Articles | Volume 11, issue 1
https://doi.org/10.5194/ascmo-11-89-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-11-89-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine-learning-based probabilistic forecasting of solar irradiance in Chile
Faculty of Informatics, University of Debrecen, Debrecen, Hungary
Julio C. Marín
Department of Meteorology, University of Valparaíso, Valparaíso, Chile
Center for Atmospheric Studies and Climate Change (CEACC), University of Valparaíso, Valparaíso, Chile
Omar Cuevas
Center for Atmospheric Studies and Climate Change (CEACC), University of Valparaíso, Valparaíso, Chile
Institute of Physics and Astronomy, University of Valparaíso, Valparaíso, Chile
Mailiu Díaz
Faculty of Engineering, Andrés Bello University, Viña del Mar, Chile
Marianna Szabó
Faculty of Informatics, University of Debrecen, Debrecen, Hungary
Orietta Nicolis
Faculty of Engineering, Andrés Bello University, Viña del Mar, Chile
Mária Lakatos
Faculty of Informatics, University of Debrecen, Debrecen, Hungary
Related authors
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024, https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary
Short summary
The paper proposes a novel parametric model for statistical post-processing of visibility ensemble forecasts; investigates various approaches to parameter estimation; and, using two case studies, provides a detailed comparison with the existing state-of-the-art forecasts. The introduced approach consistently outperforms both the raw ensemble forecasts and the reference parametric post-processing method.
Ágnes Baran and Sándor Baran
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 105–122, https://doi.org/10.5194/ascmo-10-105-2024, https://doi.org/10.5194/ascmo-10-105-2024, 2024
Short summary
Short summary
The paper proposes a novel parametric model for statistical post-processing of visibility ensemble forecasts; investigates various approaches to parameter estimation; and, using two case studies, provides a detailed comparison with the existing state-of-the-art forecasts. The introduced approach consistently outperforms both the raw ensemble forecasts and the reference parametric post-processing method.
Cited articles
Bakker, K., Whan, K., Knap, W., and Schmeits, M.: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation, Sol. Energy, 191, 138–150, https://doi.org/10.1016/j.solener.2019.08.044, 2019. a
Baran, S. and Lakatos, M.: Clustering-based spatial interpolation of parametric post-processing models, Weather Forecast., 39, 1591–1604, https://doi.org/10.1175/WAF-D-24-0016.1, 2024. a
Baran, S. and Nemoda, D.: Censored and shifted gamma distribution based EMOS model for probabilistic quantitative precipitation forecasting, Environmetrics, 27, 280–292, https://doi.org/10.1002/env.2391, 2016. a
Baran, S., Baran, Á., Pappenberger, F., and Ben Bouallègue, Z.: Statistical post-processing of heat index ensemble forecasts: is there a royal road? Q. J. Roy. Meteorol. Soc., 146, 3416–3434, https://doi.org/10.1002/qj.3853, 2020. a
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bi, K., Xie, L., Zhang, H., Chen, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. a
Bremnes, J. B.: Constrained quantile regression splines for ensemble postprocessing, Mon. Weather Rev., 147, 1769–1780, https://doi.org/10.1175/MWR-D-18-0420.1, 2019. a
Bremnes, J. B.: Ensemble postprocessing using quantile function regression based on neural networks and Bernstein polynomials, Mon. Weather Rev., 148, 403–414, https://doi.org/10.1175/MWR-D-19-0227.1, 2020. a, b
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the Community Atmosphere Model, J. Climate, 22, 3422–3448, https://doi.org/10.1175/2008JCLI2556.1, 2009. a
Buizza, R.: Introduction to the special issue on “25 years of ensemble forecasting”, Q. J. Roy. Meteorol. Soc., 145, 1–11, https://doi.org/10.1002/qj.3370, 2018a. a
