Articles | Volume 6, issue 1
https://doi.org/10.5194/ascmo-6-13-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ascmo-6-13-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using wavelets to verify the scale structure of precipitation forecasts
Sebastian Buschow
CORRESPONDING AUTHOR
Institute of Geosciences, University of Bonn, Auf dem Hügel 20, Bonn, Germany
Petra Friederichs
Institute of Geosciences, University of Bonn, Auf dem Hügel 20, Bonn, Germany
Related authors
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021, https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary
Short summary
When insects fill the lower kilometers of the atmosphere, they get caught in the convergent parts of the wind field. Their concentration visualizes the otherwise invisible circulation on radar images. This study shows how clear-air radar data can be compared to simulated wind fields in terms of scale, anisotropy, and direction. Despite known difficulties with simulating these near-surface wind systems, we find decent agreement between a long-term simulation and the German radar mosaic.
Sebastian Buschow, Jakiw Pidstrigach, and Petra Friederichs
Geosci. Model Dev., 12, 3401–3418, https://doi.org/10.5194/gmd-12-3401-2019, https://doi.org/10.5194/gmd-12-3401-2019, 2019
Short summary
Short summary
Highly resolved forecasts of precipitation fields are difficult to evaluate since individual rain features are typically not placed precisely at the right location. Instead of comparing forecasts and observations pixel by pixel, we base our verification on the fields' wavelet transforms which compactly summarize the overall structure. The methodology is rigorously tested using randomly generated rain fields for which that structure can be determined at will.
Svenja Szemkus and Petra Friederichs
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 29–49, https://doi.org/10.5194/ascmo-10-29-2024, https://doi.org/10.5194/ascmo-10-29-2024, 2024
Short summary
Short summary
This paper uses the tail pairwise dependence matrix (TPDM) proposed by Cooley and Thibaud (2019), which we extend to the description of common extremes in two variables. We develop an extreme pattern index (EPI), a pattern-based aggregation to describe spatially extended weather extremes. Our results show that the EPI is suitable for describing heat waves. We extend the EPI to describe extremes in two variables and obtain an index to describe compound precipitation deficits and heat waves.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Sebastian Buschow and Petra Friederichs
Geosci. Model Dev., 14, 6765–6780, https://doi.org/10.5194/gmd-14-6765-2021, https://doi.org/10.5194/gmd-14-6765-2021, 2021
Short summary
Short summary
When insects fill the lower kilometers of the atmosphere, they get caught in the convergent parts of the wind field. Their concentration visualizes the otherwise invisible circulation on radar images. This study shows how clear-air radar data can be compared to simulated wind fields in terms of scale, anisotropy, and direction. Despite known difficulties with simulating these near-surface wind systems, we find decent agreement between a long-term simulation and the German radar mosaic.
Julian Steinheuer and Petra Friederichs
Nonlin. Processes Geophys., 27, 239–252, https://doi.org/10.5194/npg-27-239-2020, https://doi.org/10.5194/npg-27-239-2020, 2020
Short summary
Short summary
Many applications require wind gust estimates at very different atmospheric altitudes, such as in the wind energy sector. However, numerical weather prediction models usually only derive estimates for gusts at 10 m above the land surface. We present a statistical model that gives the hourly peak wind speed. The model is trained based on a weather reanalysis and observations from the Hamburg Weather Mast. Reliable predictions are derived at up to 250 m, even at unobserved intermediate levels.
Sebastian Buschow, Jakiw Pidstrigach, and Petra Friederichs
Geosci. Model Dev., 12, 3401–3418, https://doi.org/10.5194/gmd-12-3401-2019, https://doi.org/10.5194/gmd-12-3401-2019, 2019
Short summary
Short summary
Highly resolved forecasts of precipitation fields are difficult to evaluate since individual rain features are typically not placed precisely at the right location. Instead of comparing forecasts and observations pixel by pixel, we base our verification on the fields' wavelet transforms which compactly summarize the overall structure. The methodology is rigorously tested using randomly generated rain fields for which that structure can be determined at will.
