Journal cover Journal topic
Advances in Statistical Climatology, Meteorology and Oceanography An international open-access journal on applied statistics
Journal topic

Journal metrics

CiteScore value: 0.1
CiteScore
0.1
Scimago H <br class='widget-line-break'>index value: 1
Scimago H
index
1
Download
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Articles | Volume 3, issue 1
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, 2017
https://doi.org/10.5194/ascmo-3-17-2017
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, 2017
https://doi.org/10.5194/ascmo-3-17-2017

  18 Apr 2017

18 Apr 2017

A statistical framework for conditional extreme event attribution

Pascal Yiou et al.

Related authors

Evaluation of convection-permitting extreme precipitation simulations for the south of France
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-77,https://doi.org/10.5194/esd-2020-77, 2020
Preprint under review for ESD
Short summary
Modelling the Ruin of Forests under Climate Hazards
Pascal Yiou and Nicolas Viovy
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-78,https://doi.org/10.5194/esd-2020-78, 2020
Preprint under review for ESD
Short summary
A dynamical and thermodynamic mechanism to explain heavy snowfalls in current and future climate over Italy during cold spells
Miriam D'Errico, Pascal Yiou, Cesare Nardini, Frank Lunkeit, and Davide Faranda
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-61,https://doi.org/10.5194/esd-2020-61, 2020
Preprint under review for ESD
Short summary
Simulating compound weather extremes responsible for critical crop failure with stochastic weather generators
Peter Pfleiderer, Aglaé Jézéquel, Juliette Legrand, Natacha Legrix, Iason Markantonis, Edoardo Vignotto, and Pascal Yiou
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-32,https://doi.org/10.5194/esd-2020-32, 2020
Revised manuscript accepted for ESD
Short summary
Seasonal weather regimes in the North Atlantic region: towards new seasonality?
Florentin Breton, Mathieu Vrac, Pascal Yiou, Pradeebane Vaittinada Ayar, and Aglaé Jézéquel
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-26,https://doi.org/10.5194/esd-2020-26, 2020
Revised manuscript under review for ESD
Short summary

Related subject area

Atmospheric science
Nonlinear time series models for the North Atlantic Oscillation
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020,https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020,https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Postprocessing ensemble forecasts of vertical temperature profiles
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020,https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 13–30, https://doi.org/10.5194/ascmo-6-13-2020,https://doi.org/10.5194/ascmo-6-13-2020, 2020
Short summary
Automated detection of weather fronts using a deep learning neural network
James C. Biard and Kenneth E. Kunkel
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019,https://doi.org/10.5194/ascmo-5-147-2019, 2019
Short summary

Cited articles

Allen, M.: Liability for climate change, Nature, 421, 891–892, 2003.
Bindoff, N., Stott, P., AchutaRao, K., Allen, M., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I., Overland, J., Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and Attribution of Climate Change: from Global to Regional, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 867–952, 2013.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010gl044613, 2010.
Christidis, N. and Stott, P.: Extreme rainfall in the United Kingdom during winter 2013/14: The role of atmospheric circulation and climate change, B. Am. Meteorol. Soc., 96, S46–S50, https://doi.org/10.1175/BAMS-D-15-00094.1, 2015.
Publications Copernicus
Download
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Citation