Buizza, R.: Ensemble forecasting and the need for calibration, in: Statistical Postprocessing of Ensemble Forecasts, edited by: Vannitsem, S., Wilks, D. S., and Messner, J. W., Elsevier, Amsterdam, 15–48, https://doi.org/10.1016/B978-0-12-812372-0.00002-9, 2018b. a
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., and Wilby, R.: The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields, J. Hydrometeorol., 5, 243–262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2, 2004. a
Chen, J., Janke, T., Steinke, F., and Lerch, S.: Generative machine learning methods for multivariate ensemble postprocessing, Ann. Appl. Stat., 18, 159–183, https://doi.org/10.1214/23-AOAS1784, 2024. a
Chou, M.-D. and Suarez, M. J.: A solar radiation parameterization for atmospheric studies, NASA Tech. Memo. 15, NASA/TM-1999-104606, NASA, https://ntrs.nasa.gov/citations/19990060930 (last access: 28 February 2025), 1999. a
Chou, M.-D., Suarez, M. J., Liang, X.-Z., and Yan, M. M.-H.: A thermal infrared radiation parameterization for atmospheric studies, NASA Tech. Memo. 19, NASA/TM-2001-104606, NASA, https://ntrs.nasa.gov/citations/20010072848 (last access: 28 February 2025), 2001. a
Delle Monache, L., Hacker, J. P., Zhou, Y., Deng, X., and Stull, R. B.: Probabilistic aspects of meteorological and ozone regional ensemble forecasts, J. Geophys. Res., 111, D24307, https://doi.org/10.1029/2005JD006917, 2006. a
Díaz, M., Nicolis, O., Marín, J. C., and Baran, S.: Statistical post-processing of ensemble forecasts of temperature in Santiago de Chile, Meteorol. Appl., 27, e1818, https://doi.org/10.1002/met.1818, 2020. a, b
Díaz, M., Nicolis, O., Marín, J. C., and Baran, S.: Post-processing methods for calibrating the wind speed forecasts in central regions of Chile, Ann. Math. Inform., 53, 93–108, https://doi.org/10.33039/ami.2021.03.012, 2021. a
Dudhia, J.: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989. a
ECMWF: IFS Documentation CY49R1 – Part V: Ensemble Prediction System, ECMWF, Reading, https://doi.org/10.21957/956d60ad81, 2024. a
Friederichs, P. and Hense, A.: Statistical downscaling of extreme precipitation events using censored quantile regression, Mon. Weather Rev., 135, 2365–2378, https://doi.org/10.1175/MWR3403.1, 2007. a
Gneiting, T.: Making and evaluating point forecasts, J. Am. Stat. Assoc., 106, 746–762, https://doi.org/10.1198/jasa.2011.r10138, 2011. a
Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction and estimation, J. Am. Stat. Assoc., 102, 359–378, https://doi.org/10.1198/016214506000001437, 2007. a, b, c
Gneiting, T., Raftery, A. E., Westveld, A. H., and Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Mon. Weather Rev., 133, 1098–1118, https://doi.org/10.1175/MWR2904.1, 2005. a
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press, Cambridge, ISBN 978-0262035613, 2016. a
Gu, Y., Liou, K. N., Ou, S. C., and Fovell, R.: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution, J. Geophys. Res., 116, D06119, https://doi.org/10.1029/2010JD014574, 2011. a
Hamill, T. M. and Scheuerer, M.: Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing, Mon. Weather Rev., 146, 4079–4098, https://doi.org/10.1175/MWR-D-18-0147.1, 2018. a
Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006. a
Hu, Y., Schmeits, M. J., van Andel, J. S., Verkade, J. S., Xu, M., Solomatine, D. P., and Liang, Z.: A stratified sampling approach for improved sampling from a calibrated ensemble forecast distribution, J. Hydrometeorol., 17, 2405–2417, https://doi.org/10.1175/JHM-D-15-0205.1, 2016. a
Iacono, M. J., Delamere J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2005. a
IRENA: Renewable capacity statistics 2024, International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-587-2, 2024. a
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. a
Jávorné Radnóczi, K., Várkonyi, A., and Szépszó, G.: On the way towards the AROME nowcasting system in Hungary, ALADIN-HIRLAM Newsletter, 65–69, https://www.umr-cnrm.fr/aladin/IMG/pdf/nl14.pdf (last access: 28 February 2025), 2020. a