Related subject area
Atmospheric science
Forecasting 24 h averaged PM2.5 concentration in the Aburrá Valley using tree-based machine learning models, global forecasts, and satellite information
A generalized Spatio-Temporal Threshold Clustering method for identification of extreme event patterns
Nonlinear time series models for the North Atlantic Oscillation
Comparing forecast systems with multiple correlation decomposition based on partial correlation
Postprocessing ensemble forecasts of vertical temperature profiles
Automated detection of weather fronts using a deep learning neural network
Low-visibility forecasts for different flight planning horizons using tree-based boosting models
Skewed logistic distribution for statistical temperature post-processing in mountainous areas
Hourly probabilistic snow forecasts over complex terrain: a hybrid ensemble postprocessing approach
A statistical framework for conditional extreme event attribution
Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles
A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors
Characterization of extreme precipitation within atmospheric river events over California
Jhayron S. Pérez-Carrasquilla, Paola A. Montoya, Juan Manuel Sánchez, K. Santiago Hernández, and Mauricio Ramírez
Adv. Stat. Clim. Meteorol. Oceanogr., 9, 121–135, https://doi.org/10.5194/ascmo-9-121-2023, https://doi.org/10.5194/ascmo-9-121-2023, 2023
Short summary
Short summary
This study uses tree-based machine learning (ML) to forecast PM2.5 in a complex terrain region. The models show the potential to predict pollution events with several hours of anticipation, and they integrate multiple sources of information, including in situ stations, satellite data, and deterministic model outputs. The importance analysis helps understand the processes affecting air quality in the region and highlights the relevance of external sources of pollution in PM2.5 predictability.
Vitaly Kholodovsky and Xin-Zhong Liang
Adv. Stat. Clim. Meteorol. Oceanogr., 7, 35–52, https://doi.org/10.5194/ascmo-7-35-2021, https://doi.org/10.5194/ascmo-7-35-2021, 2021
Short summary
Short summary
Consistent definition and verification of extreme events are still lacking. We propose a new generalized spatio-temporal threshold clustering method to identify extreme event episodes. We observe changes in the distribution of extreme precipitation frequency from large-scale well-connected spatial patterns to smaller-scale, more isolated rainfall clusters, possibly leading to more localized droughts and heat waves.
Thomas Önskog, Christian L. E. Franzke, and Abdel Hannachi
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 141–157, https://doi.org/10.5194/ascmo-6-141-2020, https://doi.org/10.5194/ascmo-6-141-2020, 2020
Short summary
Short summary
The North Atlantic Oscillation (NAO) has a significant impact on seasonal climate and surface weather conditions throughout Europe, North America and the North Atlantic. In this paper, we study a number of linear and nonlinear models for a station-based time series of the daily winter NAO. We find that a class of nonlinear models, including both short and long lags, excellently reproduce the characteristic statistical properties of the NAO. These models can hence be used to simulate the NAO.
Rita Glowienka-Hense, Andreas Hense, Sebastian Brune, and Johanna Baehr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 103–113, https://doi.org/10.5194/ascmo-6-103-2020, https://doi.org/10.5194/ascmo-6-103-2020, 2020
Short summary
Short summary
A new method for weather and climate forecast model evaluation with respect to observations is proposed. Individually added values are estimated for each model, together with shared information both models provide equally on the observations. Finally, shared model information, which is not present in the observations, is calculated. The method is applied to two examples from climate and weather forecasting, showing new perspectives for model evaluation.
David Schoenach, Thorsten Simon, and Georg Johann Mayr
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 45–60, https://doi.org/10.5194/ascmo-6-45-2020, https://doi.org/10.5194/ascmo-6-45-2020, 2020
Short summary
Short summary
State-of-the-art statistical methods are applied to postprocess an ensemble of numerical forecasts for vertical profiles of air temperature. These profiles are important tools in weather forecasting as they show the stratification and the static stability of the atmosphere. Flexible regression models combined with the multi-dimensionality of the data lead to better calibration and representation of uncertainty of the vertical profiles.
James C. Biard and Kenneth E. Kunkel
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, https://doi.org/10.5194/ascmo-5-147-2019, https://doi.org/10.5194/ascmo-5-147-2019, 2019
Short summary
Short summary
A deep learning convolutional neural network (DL-FRONT) was around 90 % successful in determining the locations of weather fronts over North America when compared against front locations determined manually by forecasters. DL-FRONT detects fronts using maps of air pressure, temperature, humidity, and wind from historical observations or climate models. DL-FRONT makes it possible to do science that was previously impractical because manual front identification would take too much time.
