data, available at: http://www.cran.r-project.org/package=ordinal/ (last access: 7 Juni 2017), R package version 2015.6-28, 2017. a
Download
Short summary
Low-visibility conditions reduce the flight capacity of airports and can lead to delays and supplemental costs for airlines and airports. In this study, the forecasting skill and most important model predictors of airport-relevant low visibility are investigated for multiple flight planning horizons with different statistical models.