Jobst, D., Möller, A., and Groß, J.: D-vine-copula-based postprocessing of wind speed ensemble forecasts, Q. J. Roy. Meteorol. Soc., 149, 2575–2597, https://doi.org/10.1002/qj.4521, 2023. a
Jordan, A., Krüger, F., and Lerch, S.: Evaluating probabilistic forecasts with scoringRules, J. Stat. Softw., 90, 1–37, https://doi.org/10.18637/jss.v090.i12, 2019. a, b
Kain, J. S.: The Kain-Fritsch convective parameterization: an update, J. Appl. Meteorol., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. a
Krüger, F., Lerch, S., Thorarinsdottir, T. L., and Gneiting, T.: Predictive inference based on Markov chain Monte Carlo output, Int. Stat. Rev., 89, 274–301, https://doi.org/10.1111/insr.12405, 2021. a
Lang, M. N., Lerch, S., Mayr, G. J., Simon, T., Stauffer, R., and Zeileis, A.: Remember the past: a comparison of time-adaptive training schemes for non-homogeneous regression, Nonlin. Processes Geophys., 27, 23–34, https://doi.org/10.5194/npg-27-23-2020, 2020. a
Lang, S., Alexe, M., Chantry, M., Dramsch, J., Pinault, F., Raoult, B., Ben Bouallègue, Z., Clare, M., Lessig, C., Magnusson, L., and Prieto Nemesio, A.: AIFS: a new ECMWF forecasting system, ECMWF Newsletter, 4–5, https://www.ecmwf.int/en/newsletter/178 (last access: 28 February 2025), 2024. a
La Salle, J. L. G., Badosa, J., David, M., Pinson, P., and Lauret, P.: Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts, Renew. Energy, 162, 1321–1339, https://doi.org/10.1016/j.renene.2020.07.042, 2020. a, b
Lerch, S. and Baran, S.: Similarity-based semi-local estimation of EMOS models, J. Roy. Stat. Soc. Ser. C, 66, 29–51, https://doi.org/10.1111/rssc.12153, 2017. a, b
Li, W., Pan, B., Xia, J., and Duan, Q.: Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts, J. Hydrol., 605, 127301, https://doi.org/10.1016/j.jhydrol.2021.127301, 2022. a
Mayer, M. J. and Yang, D.: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains, Renew. Sustain. Energ. Rev., 168, 112821, https://doi.org/10.1016/j.rser.2022.112821, 2022. a
Molina, A., Falvey, M., and Rondanelli, R.: A solar radiation database for Chile, Sci. Rep., 7, 14823, https://doi.org/10.1038/s41598-017-13761-x, 2017. a
Nagy-Lakatos, M.: marialakatos/pp_radiation_forecasts: Initial release (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.15612831, 2025. a
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011. a
Pleim, J. E.: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing, J. Appl. Meteorol. Clim., 46, 1383–1395, https://doi.org/10.1175/JAM2539.1, 2007. a
Politis, D. N. and Romano, J. P.: The stationary bootstrap, J. Am. Stat. Assoc., 89, 1303–1313, https://doi.org/10.2307/2290993, 1994. a
Price, I., Sanchez-Gonzalez, A., Alet, F., Andersson, T. R., El-Kadi, A., Masters, D., Ewalds, T., Stott, J., Mohamed, S., Battaglia, P., Lam, R., and Willson, M.: Probabilistic weather forecasting with machine learning, Nature, 637, 84–90, https://doi.org/10.1038/s41586-024-08252-9, 2025. a
Rasp, S. and Lerch, S.: Neural networks for postprocessing ensemble weather forecasts, Mon. Weather Rev., 146, 3885–3900, https://doi.org/10.1175/MWR-D-18-0187.1, 2018. a, b, c
Rondanelli, R., Molina, A., and Falvey, M.: The Atacama surface solar maximum, B. Am. Meteorol. Soc., 96, 405–418, https://doi.org/10.1175/BAMS-D-13-00175.1, 2015. a
Schefzik, R., Thorarinsdottir, T. L., and Gneiting, T.: Uncertainty quantification in complex simulation models using ensemble copula coupling, Stat. Sci., 28, 616–640, https://doi.org/10.1214/13-STS443, 2013. a
Scheuerer, M.: Probabilistic quantitative precipitation forecasting using ensemble model output statistics, Q. J. Roy. Meteorol. Soc., 140, 1086–1096, https://doi.org/10.1002/qj.2183, 2014. a
Scheuerer, M., Switanek, M. B., Worsnop, R. P., and Hamill, T. M.: Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California, Mon. Weather Rev., 148, 3489–3506, https://doi.org/10.1175/MWR-D-20-0096.s1, 2024. a
