Articles | Volume 1, issue 1
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, 2015
https://doi.org/10.5194/ascmo-1-45-2015
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, 2015
https://doi.org/10.5194/ascmo-1-45-2015
 
17 Nov 2015
17 Nov 2015

Characterization of extreme precipitation within atmospheric river events over California

S. Jeon et al.

Related authors

Extreme metrics from large ensembles: investigating the effects of ensemble size on their estimates
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021,https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-90,https://doi.org/10.5194/esd-2021-90, 2021
Preprint under review for ESD
Short summary
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020,https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
The effect of geographic sampling on evaluation of extreme precipitation in high-resolution climate models
Mark D. Risser and Michael F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115–139, https://doi.org/10.5194/ascmo-6-115-2020,https://doi.org/10.5194/ascmo-6-115-2020, 2020
Short summary

Related subject area

Atmospheric science
A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns
Vitaly Kholodovsky and Xin-Zhong Liang
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021,https://doi.org/10.5194/ascmo-7-35-2021, 2021
Short summary
Nonlinear time series models for the North Atlantic Oscillation
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020,https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020,https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020,https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary

Cited articles

Bernard, E., Naveau, P., Vrac, M., and Mestre, O.: Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France, J. Climate, 26, 7929–-7937, 2013.
Byna, S., Prabhat, Wehner, M. F., and Wu, K. J.: Detecting Atmospheric Rivers in Large Climate Datasets, in: Proceedings of the 2nd International Workshop on Petascal Data Analytics: Challenges and Opportunities, PDAC '11, 7–14, ACM, New York, NY, USA, https://doi.org/10.1145/2110205.2110208, 2011.
Coelho, C. A. S., Ferro, C. A. T., Stephenson, D. B., and Steinskog, D. J.: Methods for Exploring Spatial and Temporal Variability of Extreme Events in Climate Data, J. Climate, 21, 2072–2092, 2008.
Coles, S. G.: An Introduction to Statistical Modeling of Extreme Values, Springer Verlag, New York, USA, 45–91 , 2001.
Cooley, D., Naveau, P., and Poncet, P.: Variograms for spatial max-stable random fields, Lecture Notes in Statistics, 187, 373–390, 2006.
Download
Short summary
This paper investigates the influence of atmospheric rivers on spatial coherence of extreme precipitation under a changing climate. We use our TECA software developed for detecting atmospheric river events and apply statistical techniques based on extreme value theory to characterize the spatial dependence structure between precipitation extremes within the events. The results show that extreme rainfall caused by atmospheric river events is less spatially correlated under the warming scenario.