Sebastian J. Dietz, Philipp Kneringer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 101–114, https://doi.org/10.5194/ascmo-5-101-2019, https://doi.org/10.5194/ascmo-5-101-2019, 2019
Short summary
Short summary
Low-visibility conditions reduce the flight capacity of airports and can lead to delays and supplemental costs for airlines and airports. In this study, the forecasting skill and most important model predictors of airport-relevant low visibility are investigated for multiple flight planning horizons with different statistical models.
Manuel Gebetsberger, Reto Stauffer, Georg J. Mayr, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 87–100, https://doi.org/10.5194/ascmo-5-87-2019, https://doi.org/10.5194/ascmo-5-87-2019, 2019
Short summary
Short summary
This article presents a method for improving probabilistic air temperature forecasts, particularly at Alpine sites. Using a nonsymmetric forecast distribution, the probabilistic forecast quality can be improved with respect to the common symmetric Gaussian distribution used. Furthermore, a long-term training approach of 3 years is presented to ensure the stability of the regression coefficients. The research was based on a PhD project on building an automated forecast system for northern Italy.
Reto Stauffer, Georg J. Mayr, Jakob W. Messner, and Achim Zeileis
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 65–86, https://doi.org/10.5194/ascmo-4-65-2018, https://doi.org/10.5194/ascmo-4-65-2018, 2018
Short summary
Short summary
Snowfall forecasts are important for a range of economic sectors as well as for the safety of people and infrastructure, especially in mountainous regions. This work presents a novel statistical approach to provide accurate forecasts for fresh snow amounts and the probability of snowfall combining data from various sources. The results demonstrate that the new approach is able to provide reliable high-resolution hourly snowfall forecasts for the eastern European Alps up to 3 days ahead.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Jérôme Pernin, Mathieu Vrac, Cyril Crevoisier, and Alain Chédin
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 115–136, https://doi.org/10.5194/ascmo-2-115-2016, https://doi.org/10.5194/ascmo-2-115-2016, 2016
Short summary
Short summary
Here, we propose a classification methodology of various space-time atmospheric datasets into discrete air mass groups homogeneous in temperature and humidity through a probabilistic point of view: both the classification process and the data are probabilistic. Unlike conventional classification algorithms, this methodology provides the probability of belonging to each class as well as the corresponding uncertainty, which can be used in various applications.
Laura D. Riihimaki, Jennifer M. Comstock, Kevin K. Anderson, Aimee Holmes, and Edward Luke
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 49–62, https://doi.org/10.5194/ascmo-2-49-2016, https://doi.org/10.5194/ascmo-2-49-2016, 2016
Short summary
Short summary
Between atmospheric temperatures of 0 and −38 °C, clouds contain ice crystals, super-cooled liquid droplets, or a mixture of both, impacting how they influence the atmospheric energy budget and challenging our ability to simulate climate change. Better cloud-phase measurements are needed to improve simulations. We demonstrate how a Bayesian method to identify cloud phase can improve on currently used methods by including information from multiple measurements and probability estimates.
S. Jeon, Prabhat, S. Byna, J. Gu, W. D. Collins, and M. F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, https://doi.org/10.5194/ascmo-1-45-2015, https://doi.org/10.5194/ascmo-1-45-2015, 2015
Short summary
Short summary
This paper investigates the influence of atmospheric rivers on spatial coherence of extreme precipitation under a changing climate. We use our TECA software developed for detecting atmospheric river events and apply statistical techniques based on extreme value theory to characterize the spatial dependence structure between precipitation extremes within the events. The results show that extreme rainfall caused by atmospheric river events is less spatially correlated under the warming scenario.