Schulz, B. and Lerch, S.: Machine learning methods for postprocessing ensemble forecasts of wind gusts: a systematic comparison, Mon. Weather Rev., 150, 235–257, https://doi.org/10.1175/MWR-D-21-0150.1, 2022. a, b
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X. Y.: A description of the advanced research WRF version 4, NCAR Tech. Note NCAR/TN-556+STR, NCAR, https://doi.org/10.5065/1DFH-6P97, 2019. a, b
Song, M., Yang, D., Lerch, S., Xia, X., Yagli, G. M., Bright, J. M., Shen, Y., Liu, B., Liu, X., and Mayer, M. J.: Non-crossing quantile regression neural network as a calibration tool for ensemble weather forecasts, Adv. Atmos. Sci., 41, 1417–1437, https://doi.org/10.1007/s00376-023-3184-5, 2024. a
Sukoriansky, S., Galperin, B., and Perov, V.: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice, Bound.-Lay. Meteorol., 117, 231–257, https://doi.org/10.1007/s10546-004-6848-4, 2005. a
Szabó, M., Gascón, E., and Baran, S.: Parametric post-processing of dual-resolution precipitation forecasts, Weather Forecast., 38, 1313–1322, https://doi.org/10.1175/WAF-D-23-0003.1, 2023. a
Taillardat, M., Mestre, O., Zamo, M., and Naveau, P.: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics, Mon. Weather Rev., 144, 2375–2393, https://doi.org/10.1175/MWR-D-15-0260.1, 2016. a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Mon. Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008. a
Thorarinsdottir, T. L. and Gneiting, T.: Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression, J. Roy. Stat. Soc. Ser. A, 173, 371–388, https://doi.org/10.1111/j.1467-985X.2009.00616.x, 2010. a
Vannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A., Ben Boualègue, Z., Bhend, J., Dabernig, M., De Cruz, L., Hieta, L., Mestre, O., Moret, L., Odak Plenkovič, I., Schmeits, M., Taillardat, M., Van den Bergh, J., Van Schaeybroeck, B., Whan, K., and Ylhaisi, J.: Statistical postprocessing for weather forecasts – review, challenges and avenues in a big data world, B. Am. Meteorol. Soc., 102, E681–E699, https://doi.org/10.1175/BAMS-D-19-0308.1, 2021. a
Van Schaeybroeck, B. and Vannitsem, S.: Ensemble post-processing using member-by-member approaches: Theoretical aspects, Q. J. Roy. Meteorol. Soc., 141, 807–818, https://doi.org/10.1002/qj.2397, 2015. a
Veldkamp, S., Whan, K., Dirksen, S., and Schmeits, M.: Statistical postprocessing of wind speed forecasts using convolutional neural networks, Mon. Weather Rev., 149, 1141–1152, https://doi.org/10.1175/MWR-D-20-0219.1, 2021. a
Yang, D.: Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit, J. Renew. Sustain. Energ., 12, 036101, https://doi.org/10.1063/5.0010003, 2020. a
Yang, D. and Kleissl, J.: Solar Irradiance and Photovoltaic Power Forecasting, CRC Press, Boca Raton, https://doi.org/10.1201/9781003203971, 2024. a
Yang, D. and van der Meer, D.: Post-processing in solar forecasting: Ten overarching thinking tools, Renew. Sustain. Energ. Rev., 140, 110735, https://doi.org/10.1016/j.rser.2021.110735, 2021. a
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins, J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140, 2011. a
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteorol. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015. a
Short summary
This paper assesses the skill of probabilistic forecasts of solar irradiance in the northern regions of Chile. Raw ensemble forecast are calibrated using a parametric and a novel non-parametric machine-learning-based method. As the reference approach, the ensemble model output statistics are considered. We verify the superiority of the proposed non-parametric neural-network-based ensemble correction, resulting in more than 50 % improvement in prediction performance compared to the raw forecasts.
This paper assesses the skill of probabilistic forecasts of solar irradiance in the northern...