Cited articles
Bick, T., Simmer, C., Trömel, S., Wapler, K., Hendricks Franssen, H.-J.,
Stephan, K., Blahak, U., Schraff, C., Reich, H., Zeng, Y., and Potthast, R.:
Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the
convective scale, Q. J. Roy. Meteorol. Soc., 142,
1490–1504, 2016. a
Bierdel, L., Friederichs, P., and Bentzien, S.: Spatial kinetic energy spectra
in the convection-permitting limited-area NWP model COSMO-DE,
Meteorol. Z., 21, 245–258, https://doi.org/10.1127/0941-2948/2012/0319,
2012. a
Conway, J. R., Lex, A., and Gehlenborg, N.: UpSetR: an R package for the
visualization of intersecting sets and their properties, Bioinformatics, 33,
2938–2940, 2017. a
Daubechies, I.: Ten lectures on wavelets, vol. 61, Siam, 1992. a
Gilleland, E.: SpatialVx: Spatial Forecast Verification,
available at: https://CRAN.R-project.org/package=SpatialVx (last access: February 2020), r package
version 0.6-3, 2018. a
Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.:
Intercomparison of spatial forecast verification methods, Weather
Forecast., 24, 1416–1430, 2009. a
Hewer, R.: Stochastisch-physikalische Modelle für Windfelder und
Niederschlagsextreme, Ph.D. thesis, University of Bonn, 2018. a
Kuell, V. and Bott, A.: A hybrid convection scheme for use in non-hydrostatic
numerical weather prediction models, Meteorol. Z., 17,
775–783, 2008. a
Peralta, C., Ben Bouallègue, Z., Theis, S., Gebhardt, C., and Buchhold, M.:
Accounting for initial condition uncertainties in COSMO-DE-EPS, J.
Geophys. Res.-Atmos., 117, D07108, https://doi.org/10.1029/2011JD016581, 2012. a
Radanovics, S., Vidal, J.-P., and Sauquet, E.: Spatial verification of ensemble
precipitation: an ensemble version of SAL, Weather Forecast., 33,
1001–1020, 2018. a
Rubner, Y., Tomasi, C., and Guibas, L. J.: The earth mover's distance as a
metric for image retrieval, Int. J. Comput. Vision, 40,
99–121, 2000. a
Schleiss, M., Chamoun, S., and Berne, A.: Nonstationarity in Intermittent
Rainfall: The “Dry Drift”, J. Hydrometeorol., 15, 1189–1204,
https://doi.org/10.1175/JHM-D-13-095.1,
2014. a
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics parameterization
for mixed-phase clouds. Part 1: Model description, Meteorol.
Atmos. Phys., 92, 45–66, 2006. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,
F., Lac, C., and Masson, V.: The AROME-France convective-scale operational
model, Mon. Weather Rev., 139, 976–991, 2011. a
Stephan, K., Klink, S., and Schraff, C.: Assimilation of radar-derived rain
rates into the convective-scale model COSMO-DE at DWD, Quarterly Journal of
the Royal Meteorological Society: A journal of the atmospheric sciences,
Appl. Meteorol. Phys. Oceanogr., 134, 1315–1326, 2008. a
Theis, S., Gebhardt, C., and Bouallegue, Z. B.: Beschreibung des COSMO-DE-EPS
und seiner Ausgabe in die Datenbanken des DWD, Deutscher Wetterdienst, 2014. a
Wahl, S., Bollmeyer, C., Crewell, S., Figura, C., Friederichs, P., Hense, A.,
Keller, J. D., and Ohlwein, C.: A novel convective-scale regional reanalysis
COSMO-REA2: Improving the representation of precipitation, Meteorol.
Z., 26, 345–361, https://doi.org/10.1127/metz/2017/0824,
2017 (data available at: ftp://ftp.meteo.uni-bonn.de/pub/reana/COSMO-REA2/, last access: March 2020). a, b, c
Weniger, M. and Friederichs, P.: Using the SAL technique for spatial
verification of cloud processes: A sensitivity analysis, J. Appl.
Meteorol. Climatol., 55, 2091–2108, 2016. a
Winterrath, T., Brendel, C., Mario, H., Junghänel, T., Klameth, A.,
Walawender, E., Weigl, E., and Becker, A.: RADKLIM Version 2017.002: Reprocessed gauge-adjusted radar data, one-hour precipitation sums (RW),
https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002, 2018. a
Yano, J.-I. and Jakubiak, B.: Wavelet-based verification of the quantitative
precipitation forecast, Dynam. Atmos. Oceans, 74, 14–29, 2016. a
Short summary
Two-dimensional wavelet transformations can be used to analyse the local structure of predicted and observed precipitation fields and allow for a forecast verification which focuses on the spatial correlation structure alone. This paper applies the novel concept to real numerical weather predictions and radar observations. Systematic similarities and differences between nature and simulation can be detected, localized in space and attributed to particular weather situations.
Two-dimensional wavelet transformations can be used to analyse the local structure of predicted...